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Abstract
In this paper, we propose a learning-based framework to simultaneously learn the communication
and distributed control policies for a heterogeneous multi-agent system (MAS) under complex
mission requirements from Capability Temporal Logic plus (CaTL+) specifications. Both policies
are trained, implemented, and deployed using a novel neural network model called CatlNet. Taking
advantage of the robustness measure of CaTL+, we train CatlNet centrally to maximize it where
network parameters are shared among all agents, allowing CatlNet to scale to large teams easily.
CatlNet can then be deployed distributedly. A plan repair algorithm is also introduced to guide
CatlNet’s training and improve both training efficiency and the overall performance of CatlNet.
The CatlNet approach is tested in simulation and results show that, after training, CatlNet can steer
the decentralized MAS system online to satisfy a CaTL+ specification with a high success rate.
Keywords: multi-agent systems, temporal logic, model-based reinforcement learning, distributed
control, communication

1. Introduction

Many real-world missions require the coordination of a heterogeneous Multi-Agent System (MAS).
As tasks become increasingly complex, the need for an efficient way to define these tasks for a MAS
becomes more and more stringent. This is especially true in cases where agents are controlled using
learning-based methods (the focus of this paper), which may be advantageous for large MAS where
coordination solutions are difficult to compute in real-time. Due to their expressivity and similarity
to natural languages, temporal logics (such as Linear Temporal Logic (LTL) Pnueli (1977) and
Signal Temporal Logic (STL) Maler and Nickovic (2004)) have been widely used as specification
languages for control systems. More recently, some work has focused on specifically tailoring
temporal logics for MAS Xu and Julius (2016); Sahin et al. (2017, 2019); Leahy et al. (2021).

In this paper, we focus on Capability Temporal Logic plus (CaTL+) Liu et al. (2022), which
specifies rich task requirements with concrete temporal constraints for heterogeneous MAS. The
agents can have different capabilities of servicing tasks. Besides qualitative semantics (whether
requirements are satisfied), CaTL+ is also equipped with quantitative semantics, also called robust-
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ness, which is a continuous real number that measures how strongly the requirements are satisfied.
Taking advantage of this, controlling a MAS to satisfy a CaTL+ specification can be formulated
as an optimization problem with the robustness as the objective function. In Liu et al. (2022), this
problem was solved in one shot and results in an open-loop controller. However, computing this
controller is time-consuming, and the open-loop controller is vulnerable under disturbances.

In this paper we propose a learning-based framework to train a distributed control policy for
each agent that collectively attempts to satisfy a given CaTL+ specification. By training the policy
off-line, each agent can compute a feedback control in real-time. We assume that each agent can
only observe its own state directly. However, satisfying a CaTL+ specification requires coordina-
tion of multiple agents, so communication is necessary. In practice, communication resources are
usually limited, and how to utilize these resources is a challenging problem in itself. The frame-
work in this paper jointly learns a communication strategy (i.e., when and what each agent needs to
communicate given limited bandwidth) together with a control policy. Under this communication
strategy, agents only communicate when necessary and transmit the most useful information. Both
the control policy and communication strategy are implemented in a model that we call CatlNet,
which consists of several neural networks (NNs). We train CatlNet with the centralized training and
decentralized execution (CTDE) paradigm. The CatlNet parameters are shared for all agents in the
training phase, so no additional parameters are needed when adding more agents, which makes the
algorithm scalable for very large teams.

Training the policy from scratch can be difficult especially when the task is complex. It has
been shown in the literature (e.g., Leung and Pavone (2022)) that expert demonstrations can help
the optimizer converge. However, a dataset of expert demonstrations is not always available. Hence,
we design a repair scheme to fix the team trajectory generated by CatlNet such that it satisfies the
CaTL+ specification. We use the repair algorithm to generate a dataset of satisfying trajectories to
guide training, which is shown to improve the performance of the learned policies.

The main contributions of this paper are twofold: (1) We propose a learning-based framework,
called CatlNet, which can learn both the distributed control policy and the communication strategy
given limited bandwidth to steer a MAS to satisfy a CaTL+ specification. (2) We designed a repair
scheme to guide the training, which improves the performance of CatlNet. We show that the control
and communication policies generated by this framework are reliable and computationally efficient.

Due to space limitations, all proofs are omitted in this paper, but can be found on Github1.

2. Related Work
Controller synthesis from temporal logic specifications has gained significant attention in recent
years. Roughly, existing approaches can be divided into two schools of thought: (1) Synthesis for
LTL and fragments of LTL, which employ automata-based methods (see, e.g., Belta et al. (2017));
(2) Synthesis for temporal logics defined over real-valued signals, such as STL, which can be formu-
lated as optimization problems solved via Mixed Integer Programming (MIP) Raman et al. (2014),
Sadraddini and Belta (2015) or gradient-based methods Pant et al. (2017), Gilpin et al. (2020). Both
solution classes have also been extended to MAS. The authors in Chen et al. (2011); Schillinger
et al. (2018); Kantaros and Zavlanos (2020); Luo et al. (2021) applied automata-based methods to
synthesize distributed control policies from a global LTL specification. Logics specifically designed
for MAS including counting LTL (cLTL) Sahin et al. (2017), cLTL+ Sahin et al. (2019), Capability
Temporal Logic (CaTL) Leahy et al. (2021) and STL with integral predicates Buyukkocak et al.

1. https://github.com/WenliangLiu1997/CatlNet
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(2021) have also been proposed; MIP is used for control synthesis. An extension of CaTL, called
CaTL+, was proposed in Liu et al. (2022). Taking advantage of differentiable robustness, control
synthesis from CaTL+ is solved using gradient-based methods. All the methods mentioned above
either synthesize the control in one shot or compute the control online. Hence, they are computa-
tionally very expensive for large MAS, which prohibits their use for real-time control.

Learning-based methods can be used to move online computation offline, which enables real-
time executions for the above methods. Reinforcement Learning (RL) was combined with automata-
based methods Li et al. (2019); Cai et al. (2021) and optimization-based methods Aksaray et al.
(2016); Liu and Belta (2021) to synthesize control policies for a single agent systems under temporal
logic specifications. Model-free RL has also been applied to MAS under LTL Sun et al. (2020);
Hammond et al. (2021); Zhang et al. (2022) and STL Muniraj et al. (2018) specifications. However,
model-free RL requires a large number of trials to learn the policy, which might be infeasible in
practice. In this paper, we apply model-based RL and assume the system model is known. Though
not included in this work, the model can also be learned from data. This paper can be seen as an
extension of Liu and Belta (2021), moving from a single agent system and STL to MAS and CaTL+.

Improving the performance of NNs is investigated in Ma et al. (2020) where a method called
STLnet is proposed to project a sequence of NN outputs to satisfy an STL formula. However,
STLnet is not designed for control systems and it cannot fix the controller given STL over states.
Inspired by STLnet though, we repair the controls given by CatlNet to guide the training.

Finally, this work can also be viewed in the context of multi-agent RL and distributed networks
in which communication is learned. Due to the importance of communication in cooperative tasks,
many RL frameworks that can simultaneously learn control and communication policies were pro-
posed recently, such as DIAL Foerster et al. (2016), CommNet Sukhbaatar et al. (2016), BicNet
Peng et al. (2017) and ATOC Jiang and Lu (2018). The most related framework to ours is ATOC,
which is designed for homogeneous MAS with a given reward function. The communication archi-
tecture of our CatlNet is inspired from ATOC, and extends it for heterogeneous teams under CaTL+
specifications. Using CaTLNet, rewards are generated automatically from the CaTL+ formula.

3. Preliminaries
3.1. System Model
We use bold and calligraphic symbols to represent trajectories and sets, respectively. |X | is the
cardinality of a set X . Consider a team of agents labelled from a finite set J , where j ∈ J denotes
an agent’s index. We assume that all agents share the same state space X ⊆ Rnx and discrete time
dynamics (a relaxation to this will be discussed in Remark 1):

xj(t+ 1) = xj(t) + uj(t), t = 0, 1, . . . ,H − 1, (1)

where xj(t) ∈ X and uj(t) ∈ Uj ⊂ Rnu are the state and control at time t, Uj is the control space
of agent j, and H is a finite time horizon determined by the mission specification. Each agent j is
assumed to have a random initial state in Xj,0 ⊂ X . Let Pj : Xj,0 → R be the probability density
function of the initial state xj(0). Consider a finite set of capabilities Cap for team J . Each agent
has its own set of capabilities Capj ⊆ Cap. We assume that ∪j∈JCapj = Cap.

The trajectory of an agent j, called an individual trajectory, is a sequence xj = xj(0) . . . xj(H).
Then team trajectory is defined as a set of pairs X = {(xj , Capj)}j∈J , which captures all the
individual trajectories with their corresponding capabilities. Here we include capabilities in a team

3



LEARNING FROM CATL+

trajectory so that we can define the semantics of CaTL+ on it, as it will be shown later. Let Jc =
{j | c ∈ Capj} be the set of agent indices with capability c. Let uj = uj(0) . . . uj(H − 1) be
the sequence of controls for agent j, x̄(t) = [xj(t)]

|J |
j=1 and ū(t) = [uj(t)]

|J |
j=1 be the joint state and

control of the MAS at time t. Denote x0:t
j = xj(0) . . . xj(t) and x̄0:t = x̄(0), . . . , x̄(t).

Remark 1 We simplify each agent’s dynamics to a single integrator as in (1) such that all agents
can be controlled by CatlNet (described in Sec. 5) with same parameters. In fact, these dynamics
can be seen as high level nominal dynamics used to generate a sequence of waypoints. The true
dense-time dynamics of the agents can be heterogeneous, as long as all agents share a common
workspace X (not necessarily the state space). By properly selecting the control constraint Uj , we
can find a local controller for each agent that tracks the individual trajectory (waypoints) within
given time window and avoids inter-agent collision, using the techniques in Sun et al. (2022).

3.2. CaTL+ Syntax and Semantics

Capability Temporal Logic plus (CaTL+) Liu et al. (2022) is a two-layer logic that includes an inner
logic and outer logic. The inner logic defined over individual trajectories x (subscript j omitted for
simplicity) is identical to STL and has the following syntax:

φ := True | µ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[a,b]φ2, (2)

where φ, φ1 and φ2 are inner logic formulas, µ is a predicate in the form of f(x(t)) ≥ 0. We
assume f : X → R is a differentiable function. ¬, ∧, ∨ are the Boolean not, conjunction and
disjunction respectively. U[a,b] is the temporal operator until, where φ1U[a,b]φ2 means “φ2 must
become true at some time point in [a, b] and φ1 must stay true before that”, [a, b] are all integer time
points between a and b. Other temporal operators like eventually F[a,b]φ and always G[a,b]φ are
defined as F[a,b]φ = TrueU[a,b]φ and G[a,b]φ = ¬F[a,b]¬φ, where F[a,b]φ states that “φ becomes
true at some time point in [a, b]” and G[a,b]φ states that “φ stays true at all time points in [a, b]”. An
individual trajectory x satisfies a inner logic (STL) φ at time t is denoted as (x, t) |= φ.

The outer logic (with a slight abuse of terminology we refer it as CaTL+), which is defined over
team trajectories, has similar syntax with STL, except for predicates µ are replaced by tasks T :

Φ := True | T | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Φ1U[a,b]Φ2, (3)

where Φ, Φ1 and Φ2 are CaTL+ formulas, T = ⟨φ, c,m⟩ is a task, φ is an inner logic formula,
c ∈ Cap is a capability, and m is a positive integer. The other operators are the same as the ones
in STL. A task is satisfied at time t if and only if at least m individual trajectories of agents with
capability c satisfy φ at time t. Formally, we define a counting function n(X, c, φ, t) to capture this:

n(X, c, φ, t) =
∑
j∈Jc

I
(
(xj , t) |= φ

)
, (4)

where I is an indicator function, i.e., I = 1 if (xj , t) |= φ and I = 0 otherwise. Then the team
trajectory X satisfies T at time t, denoted by (X, t) |= T , if and only if n(X, c, φ, t) ≥ m.

CaTL+ not only has qualitative semantics, i.e., whether X satisfies Φ, but also has quantitative
semantics (also called robustness), i.e., how much the specification is satisfied or violated. Denote
the (exponential) robustness of a CaTL+ formula Φ with respect to a team trajectory X at time t as
η(X,Φ, t), which is differentiable almost everywhere. The detailed definition of η can be found in
Liu et al. (2022). The robustness of CaTL+ is sound, i.e., η(X,Φ, t) ≥ 0 if and only if (X, t) |= Φ.
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The time horizon of a CaTL+ formula Φ, denoted by hrz(Φ), is defined as the closest future time
point that is needed to decide the satisfaction of Φ.

Example 1 To provide a comparison, we use the earthquake emergency response scenario defined
in Liu et al. (2022). The workspace X ⊂ R2 is shown in Fig. 3(a). There are 4 ground vehicles j ∈
{1, 2, 3, 4} and 2 aerial vehicles j ∈ {5, 6}, totaling 6 robots indexed from J = {1, 2, 3, 4, 5, 6}.
A bridge B goes across a river R in the area. All ground vehicles start from initial state xj(0)
uniformly sampled in region Initg and have capabilities Capj = {“Delivery”, “Ground”}, j ∈
{1, 2, 3, 4}. All the aerial vehicles have initial state xj(0) uniformly sampled in the region Inita
and have capabilities Capj = {“Delivery”, “Inspection”}, j ∈ {5, 6}.

Consider the following CaTL+ specifications: (1) Φ1 = ⟨F[0,8]x ∈ C, “Delivery”, 6⟩: 6
agents with capability “Delivery” should pick up supplies from region C within 8 time units;
(2) Φ2 = ⟨F[0,25]x ∈ V1, “Delivery”, 3⟩ ∧ ⟨F[0,25]x ∈ V2, “Delivery”, 3⟩: 3 agents with
capability “Delivery” should deliver supplies to the affected village V1 and V2 within 25 time
units, respectively; (3) Φ3 = ¬⟨x ∈ B, “Ground”, 1⟩U[0,5]⟨x ∈ B, “Inspection”, 2⟩: any agent
with capability “Ground” cannot go over the bridge until 2 agents with capability “Inspection”
inspect it within 5 time units; (4) Φ4 = G[0,25]⟨¬(x ∈ R), “Ground”, 4⟩: agents with capability
“Ground” should always avoid entering the river R; (5) Φ5 = G[0,25]¬⟨x ∈ B, “Ground”, 2⟩:
Since the load of the bridge is limited, at all times no more than 1 agent with capability “Ground”
can be on B; (6) Φ6 = G[0,25]⟨x ∈ M, “Delivery”, 6⟩: 6 agents with capability “Delivery”

should always stay in region M . The overall specification for the system is Φ =
∧6

i=1Φi, with
hrz(Φ) = 25. An example team trajectory is shown in Fig. 3(a)subfigure, where Φ1 is satisfied
because all 6 agents enter C while Φ4 is violated since a ground vehicle falls into R.

4. Problem Formulation and Approach

Consider a team of agents J that needs to collaboratively satisfy a CaTL+ specification Φ. We
assume that: (1) each agent can only observe its own state xj(t) at each time t; (2) all agents have
access to a communication channel for all times. At each time t, each agent can broadcast a vector
htj ∈ Rnc to the channel and receive a vector h̃tj ∈ Rnc from the channel. The dimension of the
communication vectors are fixed because of the limited bandwidth of the channel. We formulate the
joint control and communication synthesis problem as:

Problem 1 Given a multi-agent system J with initial states {xj(0) ∈ X0,j | j ∈ J } distributed
as Pj and a CaTL+ specification Φ defined over the team trajectory X, find the control policy
uj(t) = πj(x

0:t
j , htj , h̃

t
j) and the communication vectors htj and h̃tj that maximize the objective:

max
πj ,ht

j ,h̃
t
j , j∈J

η(X,Φ, 0)− γ ·max
(
η(X,Φ, 0), 0

)
·
∑
j∈J

H−1∑
t=0

C
(
πj(x

0:t
j , htj , h̃

t
j)
)

s.t. xj(t+ 1) = fj(xj(t), πj(x
0:t
j , htj , h̃

t
j)),

πj(x
0:t
j , htj , h̃

t
j) ∈ Uj , t = 0, . . . ,H − 1,

(5)

where η(X,Φ, 0) is the CaTL+ robustness, C(·) is a cost function, H ≥ hrz(Φ) is the planning
horizon, and γ is a parameter satisfying γ−1 ≥ supuj(t)∈Uj

∑
j∈J

∑H−1
t=0 C(uj(t)).

In addition, our secondary objective is to minimize the total number of times that agents access
the communication channel to save the energy cost on communication.
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Figure 1: The overall architecture of CatlNet. Figure 2: CapNet and unfolded LSTM (above),
bi-directional LSTM (bottom).

Since the satisfaction of Φ is always a priority, the constraint on γ ensures that the objective
function has the same sign as η(X,Φ, 0), so minimizing the cost never overrides maximizing the
robustness. Note that to determine an agent’s control at time t, history states of the agent are needed
due to the temporal requirements (as described in Liu et al. (2021)).

A straightforward method to get πj in Pb. 1 is to apply Model Predictive Control (MPC), i.e.,
compute a sequence of controls within a planning horizon and apply the first one to the system at
each time. Since the objective function is defined on the entire team, the history information of all
agents is required by the MPC controller at all time. This information needs to be either stored at
a central node (taking up a large storage space) where htj = xj(t), or sent from each agent to the
communication channel (i.e., htj = x0:t

j , which results in a large communication vector). Moreover,
since the robustness of CaTL+ is nonconvex, solving the MPC problem at each time step can be
time-consuming. Finally, MPC requires all agents to connect to the channel at all time steps, which
is not going to accomplish our secondary objective. Hence, this MPC approach can be intractable
in practice due to the limits on communication, storage and the real-time computation requirement.

In this paper, we propose a learning-based algorithm (detailed in Sec. 5) to solve Pb. 1. The
algorithm finds the communication strategy, i.e., whether an agent needs to communicate at time t
and what the communication vectors htj and h̃tj are, and a distributed control policy for each agent
that can compute the control in real time. We propose a NN-based framework, called CatlNet, to
implement both policies. CTDE paradigm is applied, i.e., we assume all state information is known
during training. During execution, each agent only observe its own state but it is connected to a
communication channel. After training, CatlNet can be generalized to random initial states xj(0).

5. CatlNet
5.1. Architecture of CatlNet
The overall architecture of CatlNet is shown in Fig. 1. We extract a vector htj called thought from the
state of agent j at time t using a Long Short Term Memory (LSTM) NN with parameters θL (Fig 2
above). Here the thought contains the information of history states. Let Capvj be the vectorized
representation of agent j’s capability, where Capvj = [b1 b2 · · · b|Cap|]

⊤, bi = 1 if ci ∈ Capj , bi = 0
if ci ̸∈ Capj . We input Capvj to a NN called CapNet with parameters θcap and use its output as
the initial hidden state of the LSTM as shown in Fig. 2 (above). The output of the LSTM, i.e., the
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thought htj is then fed to a classifier, called a Comm-gate, to decide whether the agent communicates.
The Comm-gate is also implemented as a NN with parameters θg. If the Comm-gate decides to
communicate, then the thought htj is passed to a communication channel implemented by a bi-
directional LSTM with parameters θb. The communication channel can merge all agents’ thoughts
(who decide to communicate at that time) and output an integrated thought h̃tj that guides agents
to generate coordinated actions as shown in Fig. 2 (bottom). Then the integrated thought h̃tj is sent
back to agent j and concatenated with its original thought htj . Finally, [htj , h̃

t
j ] is fed to another NN

called OutNet with parameters θo, and it outputs the control uj(t). A hyperbolic tangent function
is applied at the last layer of OutNet to satisfy the constraint uj ∈ Uj as in Yaghoubi and Fainekos
(2019). We denote the joint control policy given by CatlNet as ū(t) = π̄(x̄0:t, θcap, θL, θb, θo, θg),
where the (integrated) thoughts htj (h̃tj) are internal variables for the joint policy, therefore omitted.

Note that in CatlNet all agents share the same parameters (θcap, θL, θb, θo, θg), so the number
of trainable parameters does not increase as the number of agents increases. Capabilities fed to
CapNet make different type of agents behave differently, while communication can make same type
of agents behave differently. Hence, communication is necessary when such diversity is needed.

5.2. Training of CatlNet

Following the CTDE paradigm, CatlNet is trained as two parts: (1) the policy networks, including
CapNet, LSTM, communication channel and OutNet; and (2) the Comm-gate.

5.2.1. TRAINING OF THE POLICY NETWORKS

We initially ignore the Comm-gate network training and let all agents communicate openly to the
channel, denoted as θg = θfullg . Since the control policy has been parameterized by CatlNet and we
want to generalize CatlNet to different initial states, the first objective in Pb. 1 becomes:

Problem 2 Given a multi-agent system {Aj | j ∈ J } and a CaTL+ specification Φ defined over the
team trajectory X, find the optimal CatlNet parameters θcap, θL, θb, θo that maximizes the objective:

max
θcap,θL,θb,θo

EP (xj(0))

[
η(X,Φ, 0)− γ ·max

(
η(X,Φ, 0), 0

)
·
∑
j∈J

C(uj)
]

s.t. ū(t) = π̄(x̄0:t, θcap, θL, θb, θo, θ
full
g ),

xj(t+ 1) = fj(xj(t), uj(t)), t = 0, . . . ,H − 1.

(6)

In practice, we randomly sample M initial states of the MAS and use the average to approximate
the expectation in (6). We substitute the constraints to the objective function to make (6) an un-
constrained optimization problem and use the Adam stochastic optimizer Kingma and Ba (2014) to
update θcap, θL, θb, θo. We resample M initial states at each optimization step. Note that all gradi-
ents can be computed automatically and analytically using the technique in Leung et al. (2020).

When the CaTL+ specification is complex, the policy may become stuck in a local optima that
violates the specification. To improve training reliability, we consider how humans learn. (1) Given
an objective, a human learner might achieve it with a suboptimal solution. On the other hand, if
optimal demonstrations are provided, a learner who do not know the objective can imitate but might
fail given unseen conditions. Hence, the best strategy is to provide the learner both the objective
and the demonstrations. (2) Facing a bunch of unfamiliar demonstrations, it might be hard for a
learner to discover the underlying rules. However, if a coach shows the learner a solution which is
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an adaptation of the learner’s own behavior, it will be easier for the learner to improve her solution.
Inspired by these two insights, we designed a repair algorithm (Alg. 1 described in Sec. 5.3), which
can fix the team trajectory generated by CatlNet to satisfy the CaTL+ specification. We use the
repair algorithm to guide the training and further improve the policy.

We use the trained CatlNet to generate a set of N team trajectories starting from random ini-
tial states and collect the violating trajectories. Then we use Alg. 1 to repair them and collect all
successfully repaired team trajectories to form a dataset D = {X(i)

d |i = 1, . . . , N}. Denote the
objective in (6) as L(θcap, θL, θb, θo, θg). Then train CatlNet again to maximize the objective:

max
θcap,θL,θb,θo

(1− β)L(θcap, θL, θb, θo, θ
full
g )− β

N∑
i=1

T−1∑
t=0

∥x̄(i)(t)− x̄
(i)
d (t)∥2

s.t. x
(i)
j (t+ 1) = fj(x

(i)
j (t), u

(i)
j (t)), x

(i)
j (0) = x

(i)
j,D(0),

ū(i)(t) = π̄(x̄
(i)
0:t, θcap, θL, θb, θo, θ

full
g ), t = 0, . . . ,H − 1, i = 1, . . . , N,

(7)

where β ∈ [0, 1] balances maximizing (6) and imitating the dataset. Note that we can rearrange
the identical agents in the team to minimize ∥x̄(i)(t) − x̄

(i)
d (t)∥2 in (7), which makes the dataset

permutation-invariant. We keep repairing the violated trajectories, adding them to dataset D and
retrain CatlNet until convergence. Now we have obtained a control policy with full communication.

5.2.2. TRAINING OF THE COMM-GATE

To train the Comm-gate that decides when an agent needs to communicate, we first use the objective
(7) with the final dataset to train another CatlNet with no communication at all (likely it cannot
satisfy the specification). Then we generate trajectories using the full communication CatlNet, but
disable the communication channel connection for one agent j at one time point t at a time. The
chosen agent j will use the no communication CatlNet instead at the chosen time t. Then we
compare the robustness values with and without this deactivation. If the deactivation makes the
robustness decrease over a threshold, we label the thought ht,(i)j with y(i) = 1 (the agent should

communicate), otherwise we label ht,(i)j with y(i) = 0 (the agent does not need communication).

Repeat this from sampled initial states to form a dataset Dg consist of data pairs (h
t,(i)
j , y(i)) that

covers all agents at all time points. Let G(htj , θg) ∈ R2 be the output of Comm-gate. We train the
Comm-gate on Dg as a standard classifier to minimize the cross entropy loss:

min
θg

∑
Dg

−y(i) log
(
σ
(
G(h

t,(i)
j , θg)

)
1

)
− (1− y(i)) log

(
σ
(
G(h

t,(i)
j , θg)

)
2

)
(8)

where σ : R2 → R2 is the softmax function, σ()1 and σ()2 denote its 1st and 2nd elements. Finally,
we train CatlNet with the Comm-gate using the objective (7), which gives us the final CatlNet.

5.3. Repair of CatlNet

Now we describe the repair algorithm. First, rewrite the outer logic of CaTL+ into a negation-free
Disjunctive Normal Form (DNF, a disjunction of conjunctions). To do this, we extend the CaTL+
task to a timed task, denoted as T̄ = ⟨φ, c,m⟩t, such that (X, t0) |= T̄ iff (X, t0 + t) |= ⟨φ, c,m⟩,
i.e., the task is required to be satisfied at t. The original task ⟨φ, c,m⟩ is equivalent to ⟨φ, c,m⟩t=0.

Proposition 2 Every CaTL+ formula can be represented in the negation-free DNF:
∨K

k=1

∧Ik
i=1 T̄

k
i

where T̄ k
i is a timed task, Ik is the number of conjunctions in the kth disjunction.
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Let sort(·) reorder a sequence of scalars from largest to smallest and return the reordered index:

sort([ηi]
N
i=1) = i1, i2, . . . , iN , s.t. ηi1 ≥ ηi2 ≥ . . . ≥ ηiN . (9)

Next, we follow Alg. 1 to repair the output of CatlNet. We assume that an STL control synthesis
algorithm is available. That is, given an STL formula φ defined over an agent’s individual trajectory,
we can find the control sequence for the agent that steers it to satisfy the STL formula if a solution
exists, denoted as x,u ← syn(φ). We first rewrite the CaTL+ formula into its negation-free DNF
Φ =

∨K
k=1

∧Ik
i=1 T̄

k
i . Then at the initial state, we predict the team trajectory using CatlNet and

the system model. To satisfy Φ, at least one of the k clauses
∧Ik

i=1 T̄
k
i needs to be satisfied. We

calculate the robustness for all of them and consider these clauses from the highest robustness to
the lowest (step 1). For the clause

∧Ik
i=1 T̄

k
i , if it is violated, we find all tasks T̄ k

i = ⟨φk
i , c

k
i ,m

k
i ⟩tki

that are violated (or satisfied by exactly mk
i agents) and assign a STL formula F[tki ,t

k
i ]
φk
i to enough

(mk
i ) agents with the required capabilities cki (steps 2-6). Since we repair one agent at a time, those

tasks satisfied by more than mk
i agents would not be violated. Now we have assigned a set of STL

formulas to each agent that needs repair. Then we apply the STL control synthesis algorithm to
make an agent’s trajectory satisfy the conjunction of these formulas (step 8). After updating the
trajectory, we find tasks satisfied by exactly mk

i agents and assign F[tki ,t
k
i ]
φk
i to them again (steps

9-11). Repeat until all agents are repaired. If all agents get positive robustness, then the algorithm
terminates and return success (step 12). Otherwise redo all these steps for the next clause

∧Ik
i=1 T̄

k
i .

If all clauses cannot be satisfied, then the algorithm terminates and return fail.

Algorithm 1: Trajectory Repair

Input: Φ =
∨K

k=1

∧Ik
i=1 T̄

k
i , R1 = · · · = R|J | = ∅, F1 = · · · = F|J | = 0, Result = fail

1 for k in sort
(
[η(X,

∧|Ik|
i=1 T

k
i , 0)]

K
k=1

)
do // all clauses

2 for {i ∈ [1, Ik] | n(X, cki , φ
k
i , t

k
i ) ≤ mk

i )} do // all not (just) satisfied T̄ k
i

3 for j∗ in sort{ρ(xj , φk
i , t

k
i )|j ∈ Jcki } do // all agents with cki

4 Rj∗ ← Rj∗ ∪ {i}; // assign task i to agent j∗

5 if (xj∗ , t
k
i ) ̸|= φk

i then Fj∗ ← 1; // flag agents that need repair ;
6 if task T k

i is assigned to mk
i agents then break;

7 for {j ∈ J |Fj = 1} do // for all flagged agents
8 xj ,uj ← syn(

∧
i∈Rj

F[tki ,t
k
i ]
φk
i ); // get repaired trajectory

9 for {i ∈ [1, Ik] | n(X, cki , φ
k
i , t

k
i ) = mk

i )} do
10 for j ∈ Jcki do
11 if (xj , t

k
i ) |= φi then Rj ← Rj ∪ {i} // redo assignment;

12 if all flagged agents get positive robustness then Result← suc, break;
13 return X, u1, · · · ,u|J |, Result.

Proposition 3 (soundness) If Alg. 1 returns Result = suc, then the returned team trajectory X
satisfies the CaTL+ specification: (X, 0) |= Φ.

Remark 4 Alg. 1 ensures soundness (Proposition 3) but it is not complete. Here completeness
means that if a solution (a team trajectory that satisfies the CaTL+ specification) exists, then the
algorithm can find it. In other words, it is possible that Alg. 1 returns fail though a solution exists.

9



LEARNING FROM CATL+

(a) (b) (c) (d)

Figure 3: (a) Environment and example trajectories. (b) Team trajectory before repair. (c) Team trajectory
after repair. (d) Team trajectory generated by the final CatlNet.

Figure 4: Communication at each time step. Green
squares mean the agent communicates at
that time, while white squares indicate
that the agent does not communicate.

Remark 5 Alg. 1 requires the global information, so it is only applied in the centralized training
phase. Hence, the satisfaction of the CaTL+ specification in the execution is not guaranteed. How-
ever, simulation results show that by using the repair scheme as a guidance for the training, CatlNet
can reach a high satisfying rate in the execution without the repair. Since we repair the trajectories
one by one, the computation of Alg. 1 increases linearly with respect to the number of the agents.

6. Case Studies

Consider the scenario and CaTL+ specification in Ex. 1. Let the dimension of the communication
vector be 8, which contains the history information of each agent. Let Uj = [−1, 1]2, j = 1, 2, 3, 4,
Uj = [−1.2, 1.2]2, j = 5, 6. We train CaTL+ using the algorithm described in Sec. 5.2. Detailed
NN architecture can be found in our Github repository. A team trajectory generated by the CatlNet
after first training (full communication and no repair) is shown in Fig. 3(b). The trajectory violates
the CaTL+ specification, mostly due to Φ5, i.e., only one ground vehicle can be on the bridge at
a given time. To avoid appearing on the bridge at the same time, the agents tend to go across the
bridge at the edge of the bridge, which is a local optimum with zero robustness. We use Alg. 1 to
repair the trajectory in Fig. 3(b) which results in Fig. 3(c) with positive robustness. Then we retrain
CatlNet with the dataset and repeat the above process. The final dataset contains 213 trajectories.

Next, we train the Comm-gate and retrain the policy networks with it. A trajectory given by
the final CatlNet is shown in Fig. 3(d). The corresponding communication at each time is shown
in Fig. 4. It can be seen that Comm-gate greatly reduces the total number of communications and
the communication happens mainly when agents go across the river one by one. This makes sense
as agents need to behave differently at this stage of the task and communication enables them to do
this. We test the final CatlNet from 10000 random initial states and the success rate is 100.00%.

7. Conclusion and Future Work
We proposed a neural network-based model called CatlNet to learn both communication and dis-
tributed control policies from CaTL+ specifications. By using the repair algorithm during training,
CatlNet can reach a high success rate of satisfying the specification. We plan to incorporate a lower
level controller with CatlNet to avoid inter-agent collision and guarantee dense-time behaviors.
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