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Abstract
We present hierarchical policy blending as optimal transport (HiPBOT). HiPBOT hierarchically
adjusts the weights of low-level reactive expert policies of different agents by adding a look-ahead
planning layer on the parameter space. The high-level planner renders policy blending as unbal-
anced optimal transport consolidating the scaling of the underlying Riemannian motion policies.
As a result, HiPBOT effectively decides the priorities between expert policies and agents, ensuring
the task’s success and guaranteeing safety. Experimental results in several application scenarios,
from low-dimensional navigation to high-dimensional whole-body control, show the efficacy and
efficiency of HiPBOT. Our method outperforms state-of-the-art baselines – either adopting prob-
abilistic inference or defining a tree structure of experts – paving the way for new applications of
optimal transport to robot control. More material at https://sites.google.com/view/
hipobot.
Keywords: Reactive Motion Generation, Optimal Transport, Riemannian Motion Policies

1. Introduction

Reactive motion generation is a fundamental functionality for robots operating in complex and
unstructured settings, where dynamic changes can occur (Park et al., 2008; Hogan and Sternad,

Figure 1: (Left) TIAGo++ whole-body control environment. The two arms of TIAGo++ are treated as two agents tracking different
reference trajectories while avoiding collisions. (Right) Panda manipulation environment. The Panda has to start from a randomly
selected box (brown) and reach the randomly selected target box (green) while avoiding all possible collisions with itself and the
dynamic environment (red obstacles can be static or moving with constant velocity).
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2012; Ijspeert et al., 2013; Paraschos et al., 2018; Ratliff et al., 2018). Reactivity emerges through
high-frequency control policies that can resolve a specific behavior, e.g., approaching a goal, or
avoiding an obstacle (Khatib, 1987) or combinations of such behaviors (Cheng et al., 2018).

Typical methods in literature achieve such reactivity through three key approaches. First, oper-
ational space control (OSC) with a hierarchy of tasks (Khatib, 1987; Khatib et al., 2004), where a
sequence of quadratic programming (QP) problems is resolved in the nullspace of the previous task
in the priority list (Flacco et al., 2015). Second, reactive motion generation through the synthesis of
Riemannian Motion Policies (RMPs) defined in a tree structure (Cheng et al., 2018, 2021), which
generalizes the OSC framework to geometric dynamical systems (GDS) (Bullo and Lewis, 2019).
The third approach refers to learning-based approaches that use either demonstrated data – imita-
tion learning (Ijspeert et al., 2013; Paraschos et al., 2018)– or trial-and-error interactions with the
environment – reinforcement learning (RL) (Kober et al., 2013; Moos et al., 2022) – for learning to
react and adapt to domain changes.

On the opposite side of the spectrum lie planning-based approaches – either sampling-based (Kavraki
et al., 1996; LaValle, 1998, 2006; Kalakrishnan et al., 2011; Bhardwaj et al., 2022) or gradient-
based (Zucker et al., 2013; Mukadam et al., 2018) – which simulate a look-ahead forward modeling
of the environment, towards reaching a predetermined goal. The interplay of planning and reactivity
is long studied in robotics (Kaelbling and Lozano-Pérez, 2010; Srivastava et al., 2014; Pertsch et al.,
2020; Bahl et al., 2021), and it frequently emerges when a high-level agent sets subgoals towards a
long-term goal for a myopic reactive agent to achieve. This hierarchical planning and control can
be realized by explicitly setting task sub-goals (Jauhri et al., 2022; Xia et al., 2020; Sharma et al.,
2021), or by adapting parameters of the low-level policy towards a single long-term goal (Kroemer
et al., 2015; End et al., 2017; Celik et al., 2022; Akrour et al., 2021; Zaki et al., 2022).

Our work focuses on the latter aspect of hierarchical control. We present a planning approach
on the parameter space of given reactive policies describing different robot behaviors. Representing
the low-level policies in exponential form allows a seamless composition in the form of a product
of experts. We frame the look-ahead planning as an Unbalanced Optimal Transport (UOT) problem
redistributing the multimodal weights of the expert policies. This formulation enables the simulta-
neous adaptation of expert policies utilized by multiple agents. Hence, our approach consolidates
the low-level experts of various agents and helps in practice to avoid local minima in highly dynamic
environments.

To summarize, our contributions are (i) introducing the definition of multi-expert-multi-agent
blending problem, (ii) casting the blending problem as entropic-regularized UOT, thereby utilizing
its convexity and efficient solver. And, (iii) we show that by realizing experts as RMPs, we can
maintain asymptotic local stability.

2. Preliminaries And Problem Statement

We introduce preliminaries for defining stable experts for reactive motion generation. Then, we
state the policy-blending problem by representing the experts in exponential form and cast it as an
entropic-regularized UOT.

2.1. Riemannian Motion Policy

An RMP (Ratliff et al., 2018) is a mathematical object (π,M) representing reactive, modular, and
composable motion generation policies, where π is a deterministic policy mapping states to ac-
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tions, and M is the Riemannian matrix representing the policy weight. The state s = (q, q̇, c)
represents the robot’s position q ∈ Rq, velocity q̇ ∈ Rq and environment context c. We as-
sume a set of homeomorphic task maps {ϕi : Q −→ Xi}, that relate the robot configuration
Q space and a certain task space Xi of the ith task. Then, given a set of task-space policies
(πXi ,MXi), we can represent a deterministic acceleration policy in the robot configuration space
by π = a = q̈ = M †∑

i J
⊺
ϕi
MXiπXi(ϕ(s)), with M =

∑
i J

⊺
ϕi
MXiJϕi

, Jϕi
the Jacobian of the

task map ϕi and † is the pseudo-inverse operator.

2.2. Product of Experts

To define the policy blending problem, we formalize each expert policy i ∈ {1, . . . , n} in a set
of n policies as the Boltzmann distribution form πi(a | s;θi) ∝ exp(−Ei(s,a;θi)), where the
quantities s ∈ S and a ∈ A denote a state and an action, respectively. An energy function Ei :
S × A → R assigns a cost to each state-action pair. The choice of the energy function Ei and its
hyperparameter θi is usually designed or learned in advance. Following the PoE (Hinton, 2002)
formulation, the blended policy for an agent can be defined as

π(a | s, β) =
n∏

i=1

πi(a | s; θi)βi ∝ exp

(
−

n∑
i=1

βiEi(s,a;θi)

)
(1)

with blending/weighting factors β, also known as temperatures, representing the importance or
relevance of each policy in the product. In the logarithmic space, this policy blending corre-
sponds to a weighted superposition by performing Maximum Likelihood (MLE) on the PoE a∗ =
argmaxa∈A log π(a | s,β) = argmina∈A

∑n
i=1 βiEi(s,a;θi) depending on state s and β. We

can further formulate the state-dependent temperature β(s), giving the possibility to change the
state-dependent relevance or importance of experts. In an online fashion, a change in the expert
weighting (i.e., expert relevancy) makes it possible to induce parameter planning into the my-
opic nature of the policy π(a | s). In particular, the simplest form of such parameter planning
problem (i.e., a policy blending problem in our paper) can be formulated as the linear program
minβ∈Rn

+
⟨β,C(s) ⟩, with ⟨·, ·⟩ is the Frobenius dot-product, and a state-dependent objective matrix

C(s) (e.g., rollout return in RL settings) dictating the situational blending weights β. We realize
the PoE in the RMP framework utilizing its stability property, as shown in next sections.

2.3. Preliminaries On Optimal Transport

We give a brief introduction to OT and motivate why solving the linear program of policy blending
using OT.
Histograms And Transport Polytope. For two histograms n ∈ Σn and m ∈ Σm in the simplex
Σd

def
={x ∈ Rd

+ : x⊺1d = 1}, we define the transport polytope U(n,m), namely the set of n ×m

matrices U(n,m)
def
={P ∈ Rn×m

+ | P1m = n,P ⊺1n = m} where 1d is the d-dimensional vector
of ones. From a probabilistic view, the set of U(n,m) contains all possible joint probabilities of
two multinomial random variables (X,Y ) having histograms n and m, respectively. Indeed, any
matrix P ∈ U(n,m) can be identified as the joint probability for (X,Y ) such that p(X = i, Y =
j) = pij . We define the entropy H(·) of these histograms and their marginals as x ∈ Σn, H(x) =
−
∑n

i=1 xi log xi, H(P ) = −
∑n,m

i,j=1 pij(log pij − 1).
Entropic-Regularized Optimal Transport. Given a n×m cost matrix C, the OT between n and
m given cost C is dC(n,m)

def
= minP∈U(n,m)⟨P ,C ⟩, which is exactly the above policy blending
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problem with additional histogram constraints. However, solving this linear program is expensive
for large matrix dimensions in our reactive motion generation setting. For a general matrix C
and d = max(n,m), the worst case complexity of classical algorithms (Ahuja et al., 1988; Orlin,
1988) solving for the optimal plan P ∗ is O(d3 log d). To deal with the scalability of computing the
OT, Cuturi (2013) propose to regularize its objective function by the entropy of the transport plan,
which results in the entropic-regularized OT with an entropy scaling scalar λ

P λ def
= argmin

P∈U(n,m)
⟨P ,C ⟩ − λH(P ). (2)

The solution P λ is unique due to the strict convexity of the negative entropy term. The entropic reg-
ularization enables the celebrated Sinkhorn-Knopp algorithm (Sinkhorn, 1967) to solve OT, shown
to have a complexity of Õ(d2/ϵ3) (Altschuler et al., 2017), with ϵ is the approximation error.
Entropic-Regularized Unbalanced Optimal Transport. A key constraint of classical OT is that it
requires the input measures to be normalized to the unit mass, which is a problematic assumption for
many applications that require handling arbitrary positive measures (mass creation or destruction),
and/or allowing for only partial displacement of mass. The entropic-regularized UOT (Frogner
et al., 2015; Chizat et al., 2018) is defined as

P λ
UOT

def
= argmin

P∈Rn×m
+

⟨P ,C ⟩ − λH(P ) + λKL

(
K̃L(P1m ∥ n) + K̃L(P ⊺1n ∥ m)

)
(3)

where now n ∈ Rn
+,m ∈ Rm

+ are arbitrary positive vectors, λKL is the marginal regularization
scalar, and K̃L(w||z) = w⊺ log(w ⊘ z) − 1⊺w + 1⊺z is the generalized Kullback-Leibler (KL)
divergence between two positive vectors w, z ∈ Rk

+ (⊘ is the element-wise division), with the
convention 0 log 0 = 0. Pham et al. (2020) show that the (Sinkhorn-like) generalized matrix scal-
ing algorithm (Frogner et al., 2015) solves the dual of (3) with the complexity of Õ(d2/ϵ) and is
guaranteed to converge (Theorem 4.1 in (Chizat et al., 2018)). With these properties, casting policy
blending as an entropic-regularized UOT problem is desirable since UOT relaxes the normalizing
constraint, bringing the OT problem back to the linear program form of policy blending, as policy
blending weights are usually unnormalized quantities. Moreover, assuming a Gaussian distribution
over blending weights is often non-realistic, as multiple policies may have similar priorities given
the current situation. Finally, the entropic-regularized UOT benefits from the computation efficiency
of the Sinkhorn-like algorithm.

3. Hierarchical Policy Blending As Optimal Transport

In this section, we propose Hierarchical Policy Blending as Optimal Transport (HiBPOT) - a two-
level hierarchical scheme for reactive motion generation. We hypothesize there exist multiple agents
controlling the same dynamical system satisfying some objectives at the upper-level, where each
agent utilizes myopic (learned or crafted) expert policies to compute their actions at the lower-
level (Hansel et al., 2022). In particular, each agent can choose to control a subset or all DoFs of the
dynamical system. The upper level employs entropic-regularized UOT to solve the policy blending
problem by observing expert rollouts that inform the weight-scaling of the lower-level agents.

4



HIPBOT

3.1. Product Of Experts-Agents

Let us consider multi-arm systems (Fig. 1-left), where each robotic arm can be considered an agent
acting on the whole system to execute some tasks. Assuming the agents’ behaviors are collaborative
and that there exists a pool of n experts and m agents, we propose a simple solution for the Multi-
Experts-Multi-Agents (MEMA) policy blending problem by extending the PoE (1), as defined in
Definition 1.

Definition 1 (Product of Experts-Agents) Let β ∈ Rn×m
+ be the positive blending weight matrix

for n experts and m agents. The MEMA blending policy is defined as the product of experts-agents
(PoEA)

π(a | s, β) =
n,m∏
i,j=1

π(ai,j | s; θi,j)βi,j ∝ exp

−
n,m∑
i,j=1

βi,jE(s,ai,j ; θi,j)

 (4)

with i, j index the ith-expert and jth-agent, s is the holistic system state observed by all experts, and
a is the blended pullbacked action from all experts and agents.

We realize the lower-level experts within the RMP framework. In RMP, for the ith-expert of jth-
agent, the task-space energy E(x,ai,j ;θi,j) is usually designed as a quadratic function having
smooth and convex properties in the task space x ∈ Xi,j , ai,j ∈ Ai,j , with corresponding task
map x = ϕi,j(s). Accordingly, the Boltzmann distribution forms a Gaussian π(ai,j | x;θi,j) =
N (Mi,j(x)

−1fi,j(x),Mi,j(x)
−1) locally at x with the forcing function fi,j(x) and Mi,j(x) as

the mean and the Riemannian matrix (i.e., the precision matrix), respectively. Within the PoEA
view, the pullbacked forcing term and Riemannian matrix of jth-agent’s configuration policy would
be fj(s) =

∑n
i=1 βi,j(s)J

⊺
ϕi,j

fi,j(x), Mj =
∑n

i=1 βi,j(s)J
⊺
ϕi,j

Mi,j(x)Jϕi,j
, respectively. Given

the current state and determined temperatures, the MLE blended action (at configuration space) can
be computed analytically in closed form (Ratliff et al., 2018) as

a∗ = argmin
a∈A

n,m∑
i,j=1

βi,jE(s,ai,j ; θi,j) =
∑
j

M †
j fj(s). (5)

3.2. Policy Blending As Entropic-Regularized Unbalanced Optimal Transport

In practice, we found that the normalizing constraint of the policy temperature is restrictive, as
it requires spreading enough masses to the policy weight-scaling, leading to overestimation. On
the other hand, in case of large number of experts, the normalized temperature matrix puts too
small masses on expert policies, thus leading to underestimation and making them underperforming.
Thus, we propose to cast policy blending as an entropic-regularized UOT problem to relax the need
for the normalizing constraint.

Definition 2 (MEMA Policy Blending) Let n ∈ Rn
+,m ∈ Rm

+ be arbitrary positive vectors rep-
resenting the priors of expert-policy and agent-policy temperatures, respectively. The entropic-
regularized UOT for the policy blending is defined as

β∗(s) = argmin
β∈Rn×m

+

⟨β,C ⟩ − λH(β) + λKL

(
K̃L(β1m ∥ n) + K̃L(β⊺1n ∥ m)

)
(6)

with C(s) is the state-dependent cost matrix, which can be learned or computed analytically.
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Algorithm 1: HiPBOT
Input: Goal set {sgj}, transition function T (·, ·), signed-distance field set {SDFj(·)}, UOT param-

eters {λ, λKL}, cost weights {wg, wc}, expert parameter set {θi,j}
while Not All Goals Reached do

Update sgj and {SDFj(·)} given some perception model.
for i = 1, 2, ..., n and j = 1, 2, ...,m do in batch

Do rollout and compute [C(s)]i,j as in Eq. (7).

end
Solve β(s) (Definition 1) with Sinkhorn-like algorithm Chizat et al. (2018).

// Compute agent optimal action

a∗ = argmina∈A
∑n,m

i,j=1 β
∗
i,j(s)E(s,a;θi,j)

// Rollout new state

s = T (s,a∗)

end

The solution of (6) is unique due to the strict convexity of the objective in β. Due to the uniqueness
of the solution and the practical computation complexity of the Sinkhorn-like algorithm solving
(6), it is well-suited for reactive motion generation. Note that this formulation optimizes the blend-
ing temperatures depending on the objective costs at the upper-level, while still assuming expert
independency at the lower-level.

In the dynamics settings of motion planning, the objectives are usually goal-reaching, obstacle
avoidance, and self-collision avoidance in dynamic settings. Hence, we follow these objectives to
design the state-dependent cost matrix as

[C(s)]i,j =
1

h

h∑
t=1

wg d(s
t
i,j , s

g
j )︸ ︷︷ ︸

Goal Cost

+wc exp

(
−

SDFj(s
t
i,j)

2

2l2

)
︸ ︷︷ ︸

Collision-Avoidance Cost

(7)

where from the current system state s, the rollout with horizon h from the perspective of jth-
agent following the ith-expert is {s, s1i,j , . . . , shi,j}. We assume the transition dynamics T (·, ·)
of the system known, and an expert rollout is computed by following st+1 = T (st,a∗), a∗ =
argminE(s,a;θ). sgj is the jth-agent goal state, and SDFj(·) is the signed distance field measuring
the closest distance of the jth-agent’s robot links to obstacles including itself (i.e., self-distance). l
is the hyperparameter for the collision margin. Note that the goal or obstacles can be changed over
time; thus, the goal and distance field are also updated in the loop. This cost design enables inte-
gration of additional higher levels of planning abstractions, e.g., task planning, where the symbolic
planner can set the intermediate goals or other contexts in the cost matrix (but this is not integrated
in the current work). Since experts are independent by assumption at the lower level, the elements
of the cost matrix can be computed in batch using GPU (Algorithm 1).
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Figure 2: (Left) Planar Maze Environment. We randomly sample K circular obstacles inside a restricted area between the start and goal
positions. We model the movement of the obstacles using simple Euler integration. (Right) Planar Box Environment. The box can be
either static or dynamic, and its motion is modeled as a constant velocity. In both environments, an agent moves from a random start
(red) to a random goal (green) position. Green lines are expert rollouts.

3.3. Stability Analysis

HiPBOT, as we deploy as expert policies RMPs, only sets the scaling factor for both fi,j ,Mi,j at
the lower-level. Analyzing its local stability is straightforward.

Proposition 3 (Asymptotic Stability) As β ∈ Rn×m
+ by Definition 2 is positive, if all expert RMPs

are in the form of Geometric Dynamical Systems, then by Theorem 2 in (Cheng et al., 2018), the
system that follows the HiPBOT policy as Product of Experts-Agents in Definition 1 converges to
the forward invariance set C∞ := {(s, ṡ) : f(s) = 0, ṡ = 0}.

Note that this local stability of HiPBOT is only valid for static environments, where the parameters
for collision-avoidance RMPs do not change. Nevertheless, for dynamic environments, in most
cases, we empirically observed that the agents also exhibit locally stable behaviors, and we plan to
investigate theoretically further in the future.

4. Experiments

We evaluate HiPBOT in two toy environments and a manipulation task with a 7DoF robot. These
settings are multi-experts-one-agent. Finally, we demonstrate HiPBOT in whole-body reactive mo-
tion generation.
Baselines. We benchmark HiPBOT against two baselines. First, RMPflow (Cheng et al., 2018),
a myopic baseline without look-ahead evaluation, composes all expert RMPs to generate a global
dynamical behavior. It also runs at a very high frequency due to low computational demands.
Second, as a strong baseline, HiPBI (Hansel et al., 2022) is a similar hierarchical scheme to our
HiPBOT, which adopts probabilistic inference to address the blending problem. HiPBI samples
the rollouts from a temperature proposal distribution and updates the temperature distribution in
an online fashion, while HiPBOT shoots individual experts evaluating their contributions assuming
unnormalized temperature priors. For both HiPBOT and HiPBI, the environment and the methods
operate asynchronously. The algorithms must make quick decisions to react to unexpected changes
in the landscape.
Metrics and Settings. We use the following metrics: (i) success rate (SUC), indicating the per-
centage of goal reaching without any collisions; (ii) safety rate (SAFE) of collision-free motions
regardless of reaching the goal or not; (iii) the final l2 distance (l2D) to the goal; and (iv) the total
time steps (TS) need until the goal is reached. For a comparative study, we use different rollout
horizons for HiPBI and HiPBOT.

4.1. Toy Environments

The Planar Maze Environment is a cluttered environment, see Fig. 2. This maze environment
mimics a dense, cluttered, and dynamic environment. In this case, local minima are created but
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often disappear independently. However, the control methods have to be reactive enough to avoid
collisions. Unlike the maze, the Planar Box Environment is a sparse domain. The agent start
position is sampled randomly to the right or left of the box. The challenge lies in not getting into a
local optimum in front (left or right) or below the box. Furthermore, the dynamic nature complicates
the planning of a promising solution. In this case, although the reactive requirement is relaxed due
to being sparse, the difficult local minima always exist. We design common RMPs such as collision
avoidance and goal reaching for all methods, as in (Cheng et al., 2018). To achieve a curving
behavior, we design an expert πcurl that exerts forces on the normal space of the potential forces
and add two opposing curling experts for balancing. Although these curving experts do not affect
RMPflow, hierarchical methods achieve curving behavior by adapting blending weights.
Comparative Evaluation. Table 1 shows the comparative results for the static versions of the toy
environments. It is evident that the myopic RMPflow is not able to solve the Box domain, but it
guarantees safety due to its stable property. Short horizons in HiPBI and HiPBOT are not as ef-
fective as longer ones. It is notable that HiPBOT, with only 10 steps look-ahead, outperforms the
baselines in most metrics, guaranteeing maximum safety and good success rates. Table 2, shows the
dynamic versions of the toy tasks for both synchronous (S) and asynchronous (A) execution of pol-
icy blending. HiPBOT outperforms the baselines in all cases with short horizons, making it much
faster for deployment in highly dynamic domains. With comparative performance, considering the
rollout computation and optimization, we observe that HiPBOT (h = 10) achieves mean planning
rate of around 30Hz due to being efficient with shorter horizon, while HiPBI (h = 50) runs at about
2Hz. This computing gap hurts the performance of baselines even more in highly dynamic environ-
ments, as seen in Fig. 3, depicting a stress-test on the 2D Maze for changing acceleration levels of
the obstacles by adding Brownian noises. We evaluate a plain goal-reaching success rate–regardless
of collisions, along with the safety rate and collision-free success rate. Evidently, HiPBOT with
h = 10 performs overall better, even in the extreme scenarios 1.
Stress-test of HiPBOT. We even tested more difficult scenarios for the HiPBOT (h = 10) in the
2D Maze environment, where we varied both numbers of dynamic obstacles and their acceleration
levels. While there is total success regardless of collisions, safety is compromised in these extreme
dynamic cases. We hypothesize that longer horizons, more efficient optimization, and even a “clev-
erer” exploration strategy during planning are necessary for these more complex environments.

4.2. Manipulator Environment

We test the scalability of our method in high-dimensional manipulation tasks, Fig. 1. We imple-
mented eight expert RMPs, ranging from joint & velocity limits, self-collision to reaching the target,
and obstacle avoidance. Both HiPBI and HiPBOT use the same experts with four additional local
curling experts for the end-effector that operates in the normal space of the target-reaching potential.
While RMPflow cancels out the curling, hierarchical methods adapt the temperatures to achieve the
desired dynamic behavior. HiPBOT with horizon 10 is again superior in terms of collision-free suc-
cess rate. We see that performance drops in the static environment due to difficult local minima that
do not vanish over time. This case would require longer look-ahead horizons, but we want to point
to the increased efficiency with as few as 10 steps with mean planning rate of 6.4Hz, compared to
the 50 steps of HiPBI with mean planning time of 3.5s, which yields lower performance.

1. See videos in our project website https://sites.google.com/view/hipobot/experiment-videos
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Table 1: Evaluation of HiPBOT versus baselines on the static planar environments. This experiment shows the capabilities of HiPBOT
to overcome local minima (100 seeds per evaluation).

2D Toy Box Environment 2D Toy Maze Environment

SUC[%] SAFE[%] D2G TS SUC[%] SAFE[%] D2G TS

RMPflow 0 100 198.8 ± 0.7 500.0 ± 0.0 73 99 161.5 ± 296.7 338.7 ± 100.8

HiPBI (h = 25) 0 100 198.9 ± 0.5 500.0 ± 0.0 77 93 148.2 ± 284.5 331.3 ± 98.9
HiPBI (h = 5) 64 100 82.1 ± 79.9 354.3 ± 169.7 77 97 151.1 ± 284.1 323.2 ± 99.3
HiPBOT (h = 5) 0 100 176.2 ± 1.2 500.0 ± 0.0 72 96 200.0 ± 334.2 386.2 ± 234.2
HiPBOT (h = 10) 93 100 17.2 ± 6.7 132.9 ± 10.1 82 100 138.5 ± 300.6 401.0 ± 281.6

Table 2: Evaluation of HiPBOT vs. baselines on the dynamic planar environments with 10-pixel velocity levels. We also compare
HiPBI and HiPBOT in synchronous (S) and asynchronous (A) settings. In (S), the simulation waits for the blending solution before
the agent steps in the environment. In (A), the environment and the methods act asynchronously. This experiment demonstrates the
computational advantage of HiPBOT with short look-ahead horizon, balancing between being reactive and explorative for safety (100
seeds per evaluation).

2D Toy Box Environment 2D Toy Maze Environment

SUC[%] SAFE[%] D2G TS SUC[%] SAFE[%] D2G TS

RMPflow 0 100 198.9 ± 1.5 500.0 ± 0.0 77 89 161.5 ± 620.0 330.7 ± 191.3

HiPBI (h = 25, S) 2 100 189.3 ± 44.7 490.9 ± 81.8 98 99 20.3 ± 172.7 247.6 ± 55.8
HiPBI (h = 50, S) 61 100 49.5 ± 75.6 276.6 ± 251.2 99 99 17.5 ± 162.6 247.5 ± 47.6
HiPBI (h = 75, S) 100 100 7.3 ± 5.9 131.9 ± 18.0 99 99 19.0 ± 171.7 252.1 ± 47.3
HiPBOT (h = 5, S) 0 100 199.3 ± 1.1 500.0 ± 0.0 99 99 26.1 ± 108.8 315.9 ± 129.5
HiPBOT (h = 10, S) 100 100 25.8 ± 0.6 143.9 ± 22.8 99 99 22.0 ± 72.9 294.2 ± 108.1
HiPBOT (h = 15, S) 100 100 16.4 ± 4.1 127.3 ± 18.2 98 98 30.8 ± 104.5 312.9 ± 145.6

HiPBI (h = 25, A) 7 100 178.6 ± 71.1 477.1 ± 120.3 83 84 116.2 ± 386.3 294.2 ± 131.4
HiPBI (h = 50, A) 73 100 40.1 ± 76.9 324.3 ± 169.7 85 87 100.0 ± 357.9 293.4 ± 123.7
HiPBI (h = 75, A) 100 100 8.5 ± 6.0 205.8 ± 35.3 86 87 106.1 ± 376.5 297.3 ± 122.1
HiPBOT (h = 5, A) 0 100 199.1 ± 1.1 500.0 ± 0.0 94 94 55.1 ± 170.5 321.9 ± 176.2
HiPBOT (h = 10, A) 100 100 22.2 ± 4.2 147.9 ± 20.3 99 99 20.5 ± 99.6 286.0 ± 80.9
HiPBOT (h = 15, A) 100 100 17.5 ± 3.3 126.4 ± 18.2 94 94 59.8 ± 203.4 330.6 ± 188.3
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Figure 3: Comparative evaluation for different velocity and acceleration levels of obstacles (30 seeds per evaluation).
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Figure 4: Stress test of HiPBOT on extreme velocity and noisy acceleration levels. We run 30 seeds per evaluation.
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Figure 5: Comparative study in the manipulation environment in static and dynamic obstacles, with increasing obstacle number. We run
70 seeds per evaluation.

4.3. Whole-Body Environment

Finally, we demonstrate HiPBOT capabilities in the MEMA setting with a high-dimensional, multi-
objective and highly dynamic environment, see Fig. 1. As demonstrated in the videos, HiBPOT is
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able to compromise between objectives thanks to its ability to adapt expert priorities online. In
contrast, RMPflow struggles to find good situational actions and eventually collides.

5. Related work

Reactive motion generation. Groundbreaking work was realized with OSC by Khatib (1987), that
introduced artificial potential fields for modeling obstacle avoidance (repulsive) and goal-reaching
(attractive) behaviors. RMPs (Ratliff et al., 2018; Cheng et al., 2018; Xie et al., 2020) consider
geodesics in the vicinity of obstacles using Riemannian metrics. Learning-based methods learn re-
active and stable primitives (Khansari-Zadeh and Billard, 2011; Ijspeert et al., 2013; Calinon et al.,
2014). Blending of primitives were introduced in (Luksch et al., 2012; Saveriano et al., 2019), in
probabilistic settings (Paraschos et al., 2018), and in QP-optimization (Jaquier et al., 2022). Re-
cently, Hansel et al. (2022) proposed a blending as inference approach for adjusting the weights of
a product of experts. Blending also emerges from cost-function formulations as energy-based mod-
els (Lambert et al., 2022; Urain et al., 2022). Fast obstacle avoidance relies on fast perception (Huber
et al., 2022), and can be realized via safe learning (Liu et al., 2022b,a). While object-centric primi-
tives are locally reactive, they tend to get stuck in local minima, as they lack look-ahead capabilities.
Hierarchical planning and control. These approaches refer to multi-level planners or operate in
the parameter space of motion policies. The former, such as task and motion planning (TAMP),
hierarchical planning, or hierarchical reinforcement learning (HRL) (Kaelbling and Lozano-Pérez,
2010; Srivastava et al., 2014; Pertsch et al., 2020), generate sub-goals that an underlying planner
or policy must reach. Methods in HRL either adjust constraint functions of dynamic motion primi-
tives (Bahl et al., 2020, 2021) or select a policy from a mixture of experts (Daniel et al., 2012; End
et al., 2017; Akrour et al., 2021; Zaki et al., 2022). Hierarchical mixture of experts selects only one
of the experts (Celik et al., 2022) to act in the environment. In the case of unexpected environmen-
tal changes, this selective behavior leads to sub-optimal performance (Kroemer et al., 2015). We
compose simple and stable reactive policies that lead to complex reactive robot behaviors.
Optimal transport in robot planning. While OT has several practical applications in resource as-
signment problems and machine learning (Peyré et al., 2019), its application to robotics is scarce.
Most applications consider swarm and multi-robot coordination (Inoue et al., 2021; Krishnan and
Martı́nez, 2018; Bandyopadhyay et al., 2014; Kabir and Lee, 2021; Frederick et al., 2022), while
OT can be used for exploring while planning (Kabir and Lee, 2020), for imitation learning (Haldar
et al., 2023), and for curriculum learning (Klink et al., 2022). A comprehensive review of OT in
control is available in (Chen et al., 2021). To the best of our knowledge, we are the first to introduce
UOT-based inference of reactive robot planning and policy blending.

6. Conclusion

We proposed an efficient hierarchical policy blending framework as entropic-regularized UOT,
where the upper level evaluates the expert contributions based on the task costs and adapts the
weight scaling of lower-level experts-agents. Our method introduces an efficient look-ahead evalu-
ation into myopic composable frameworks, thereby improving their reactiveness, safety guarantees,
and has better chances of avoiding local minima. There are multiple exciting directions to be ex-
plored, e.g., better exploration mechanisms in HiPBOT, as the current cost evaluation only allows as
many rollouts as the number of experts. Further, casting the policy blending problem as OT opens a
novel view about interactions of multi-experts to multi-agents, which is largely under-explored.
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Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms
for unbalanced optimal transport problems. Mathematics of Computation, 87(314):2563–2609,
2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search. In
Artificial Intelligence and Statistics, pages 273–281. PMLR, 2012.

Felix End, Riad Akrour, Jan Peters, and Gerhard Neumann. Layered direct policy search for learning
hierarchical skills. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 6442–6448. IEEE, 2017.

Fabrizio Flacco, Alessandro De Luca, and Oussama Khatib. Control of redundant robots under hard
joint constraints: Saturation in the null space. IEEE Transactions on Robotics, 31(3):637–654,
2015.

Christina Frederick, Magnus Egerstedt, and Haomin Zhou. Collective motion planning for a group
of robots using intermittent diffusion. Journal of Scientific Computing, 90(1):1–20, 2022.

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio. Learn-
ing with a wasserstein loss. Advances in neural information processing systems, 28, 2015.

Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharging
imitation with regularized optimal transport. In Conference on Robot Learning, pages 32–43.
PMLR, 2023.

Kay Hansel, Julen Urain, Jan Peters, and Georgia Chalvatzaki. Hierarchical policy blending as
inference for reactive robot control. arXiv preprint arXiv:2210.07890, 2022.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 2002.

Neville Hogan and Dagmar Sternad. Dynamic primitives of motor behavior. Biological cybernetics,
106(11):727–739, 2012.

Lukas Huber, Aude Billard, and Jean-Jacques Slotine. Fast obstacle avoidance based on real-time
sensing. arXiv preprint arXiv:2205.04928, 2022.

12



HIPBOT

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013.

Daisuke Inoue, Yuji Ito, and Hiroaki Yoshida. Optimal transport-based coverage control for swarm
robot systems: Generalization of the voronoi tessellation-based method. In 2021 American Con-
trol Conference (ACC), pages 3032–3037. IEEE, 2021.

Noémie Jaquier, You Zhou, Julia Starke, and Tamim Asfour. Learning to sequence and blend robot
skills via differentiable optimization. arXiv preprint arXiv:2206.00559, 2022.

Snehal Jauhri, Jan Peters, and Georgia Chalvatzaki. Robot learning of mobile manipulation with
reachability behavior priors. IEEE Robotics and Automation Letters, 7(3):8399–8406, 2022. doi:
10.1109/LRA.2022.3188109.

Rabiul Hasan Kabir and Kooktae Lee. Receding-horizon ergodic exploration planning using optimal
transport theory. In 2020 American Control Conference (ACC), pages 1447–1452. IEEE, 2020.

Rabiul Hasan Kabir and Kooktae Lee. Efficient, decentralized, and collaborative multi-robot ex-
ploration using optimal transport theory. In 2021 American Control Conference (ACC), pages
4203–4208, 2021. doi: 10.23919/ACC50511.2021.9483227.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical planning in the now. In Workshops
at the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In 2011 IEEE International Conference
on Robotics and Automation, pages 4569–4574, 2011. doi: 10.1109/ICRA.2011.5980280.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and
Automation, 12(4):566–580, 1996.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems
with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011. doi: 10.
1109/TRO.2011.2159412.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.

Oussama Khatib, Luis Sentis, Jaeheung Park, and James Warren. Whole-body dynamic behavior
and control of human-like robots. International Journal of Humanoid Robotics, 1(01):29–43,
2004.

Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum reinforce-
ment learning via constrained optimal transport. In International Conference on Machine Learn-
ing, pages 11341–11358. PMLR, 2022.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. IJRR,
2013.

13



HIPBOT

Vishaal Krishnan and Sonia Martı́nez. Distributed optimal transport for the deployment of swarms.
In 2018 IEEE Conference on Decision and Control (CDC), pages 4583–4588. IEEE, 2018.

Oliver Kroemer, Christian Daniel, Gerhard Neumann, Herke Van Hoof, and Jan Peters. Towards
learning hierarchical skills for multi-phase manipulation tasks. In 2015 IEEE international con-
ference on robotics and automation (ICRA), pages 1503–1510. IEEE, 2015.

Alexander Lambert, An T Le, Julen Urain, Georgia Chalvatzaki, Byron Boots, and Jan Peters.
Learning implicit priors for motion optimization. arXiv preprint arXiv:2204.05369, 2022.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. Computer
Science Dept. Oct., 98(11), 1998.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Zhiyuan Hu, Jan Peters, and Georgia Chal-
vatzaki. Safe reinforcement learning of dynamic high-dimensional robotic tasks: navigation,
manipulation, interaction. arXiv preprint arXiv:2209.13308, 2022a.

Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Jan Peters, and Georgia Chalvatzaki. Regular-
ized deep signed distance fields for reactive motion generation. arXiv preprint arXiv:2203.04739,
2022b.

Tobias Luksch, Michael Gienger, Manuel Mühlig, and Takahide Yoshiike. Adaptive movement
sequences and predictive decisions based on hierarchical dynamical systems. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2082–2088. IEEE, 2012.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022.

Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots. Continuous-time
gaussian process motion planning via probabilistic inference. The International Journal of
Robotics Research, 37(11):1319–1340, 2018. doi: 10.1177/0278364918790369.

James Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the
Twentieth annual ACM symposium on Theory of Computing, pages 377–387, 1988.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Using probabilistic
movement primitives in robotics. Autonomous Robots, 42(3):529–551, 2018.

Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement reproduction and
obstacle avoidance with dynamic movement primitives and potential fields. In Humanoids 2008-
8th IEEE-RAS International Conference on Humanoid Robots, pages 91–98. IEEE, 2008.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. Ad-
vances in Neural Information Processing Systems, 33:17321–17333, 2020.
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