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Abstract
In this paper, we address a safety-critical control problem using reachability analysis and design a
reinforcement learning-based mechanism for learning online and in fixed-time the solution to the
safety-critical control problem. Safety is assured by determining a set of states for which there
does not exist an admissible control law generating a system trajectory reaching a set of forbidden
states at a user-prescribed time instant. Specifically, we cast our safety-critical problem as a Mayer
optimal feedback control problem whose solution satisfies the Hamilton-Jacobi-Bellman (HJB)
equation and characterizes the set of safe states. Since the HJB equation is generally difficult to
solve, we develop an online critic-only reinforcement learning-based algorithm for simultaneously
learning the solution to the HJB equation and the safe set in fixed time. In particular, we introduce
a non-Lipschitz experience replay-based learning law utilizing recorded and current data for updat-
ing the critic weights to learn the value function and the safe set. The non-Lipschitz property of
the dynamics gives rise to fixed-time convergence, whereas the experience replay-based approach
eliminates the need of satisfying the persistence of excitation condition provided that the recorded
data is sufficiently rich. Simulation results illustrate the efficacy of the proposed approach.
Keywords: Adaptive learning, fixed-time stability, safety-critical control, reachability analysis,
reinforcement learning.

1. Introduction

In control engineering, the term autonomy refers to controlled systems that can operate without
involving a supervisor (Vamvoudakis and Kokolakis, 2020). Systems possessing this property are
known as intelligent autonomous systems (IASs). IASs include unmanned aerial vehicles (UAVs),
unmanned underwater vehicles, robotic manipulators, humanoid robots, and self-driving cars, to
name but a few examples. However, in many cases, IASs have accidentally crashed, thereby tes-
tifying that IASs are safety-critical systems. Therefore, providing safety guarantees becomes im-
perative, giving rise to safe autonomy (Herbert, 2020; Royo, 2020). To enable safe autonomy, the
control systems community can exploit the benefits of reinforcement learning (RL) (Sutton and
Barto, 2018) to develop IASs with learning-enabled control mechanisms that run in real-time and
adapt to changes in the environment while providing guarantees of performance and safety. To
assure the efficient and safe operation of IASs without human intervention, it is necessary for the
decision-making mechanism to generate optimal safe policies along with estimates of the safe sets
in fixed time rather than in an infinite or finite time.
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Related Work. The control systems community has invested considerable effort toward develop-
ing safety verification tools for safety-critical control systems. Hamilton-Jacobi (HJ) reachability
analysis (Mitchell et al., 2005; Lygeros, 2004; Margellos and Lygeros, 2011; Bansal et al., 2017;
Chen and Tomlin, 2018) is a formal verification method for assuring the optimal performance and
safety of dynamical systems by computing a backward reachable set (BRS), which encompasses
the set of states from which the system can potentially violate given safety specifications. The work
of (Chen et al., 2018) introduces a general system decomposition method for efficiently computing
BRSs. The method of “warm-start” reachability is proposed in (Herbert et al., 2019), which exhibits
computational benefits. The work of (Herbert et al., 2021) merges the methods of decomposition,
warm-starting, and a simple adaptive grid to accelerate the computation of safe sets. Real-world ap-
plications of HJ reachability analysis for safety verification include collision avoidance (Chen et al.,
2019), vehicle platooning (Chen et al., 2015), administering anesthesia (Kaynama et al., 2012),
motion planning (Chen et al., 2021; Bansal et al., 2020; Bajcsy et al., 2019), as well as other appli-
cations (Bayen et al., 2007; Huang et al., 2011; Ding et al., 2008). Nevertheless, the aforementioned
approaches and the references therein typically involve offline procedures that are computationally
intensive as they suffer from the curse of dimensionality.

Adaptive dynamic programming (ADP) (Lewis and Vrabie, 2009; Lewis et al., 2012b; Zhang
et al., 2012; Lewis and Liu, 2013; Liu et al., 2017; Kiumarsi et al., 2017; Jiang and Jiang, 2017;
Kamalapurkar et al., 2018; Jiang et al., 2020) unifies optimal (Lewis et al., 2012a) and adaptive
(Ioannou and Fidan, 2006) control by constructing adaptive learning algorithms to learn the so-
lutions to optimal control problems online by using measured data along the system trajectories
while efficiently dealing with system dimensionality (Powell, 2007). ADP algorithms leverage an
actor-critic structure composed of two function approximators. In particular, a critic network that
evaluates the performance of a control policy and an actor network that computes the control policy.
The vast majority of the existing adaptive learning algorithms for solving optimal control problems
(Vrabie et al., 2013; Vamvoudakis and Kokolakis, 2020) converge to a near-optimal control law as
long as a persistence of excitation (PE) (Ioannou and Fidan, 2006) condition is satisfied. Alter-
natively, concurrent learning/experience replay-based ADP algorithms (Chowdhary and Johnson,
2010; Lin, 1992) allow the learning of a solution to the optimal control problem by requiring a
weaker form of a PE condition to be satisfied (Modares et al., 2014; Vamvoudakis et al., 2016;
Kokolakis and Vamvoudakis, 2022a,b,c; Kokolakis et al., 2023). These algorithms are data-driven
and leverage recorded and instantaneous data concurrently for the adaptation of the critic weights.

In real-world applications, IASs may experience abrupt changes in the system dynamics and
operating environment, thereby necessitating the design of decision-making mechanisms featuring
fast adaptability to new safety tasks while establishing optimal performance. To this end, it is nec-
essary to bring together HJ reachability analysis, ADP, and stability analysis of dynamical systems
(Haddad and Chellaboina, 2011) to develop an online fixed-time convergent reinforcement learning-
based algorithm for learning the solution to a safety-critical control problem in fixed time. To the
best of our knowledge, an ADP approach enabling the learning of a BRS online and in a fixed time
is absent from the literature.

Contributions. The contributions of the present paper are fourfold. First, we address a safety-
critical control problem using reachability analysis formulated as a Mayer optimal control problem.
In particular, safety is ensured by determining a set of states for which there does not exist an
admissible controller steering a system trajectory to a set of forbidden states at a given time instant.
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Then, a RL-based framework is developed for learning online and in fixed-time the value function,
the safe set, and the safe control policy. Subsequently, a non-Lipschitz experience replay-based
adaptive learning law for updating the critic weights is introduced while ensuring fixed-time stability
properties provided that the recorded data is sufficiently rich. Finally, the proposed scheme relies
on the use of only a critic network, allowing the simultaneous learning of the value function, the
safe set, and the safe strategy, thus yielding a less computationally expensive learning mechanism.

Structure. The rest of the paper is organized as follows. Section 2 presents the safety-critical
control problem utilizing HJ reachability analysis. In Section 3, a critic-only learning mechanism is
constructed for learning online and in fixed time the solution to the safety-critical control problem.
Section 4 provides an illustrative numerical example. Finally, Section 5 provides conclusions and
outlines future research directions.

Notation. The notation used in this paper is standard. Specifically, }¨}p fi r
řn

i“1 |xi|
p
s
1{p , 1 ď

p ă 8, denotes the Hölder p-norm of a vector. The induced 2-norm for the matrix Q P Rmˆn is
defined as }Q} fi

a

λmax pQTQq “ σmaxpQq, with λmax (resp., λminq denoting the maximum (resp.,
minimum) eigenvalue and σmax (resp., σminq denoting the maximum (resp., minimum) singular
value. The gradient of a scalar-valued function V with respect to a vector-valued variable x at x
is defined as a row vector and is denoted by Vxpxq. We define the open ball Bε pxeq fi tx P Rn :
}x´ xe} ă εu centered at xe with radius ε in the Euclidean norm, while the corresponding closed
ball is denoted as Bεrxes. Let r¨uη fi | ¨ |η signp¨q, where | ¨ | and signp¨q operate componentwise
and η ą 0. The distance of a point x0 P Rn to a closed set C Ď Rn in the norm } ¨ } is defined as
dist px0, Cq fi infxPC t}x0 ´ x}u. The notation X ˆ Y denotes the Cartesian product of X and Y .
Finally, BS and Sc denote the boundary and the complement of the set S, respectively.

2. Safety Verification using Hamilton-Jacobi Reachability Analysis

In this section, we address a safety-critical control problem for determining a set of states for which
there does not exist an admissible controller that steers the system trajectory to the set of forbidden
states at a user-prescribed time instant. In particular, we cast our safety-critical problem as an
optimal control problem, thereby allowing the characterization of the set of safe states as a zero-
strict superlevel set of a function satisfying the HJB equation.

2.1. Safety-Critical Control Problem Formulation

Consider the continuous-time controlled nonlinear time-invariant dynamical system given by

9xptq “ F pxptq, uptqq, xpt0q “ x0, t ě t0, (1)

where, for every t ě t0, xptq P Rn is the state vector, uptq P U Ă Rm is the control input with U
being a compact set, and F : Rn ˆ U Ñ Rn is jointly Lipschitz continuous in x and u, and is such
that, for every x P Rn, the set of velocities Vpxq “ tF px, uq : u P Uu is convex.

Let tf ě t0 and let

U fi tu : rt0, tf s Ñ U : up¨q is Lebesgue measurableu

be the set of admissible controls. We assume that the required properties for the existence and
uniqueness of solutions to (1) are satisfied, and we write s pt, t0, x0, up¨qq , t0 ď t ď tf , to denote
the solution to (1) with initial time t0, initial condition x0, and up¨q P U .
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Let l : Rn Ñ R be a continuously differentiable function bounded from below and let L Ă Rn

be the set of forbidden states defined as

L fi tx P Rn : lpxq ď 0u . (2)

Note that L is a closed set defined as a zero-sublevel set of lp¨q characterizing the states that must
be avoided; L can, for example, encode the region occupied by an obstacle.

Before stating our control problem formulation, the following definitions introducing the con-
cepts of a safe state, a safe set, and a safe controller are needed.

Definition 1 A state x P RnzL is a safe state of the dynamical system (1) with respect to the set
of forbidden states L at time tf if there does not exist an admissible control law up¨q P U such that
the solution s pt, t0, x0, up¨qq , t0 ď t ď tf , to (1) satisfies dist ps ptf , t0, x, up¨qq ,Lq “ 0. A state
x P RnzL is an unsafe state if it is not a safe state. l

Definition 2 A set SpL, tfq Ă RnzL is a safe set for the dynamical system (1) with respect to the
set of forbidden states L at time tf if every state x P SpL, tfq is a safe state. A set SpL, tfq Ă RnzL
is an unsafe set if it is not a safe set. l

Definition 3 An admissible controller up¨q P U is a safe control law at x P RnzL for the dynamical
system (1) with respect to the set of forbidden states L at time tf if the solution s pt, t0, x0, up¨qq , t0 ď

t ď tf , to (1) satisfies dist ps ptf , t0, x, up¨qq ,Lq ‰ 0. Furthermore, up¨q P U is a safe control law
on G Ď RnzL if up¨q P U is a safe control law at every x P G. An admissible controller up¨q P U
is an unsafe control law at x P RnzL if up¨q is not a safe control law at x P RnzL. Furthermore,
up¨q P U is an unsafe control law on G Ď RnzL if up¨q P U is not a safe control law on G Ď RnzL.

l

It follows from Definitions 1 and 2 that in order to ensure safety with respect to the set of
forbidden states L at a time horizon tf , we need to determine the set of unsafe states BpL, tfq Ă

RnzL such that, for every x0 P BpL, tfq, there exists an admissible control law up¨q P U such that
the solution s pt, t0, x0, up¨qq , t0 ď t ď tf , to (1) reaches the set of forbidden states L at the time
instant t “ tf , i.e., s p¨, t0, x0, up¨qq satisfies dist ps ptf , t0, x0, up¨qq ,Lq “ 0. In other words, the
safety objective amounts to determining the backward reachable set BpL, tfq of (1) with respect to
L at time tf , which is defined as follows.

Definition 4 The backward reachable set BpL, tfq of the dynamical system (1) with respect to L at
time tf is defined as

BpL, tfq fi tx P Rn : there exists up¨q P U such thatdist ps ptf , t0, x, up¨qq ,Lq “ 0u.

l

Note that the safe set SpL, tfq is the complement of the backward reachable set BpL, tfq and is given
by SpL, tfq fi BcpL, tfq. Furthermore, note that the backward reachable set BpL, tfq is an unsafe
set.

In light of the above, we now state our safety-critical control problem.

Problem 1 Consider the controlled nonlinear dynamical system (1), let tf ě t0, and let the set of
forbidden states be characterized by L. Then, determine the safe set SpL, tfq of (1) with respect to
L at time tf . l
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2.2. Hamilton-Jacobi Reachability Analysis

To evaluate the safety of the controlled nonlinear dynamical system (1) with respect to the set of
forbidden states L at time tf , define the cost functional

J pt0, x0, up¨qq fi l ps ptf , t0, x0, up¨qqq , pt0, x0q P R ˆ Rn. (3)

Let u‹ : rt0, tf sˆRn Ñ U be a feedback control law and let xptq, t0 ď t ď tf , be a solution to (1). If
u‹p¨q “ u‹p¨, xp¨qq is Lebesgue measurable, then we call u‹p¨q an admissible feedback control law.
Next, for every pt0, x0q P RˆRn, define F pt0, x0q fi tu : rt0, tfs ˆRn Ñ U : up¨q “ up¨, xp¨qq is
admissible and xp¨q is a solution to (1)u Ď U to be the set of admissible feedback controllers.

We now cast the reachability problem as Mayer optimal feedback control problem using a dy-
namic programming approach, which involves the minimization

V pt0, x0q fi min
up¨qPFpt0,x0q

J pt0, x0, up¨qq , pt0, x0q P R ˆ Rn, (4)

subject to the dynamical system (1) and the terminal constraints captured by the closed target set
S “ ttfu ˆ Rn. Note that S encodes a fixed-time, free-endpoint problem whose value function is
given by V pt0, x0q and can be viewed as the optimal cost (cost-to-go) from pt0, x0q. Furthermore,
note that we adopt the convention that V pt0, x0q “ 8, if F pt0, x0q is empty.

Next, define the Hamiltonian function

H
`

t, x, u, V T
x pt, xq

˘

fi Vxpt, xqF px, uq, pt, x, uq P rt0, tfs ˆ Rn ˆ U. (5)

Applying the stationarity conditions to the Hamiltonian function (5), we obtain the feedback control
law u‹pt, xq as a global minimizer of the Hamiltonian function since Hpt, x, u, V T

x pt, xqq is convex
in u for all pt, xq P rt0, tfs ˆ Rn owing to the regularity condition on the system dynamics F p¨, ¨q.
Namely,

u‹pt, xq fi argmin
uPU

“

H
`

t, x, u, V T
x pt, xq

˘‰

, pt, xq P rt0, tfq ˆ Rn. (6)

Substituting (6) into (5) yields the HJB equation

Vtpt, xq ` Vxpt, xqF px, u‹pt, xqq “ 0, pt, xq P rt0, tfq ˆ Rn, (7)

subject to the boundary condition

V ptf , xq “ lpxq, x P Rn. (8)

Alternatively, the HJB equation (7) can be written in compact form as

Vtpt, xq ` min
uPU

“

H
`

t, x, u, V T
x pt, xq

˘‰

“ 0, pt, xq P rt0, tfq ˆ Rn. (9)

The next theorem characterizes the safe set SpL, tfq in terms of the value function V p¨, ¨q.

Theorem 1 Consider the controlled nonlinear dynamical system (1) with the set of forbidden states
(2) and performance measure (3). For every pt0, x0q P R ˆ Rn, let F pt0, x0q Ď U be the class of
admissible feedback controllers and assume that F pt0, x0q is nonempty. Assume that there exists a
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continuously differentiable function V : rt0, tfs ˆ Rn Ñ R given by (4) and an optimal feedback
controller u‹p¨q P F pt0, x0q satisfying (6) such that

V pt0, x0q “ J pt0, x0, u
‹p¨qq , pt0, x0q P R ˆ Rn. (10)

Then, the safe set SpL, tfq Ď Rn takes the form

SpL, tfq “ tx P RnzL : V pt0, xq ą 0u (11)

and u‹p¨q is a safe controller on SpL, tfq.

Proof The proof will appear in a future paper due to space limitations.

Remark 1 Note that the backward reachable set BpL, tfq is given by BpL, tfq “ ScpL, tfq “ tx P

RnzL : V pt0, xq ď 0u and the optimal feedback controller u‹p¨q is an unsafe controller on BpL, tfq.
l

In light of the above, the problem of characterizing the safe set SpL, tfq amounts to solving the
HJB equation (9), which is in general intractable aside from special cases. In the next section, we
present learning-based techniques for approximating the solution of the HJB equation.

3. Fixed-Time Stable Online Learning

In this section, we build on the results of (Kokolakis and Vamvoudakis, 2022b; Kokolakis et al.,
2023) to develop a learning-based algorithm for learning online and in fixed-time the solution of the
HJB equation (9) by utilizing data gathered along the system trajectories. Specifically, we employ a
critic structure, i.e., an approximator, allowing us to simultaneously approximate the value function
(4) and the optimal controller (6), which in turn enables the approximation of the safe set (11)
together with the safe control law (6).

By the Weierstrass higher-order approximation theorem (Hornik et al., 1990; Fotiadis et al.,
2021), we can locally approximate the value function V pt, xq and the partial derivative of V pt, xq

with respect to either t or x over a compact set Xc fi rt0, tfs ˆ X Ă R ˆ Rn with a neural network
approximator as

V pt, xq “ lpxq `W ‹Tϕpt, xq ` εpt, xq, pt, xq P Xc, (12)

V T
x pt, xq “ lTx pxq ` ϕT

xpt, xqW ‹ ` εTx pt, xq, pt, xq P Xc, (13)

and
Vtpt, xq “ W ‹Tϕtpt, xq ` εtpt, xq, pt, xq P Xc, (14)

where W ‹ P RN is an ideal constant weight vector satisfying }W ‹} ď Wm for some Wm ą 0,
ϕ : rt0, tfs ˆ X Ñ RN is a time-varying activation function vector with components φipt, xq, i “

1, . . . , N , such that ϕptf , ¨q “ 0 so that the boundary condition (8) is satisfied, N is the number of
neurons in the hidden layer of the neural network, and ε : rt0, tfs ˆ X Ñ R is an approximation
error. Note that one has to pick the basis functions φipt, xq, i “ 1, . . . , N , properly so that they
form a complete independent basis set for every pt, xq P rt0, tfs ˆ X (Lewis et al., 2020).

Remark 2 Note that the critic neural network approximates the function V pt, xq ´ lpxq over Xc,
which is unknown since V pt, xq is unknown. l
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Since the ideal weights W ‹ are unknown, we consider a critic with estimates Ŵ P RN of the
form

V̂ pt, xq fi lpxq ` Ŵ Tϕpt, xq, pt, xq P Xc, (15)

an estimate of the safe set given by

ŜpL, tfq fi tx P RnzL : V̂ pt0, xq ą 0u, (16)

and an approximate optimal (safe) controller of the form

û fi argmin
uPU

”

H
´

t, x, u, lTx pxq ` ϕTx pt, xqŴ
¯ı

, pt, xq P rt0, tfq ˆ X . (17)

Substituting the approximate value function (15) and the approximate optimal control law (17)
into (9), we obtain an estimate of the HJB equation as

ĥ
´

t, ϕTt pt, xqŴ , x, û, lTx pxq ` ϕTx pt, xqŴ
¯

fi Ŵ T pϕtpt, xq ` ϕxpt, xqF px, ûqq ` lxpxqF px, ûq,

pt, xq P rt0, tfq ˆ X , (18)

which is available for measurement, unlike the parameter error W̃ fi Ŵ ´ W ‹, which is not since
W ‹ is unknown.

Define the HJB estimation error corresponding to the data collected at the current time t P

rt0, tfq as

eptq fi ĥ
´

t, ϕTt pt, xptqqŴ ptq, xptq, ûptq, lTx pxptqq ` ϕTx pt, xptqqŴ ptq
¯

, t P rt0, tfq , (19)

and the HJB estimation error associated with the recorded data at the time instants t0 ď t1, . . . , tk ă

t ă tf as

e pti, tq fi ĥ
´

ti, ϕ
T
t pti, xptiqqŴ ptq, x ptiq , û ptiq , l

T
x pxptiqq ` ϕTx pti, xptiqqŴ ptq

¯

“ Ŵ Tptqω ptiq ` lxpx ptiqqF px ptiq , û ptiqq,

where ωptq fi ϕtpt, xptqq ` ϕxpt, xptqqF pxptq, ûptqq, t P rt0, tfq.
The fixed-time convergent data-driven learning law for updating the critic weights is given by

9̂
W ptq “ ´ α

ωptq

ωTptqωptq ` 1

R

eptq

ωTptqωptq ` 1

^γ1

´ α
ωptq

ωTptqωptq ` 1

R

eptq

ωTptqωptq ` 1

^γ2

´ α
k

ÿ

i“1

ωptiq

ωTptiqωptiq ` 1

R

e pti, tq

ωT ptiqω ptiq ` 1

^γ1

´ α
k

ÿ

i“1

ωptiq

ωTptiqωptiq ` 1

R

e pti, tq

ωT ptiqω ptiq ` 1

^γ2

, Ŵ p0q “ Ŵ0, t ě 0, (20)

where α ą 0 is a constant gain that dictates the learning rate.
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Using (18) and (20), the parameter error dynamics are given by

9̃W ptq “ ´ α
ωptq

ωTptqωptq ` 1

S

ωTptqW̃ ptq ` εHptq

ωTptqωptq ` 1

_γ1

´ α
ωptq

ωTptqωptq ` 1

S

ωTptqW̃ ptq ` εHptq

ωTptqωptq ` 1

_γ2

´ α
k

ÿ

i“1

ωptiq

ωTptiqωptiq ` 1

S

ωTptiqW̃ ptq ` εHptiq

ωT ptiqω ptiq ` 1

_γ1

´ α
k

ÿ

i“1

ωptiq

ωTptiqωptiq ` 1

S

ωTptiqW̃ ptq ` εHptiq

ωT ptiqω ptiq ` 1

_γ2

, W̃ p0q “ W̃0, t ě 0, (21)

where εH fi ĥ
`

t, ϕTt pt, xqW ‹, x, û, ϕTx pt, xqW ‹
˘

behaves as a disturbance stemming from the value
function approximation error.

Before proceeding to our main theorem establishing the fixed-time stability properties of our
concurrent learning law, the following definition introducing the concept of a sufficiently rich data
set is needed.

Definition 5 (Chowdhary and Johnson, 2010). The recorded data set tω ptiqu
k
i“1 is k-sufficiently

rich if the matrix Ω fi rω pt1q . . . ω ptkqs has rankpΩq “ N . l

It follows from Definition 5 that a recorded data set is k-sufficiently rich if and only if the set
tω ptiqu

k
i“1 contains N linearly independent vectors.

Theorem 2 Consider the weight parameter error dynamics given by (21). Define ω̄p¨q fi
ωp¨q

ωTp¨qωp¨q`1
,

Ω̄ fi rω̄ pt1q . . . ω̄ ptkqs, and ε̄Hp¨q fi
εHp¨q

ωTp¨qωp¨q`1
, let ε̄Hm, ω̄m, c ą 0, and θ P p0, 1q, and assume

that the recorded data set tω̄ ptiqu
k
i“1 is k-sufficiently rich. Then the following statements hold.

i) If εH ” 0, then the zero solution W̃ ptq ” 0 to (21) is globally fixed-time stable with a
settling-time function

T
´

W̃ p0q

¯

ď
1

σγ1`1
min pΩ̄q p2αq

γ1`1
2

´

1´γ1
2

¯ `
1

cγ2`1σγ2`1
min pΩ̄q p2αq

γ2`1
2

´

γ2´1
2

¯ , W̃ p0q P RN .

ii) If εH ı 0 and there exists N0 ą 0 such that

sup
pt,xqPXc

|εH| ă ε̄Hm, N ě N0,

and
ˇ

ˇ

ˇ
ω̄TW̃

ˇ

ˇ

ˇ
ě |ε̄H| , N ě N0,

then the compact set Bµr0s, where µ fi

ˆ

pk`1qpε̄
γ1
Hm`ε̄

γ2
Hmqω̄m

θσ
γ1`1
min pΩ̄q

˙
1
γ1

, is globally fixed-time atrrac-

tive; that is, for every initial condition W̃ p0q P RN , the solution W̃ ptq, t ě 0, to (21) satis-

fies dist
´

W̃ ptq,Bµr0s

¯

“ 0, t ě Tmax, where Tmax fi 2
δpγ2´1q

`
p

?
2αq

1´γ1´µ1´γ1

ασ
γ1`1
min pΩ̄qp1´θqp1´γ1q

with

δ fi 21´γ2cγ2`1σγ2`1
min pΩ̄qp2αq

γ2`1
2 ´ pk ` 1qω̄m

`

ε̄γ1Hm ` ε̄γ2Hm

˘ ?
2α ą 0.
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Proof The proof will appear in a future paper due to space limitaitons.

Remark 3 In the absence of the value function approximation error, the critic weights will con-
verge to the optimal weights W ‹ in fixed-time. However, even though the settling-time function is
unknown, it is uniformly upper bounded by a constant number that depends on the parameter α.
Thus, the larger the learning rate α is, the faster the convergence of the parameter error to the
origin will be. l

Remark 4 In the presence of the value function approximation error, the solution W̃ ptq, t ě 0,
to (21), for every initial condition W̃ p0q P RN , reaches the compact set Bµ r0s in fixed-time, that

is, at most in time Tmax, and remains therein for all future time. Note that T
´

W̃ p0q

¯

“ 0 if and

only if W̃ p0q P Bµ r0s. Finally, one can reduce the parameter error along with the settling time by
choosing the parameters γ1, γ2, and k properly since they determine the size of µ, that is, the size
of the ball Bµ r0s, as well as the upper bound of the settling-time Tmax. l

Remark 5 The fixed-time convergence of the critic weights gives rise to a fixed-time estimate of the
safe set SpL, tfq and the safe control u‹pt, xq given by (16) and (17), respectively. l

4. Illustrative Numerical Example

In this section, we provide an illustrative numerical example to demonstrate the proposed safety-
critical control and learning framework. Specifically, consider a UAV flying at a constant altitude
and airspeed v ą 0 whose kinematics is captured by a Dubins vehicle given by (Valavanis and
Vachtsevanos, 2015)

»

–

9x1ptq
9x2ptq
9ψptq

fi

fl “

»

–

v cosψptq
v sinψptq
uptq

fi

fl ,

»

–

x1p0q

x2p0q

ψp0q

fi

fl “

»

–

x10
x20
ψ0

fi

fl , t ě 0, (22)

where, for every t ě 0, rx1ptq, x2ptqs
T

P R2 and ψptq P R denote the planar position and the
heading angle of the UAV, respectively, and the guidance law is the commanded heading rate uptq P

r´umax, umaxs with umax being a positive constant. The dynamical system (22) can be cast in
the form of (1) with n “ 3, m “ 1, x “ rx1, x2, ψs

T , F px, uq “ rv cosψ, v sinψ, us
T , and

U “ r´umax, umaxs.
Let r ą 0 and let lpxq “

a

x21 ` x22 ` ψ2 ´ r. Then, the set of forbidden states is given by

L “

"

x P R3 :
b

x21 ` x22 ` ψ2 ´ r ď 0

*

,

which represents a sphere of radius r in the state space R3.
Let v “ 5 m{s, umax “ 1 rad{s, r “ 1, tf “ 1 s, α “ 400, γ1 “ 0.9, and γ2 “ 1.1. For our

critic, the initial weights are randomly initialized within the interval r0, 2s and the basis functions
are selected as ϕpt, xq “ tanh ptf ´ tq rx21, x

2
2, ψ

2 ´ 2sT. To enable the collection of sufficiently
rich data along the closed-loop system trajectories, we inject a dithering excitation to the control
input (17) for every t P r0, 0.1s.
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Figure 1: The time evolution of the critic weights
Ŵ ptq, t ě 0. Note that learning is at-
tained in a fixed-time of t “ 0.3 sec.

Figure 2: Visualization of the safe set estimate
ŜpL, tfq along with the set of forbidden
states L. Note that ŜpL, tfq encloses L.

Fig. 1 shows the fixed-time convergence of the critic weights to r´0.4037, ´0.3758, 0.1373sT,
which implies the fixed-time estimate of the safe set SpL, tfq given by

ŜpL, tfq fi tx P R3zL : 0.693x21 ` 0.714x22 ` 1.105ψ2 ´ 1.21 ą 0u.

Fig. 2 shows the approximate safe set ŜpL, tfq and the set of forbidden states L. Note that L
is enclosed in ŜpL, tfq. Furthermore, a video demonstration of the approximate safe set bound-
ary BŜpL, tfq for every tf in r0.5, 1.5s can be found at https://tinyurl.com/5n7ed3sm,
whereby we observe that ŜpL, tf2q Ď ŜpL, tf1q with 0.5 ď tf1 ď tf2 ď 1.5. Finally, as expected,
the simulations verify that the learning of the safe set is attained in a fixed time of t “ 0.3 sec ă tf ,
dictating its potential for a real-time safety-critical application.

5. Conclusion

In this paper, we developed a fixed-time convergent reinforcement learning-based architecture for
addressing a safety-critical control problem for nonlinear systems utilizing reachability analysis.
Safety is ensured by synthesizing a set of states for which there does not exist an admissible con-
troller generating a system trajectory reaching a set of forbidden states at a user-prescribed time
instant. In particular, we showed that the safe set is a zero-strict superlevel set of a function satisfy-
ing the HJB equation. In view of the intractability of the latter, we developed a critic-only RL-based
algorithm for learning in fixed-time the safe set alongside the optimal safe control policy. Under
the assumption of sufficiently rich data, which is an easier condition to satisfy as compared to the
traditional PE condition, we developed a non-Lipschitz data-driven learning law for updating the
critic weights while establishing fixed-time stability via Lyapunov analysis. We also showed that
the proposed learning mechanism is composed only of a critic, and hence, exhibiting a lower com-
plexity than other architectures proposed in the literature whose structure additionally requires an
actor. In future research, we will explore discrete-time extensions of this framework.
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