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Abstract
One of the primary challenges in large-scale distributed learning stems from stringent communication
constraints. While several recent works address this challenge for static optimization problems,
sequential decision-making under uncertainty has remained much less explored in this regard.
Motivated by this gap, we introduce a new linear stochastic bandit formulation over a bit-constrained
channel. Specifically, in our setup, an agent interacting with an environment transmits encoded
estimates of an unknown model parameter to a server over a communication channel of finite
capacity. The goal of the server is to take actions based on these estimates to minimize cumulative
regret. To this end, we develop a novel and general algorithmic framework that hinges on two main
components: (i) an adaptive encoding mechanism that exploits statistical concentration bounds, and
(ii) a decision-making principle based on confidence sets that account for encoding errors. As our
main result, we prove that when the unknown model is d-dimensional, a channel capacity of O(d)
bits suffices to achieve order-optimal regret. We also establish that for the simpler unstructured
multi-armed bandit problem, 1 bit channel capacity is sufficient for achieving optimal regret bounds.
Keywords: Linear Bandits, Distributed Learning, Communication Constraints

1. Introduction

In modern distributed computing paradigms such as federated learning (FL), a group of agents
typically interact with a parameter server to train a common statistical model. A major bottleneck
in such settings is the network communication cost of uploading (potentially high-dimensional)
models and gradient vectors to the server. Motivated by this concern, several works draw on ideas
from quantization theory (Seide et al., 2014; Alistarh et al., 2017), sparsification (Wen et al., 2017;
Stich et al., 2018), and rate-distortion theory (Mitchell et al., 2022) to design communication-
efficient algorithms that achieve a desired level of precision while exchanging as few bits as possible.
Although this rich body of work contributes significantly to the study of static optimization problems
under communication constraints, there remains a considerable gap in our understanding of similar
questions when it comes to sequential decision-making under uncertainty (e.g., bandit problems and
reinforcement learning). Our main goal in this paper is to bridge the above gap.

A common abstraction for analyzing optimization under limited communication is one where a
worker agent transmits quantized gradients to a server over a finite bit-rate communication channel
(Mayekar and Tyagi, 2020; Gandikota et al., 2021; Lin et al., 2021). Inspired by this model, for our
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problem of interest, we introduce and study a new linear stochastic bandit formulation comprising of
an agent connected to a decision-making entity (server) by a noiseless communication channel of
finite capacity B; see Fig. 1. The agent interacts with an environment and observes noisy rewards
that depend linearly on an unknown parameter vector θ∗ ∈ Rd. It then encodes and transmits
finite-precision estimates of θ∗ to the server. Based on these estimates, the role of the server is to
play a sequence of actions that maximizes the sum of rewards accrued over a time horizon T - a
performance metric captured by cumulative regret.

Notably, the agent can only transmit encoded estimates of the parameter vector, but not the
rewards. The reason for this is twofold. First, our setting is motivated by the popular federated
learning (FL) framework (Konečnỳ et al., 2016) where due to privacy concerns, agents exchange
their local models with the server instead of their raw observations. Indeed, our communication
model is consistent with recent works on federated linear bandits (Huang et al., 2021) where agents
are not allowed to exchange private rewards (observations), and instead only exchange model
(parameter) estimates.1 Second, beyond FL, our goal is to eventually consider challenging multi-
agent reinforcement learning (RL) problems where the server may not be aware of the agents’ actions.
In such settings, consistent with collaborative filtering/estimation (Olfati-Saber, 2005; Speranzon
et al., 2006) techniques, the agents would need to exchange and fuse parameter/model estimates (as
in our work) via the server to benefit from collaboration. In this regard, we note that in existing works
on multi-agent and federated RL (Doan et al., 2019; Qi et al., 2021; Jin et al., 2022; Khodadadian
et al., 2022), agents exchange models (parameters), keeping their personal data (i.e., rewards, states,
and actions) private. Our communication model thus aligns with these works as well.

The main technical challenge in our setup arises from the fact that the channel from the agent to
the server introduces additional uncertainty into the decision-making process. Unless accounted for
carefully, the instantaneous encoding errors resulting from such uncertainty can accumulate over
time and lead to sub-optimal regret bounds. Given this challenge, the central question we investigate
is: Under what conditions on the channel capacity B can we achieve the order-optimal regret bound
Õ(d

√
T )?2 In this work, we rigorously answer the above question via the following contributions.

• Algorithmic Contributions. For the setting of interest, we develop a novel framework for
statistical decision-making under communication constraints. Our approach hinges on two main
components. The first is an adaptive quantization mechanism that encodes the change (innovation)
in successive estimates of θ∗ at the agent. The main intuition here is that with high probability,
the gap between successive model estimates shrinks over time; as a result, the innovation signals
are contained in balls of progressively smaller radii. Thus, roughly speaking, to achieve the same
precision, it takes fewer bits to encode the innovation signals as compared to the model estimates
(that can be of a much larger magnitude). A key feature of our encoding scheme is that the dynamic
quantizer ranges are designed based on statistical concentration bounds specific to the stochastic
process we study. As such, our encoding scheme is novel, and differs significantly from standard
quantization approaches for optimization. The second key component of our framework is the
decision-making policy at the server that comprises of two phases: (i) a pure exploration phase that
facilitates estimation of θ∗, and (ii) an information-constrained exploration-exploitation phase. In the
latter phase, actions are taken based on certain “inflated" confidence sets that are carefully constructed
to account for the errors induced by compression. The construction of such sets is an important

1. We note, however, that providing formal privacy guarantees is not the main focus of our work. Instead, much like the
initial papers on federated optimization (Konečnỳ et al., 2016), our focus is on communication-efficiency.

2. Under infinite channel capacity, i.e., when B = ∞, Õ(d
√
T ) regret is optimal (Lattimore and Szepesvári, 2020).
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algorithmic contribution of our work. We refer to our overall scheme as the Information-Constrained
LinUCB algorithm (IC-LinUCB).

• Theoretical Contributions. Our first main result (Theorem 2) reveals that with a channel
capacity B = O(d) bits, IC-LinUCB guarantees a regret bound of Õ(d

√
T ). The main implication

of this result is that one can achieve minimax-optimal regret guarantees with a bit-rate that is
independent of the horizon T , and that depends only on the dimension d of the unknown model θ∗.
This result is particularly appealing for infinite-horizon stochastic control problems. As far as we are
aware, this is the first result of its kind for linear stochastic bandits, and complements similar results
for stochastic optimization: Mayekar and Tyagi (2020) recently showed that with d-dimensional
quantized gradients, a bit-rate of Õ(d) bits is sufficient for achieving the optimal optimization
convergence rate. On the technical front, we note that the proof of Theorem 2 is non-trivial, and
relies on some key intermediate ideas that we outline in Section 3. We also ask: When the action
sets have additional structure, can we exploit such structure to achieve optimal performance with
fewer than O(d) bits? To answer this question, we study a special case of the linear bandit problem
where the actions are the standard basis vectors: the multi-armed bandit (MAB) problem with a finite
number of arms (Auer et al., 2002). For this setting, we prove that with a bit-rate B = 1, one can
achieve both gap-dependent (Theorem 5) and gap-independent (Theorem 6) regret bounds matching
those of the celebrated upper-confidence bound (UCB) algorithm.

Overall, we envision that the insights from this work will pave the way for studying more complex
multi-agent statistical decision-making problems under communication constraints.

Further Related Work. Our formulation is inspired by the classical work (Tatikonda and
Mitter, 2004a) that studies the problem of stabilizing a linear time-invariant dynamical system
over a bit-constrained channel. There, as in our setup, the estimation module (sensor) is separated
from the decision-making module (controller) by the channel. Aside from the fact that we study
a fundamentally different problem, our work departs from (Tatikonda and Mitter, 2004a) in that
our setup is inherently stochastic, while the authors in (Tatikonda and Mitter, 2004a) consider a
fully deterministic setting. Throughout the paper, to isolate the challenges unique to our problem,
we consider a noiseless channel. We note here that several works at the intersection of control
and information theory have studied coding schemes for various control tasks over noisy channels
(Tatikonda and Mitter, 2004b; Matveev, 2008; Ostrovsky et al., 2009; Sukhavasi and Hassibi, 2016;
Khina et al., 2019; Gatsis et al., 2020). We anticipate that ideas from these papers can be combined
with the adaptive quantization mechanism that we develop. Crucially, our work departs from all the
aforementioned papers in that the system model is assumed to be known in such papers. In contrast, a
key feature of our setting is that the model θ∗ is an unknown high-dimensional object; this statistical
uncertainty is precisely what contributes to the learning component in our problem.

Our work is also naturally related to the seminal papers on linear stochastic bandits (Dani et al.,
2008; Abbasi-Yadkori et al., 2011). In the context of multi-agent bandits (Landgren et al., 2016;
Shahrampour et al., 2017; Sankararaman et al., 2019), a body of work focuses on achieving benefits of
collaboration while minimizing the number of communication rounds (Wang et al., 2019; Dubey and
Pentland, 2020; Chawla et al., 2020; Agarwal et al., 2021). The main goal of these papers is to achieve
desirable performance while minimizing the frequency of communication. Our focus is orthogonal -
that of studying the impact of finite-precision communication channels on the performance of bandit
algorithms. As a result, our problem formulation, algorithmic techniques, and theoretical results
differ from the above strand of literature.
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Agent Server
action at

B-bit symbol σt
Channel

Observe yt and encode θ∗ Decode θ∗ and play at+1

Figure 1: At each round t, the action at played by the server is sent to the agent without any loss of
information. The agent then observes a reward yt as per Eq. (1), encodes an estimate of
the model θ∗, and transmits the encoded symbol σt back to the server under the B-bits per
round channel constraint. The server performs decoding and plays the next action at+1.

Notation: We use Bd(0, 1) and Sd−1 to represent the d-dimensional Euclidean ball and the
d-dimensional Euclidean sphere, respectively, of unit radius centered at the origin. We use x′ to
denote the transpose of a vector x.

2. Model and Problem Formulation

We study a setting comprising of an agent and a decision-maker (server) separated by a noiseless
communication channel of finite capacity; see Fig. 1. Based on all the information acquired by the
server up to time-step t− 1, it chooses an action at ∈ At at time t, where At ⊂ Rd is the feasible
decision set at time t. The agent then receives a reward according to the following model:

yt = ⟨θ∗, at⟩+ ηt, (1)

where {ηt} is a sequence of i.i.d. 1-subgaussian noise random variables. Here, θ∗ is an unknown
parameter that belongs to a known compact set Θ ⊂ Rd; for each θ ∈ Θ, it holds that ∥θ∥2 ≤ M ,
where M ≥ 1. Our performance measure of interest is the following cumulative regret metric RT :

RT = E

[
T∑
t=1

max
a∈At

⟨θ∗, a− at⟩

]
, (2)

where T is the time horizon. Inspired by the setup in (Tatikonda and Mitter, 2004a), the role of the
agent in our problem is to perform sensing (i.e., collecting rewards) and estimation (i.e., maintaining
estimates of θ∗). The server, in turn, is responsible for decision-making, and seeks to play a sequence
of actions such that RT grows sub-linearly in T . When there is no loss of information from the
agent to the server, it is well known that one can achieve Õ

(
d
√
T
)

regret via the popular LinUCB
algorithm (Abbasi-Yadkori et al., 2011). Our goal is to develop an algorithm that achieves the same
performance subject to communication constraints that we describe next.

Communication constraints. To capture communication constraints, we assume that the channel
from the agent to the server has a finite capacity of B bits. Thus, at each time-step, the channel can
transmit without error one of 2B symbols denoted by σ ∈ Σ, where |Σ| = 2B . As explained and
motivated in the introduction, we impose an additional information constraint that the agent can only
transmit encoded estimates of the unknown model parameter θ∗, but not the rewards themselves. In
Section 3, we will establish that with B = O(d) bits, one can ensure that RT = Õ

(
d
√
T
)

. Arriving
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at this result is however quite non-trivial, and requires overcoming certain key technical challenges
that we outline next.

Challenges. In the standard linear stochastic bandit formulation, the chief difficulty lies in taking
decisions that incur low regret despite statistical uncertainty concerning the unknown parameter
θ∗. In our setting, such uncertainty is accentuated by the loss of information incurred over the
finite-capacity channel. Unless the server explicitly accounts for this additional source of error in
its decision-making process, it can end up taking sub-optimal actions that generate low rewards.
Moreover, since our problem is of an inherently sequential nature, the effect of “poor" actions coupled
with channel-induced errors can pile up over time, resulting in the agent-server pair suffering linear
regret. The above discussion highlights the challenge in decision-making. In terms of communication,
our goal is to ensure that the channel capacity B exhibits no dependence whatsoever on the horizon
T . This is particularly motivated by the need to accommodate general RL settings that are replete
with infinite-horizon stochastic control problems, where T → ∞. For such settings, any dependence
of the capacity B on T would imply a prohibitively large communication cost. The above argument
essentially rules out certain natural non-adaptive encoding strategies. To sum up, the design of a
joint encoding-decoding and decision-making strategy that achieves order-optimal regret with a
horizon-independent channel capacity is not at all obvious a priori.

We close this section by outlining some standard assumptions.

Assumption 1 The following hold: (i) maxt∈[T ] supa,b∈At
⟨θ∗, a − b⟩ ≤ 1; (ii) ∥a∥2 ≤ L, ∀a ∈⋃T

t=1At; and (iii) At each time-step t ∈ [T ], the decision set At contains the unit sphere Sd−1.

While assumptions (i) and (ii) are typical in the literature on linear stochastic bandits (Lattimore
and Szepesvári, 2020), assumption (iii) is also quite standard and has been used in various different
contexts (Amani et al., 2019; Yang et al., 2020). Without loss of generality, we assume that L ≥ 1.
Furthermore, we assume that the horizon is long-enough: T ≥ d2.

3. Information-Constrained Optimism in the Face of Uncertainty

In this section, we will develop our proposed algorithm (Algorithm 2) called Information Constrained
LinUCB (IC-LinUCB) that comprises of two phases. Phase I is a pure exploration phase where
the server picks i.i.d. actions from the uniform distribution over the unit sphere; such actions are
feasible owing to Assumption 1-(iii). During this phase which lasts for T̄ + 1 time-steps, the only
transmission from the agent to the server takes place at time-step T̄ + 1. The purpose of the pure
exploration phase and the choice of the parameter T̄ will be explained shortly. During each time-step
of Phase II, the agent employs an adaptive encoding strategy (outlined in Algorithm 1) to transmit
information about the unknown parameter θ∗ to the server. Based on this information, the server
takes decisions by constructing an “inflated" confidence set that accounts for encoding errors. We
now describe in detail the two key ingredients of IC-LinUCB: (i) the adaptive encoding strategy at
the agent, and (ii) the decision-making rule at the server.

• Adaptive Encoding at Agent. To describe the encoder, we will require the notion of an ϵ-net;
the following definition is from (Vershynin, 2018).

Definition 1 Consider a subset K ⊂ Rd and let ϵ > 0. A subset N ⊆ K is called an ϵ-net of K if
every point in K is within a distance of ϵ of some point of N , i.e., ∀x ∈ K,∃x0 ∈ N : ∥x− x0∥2 ≤ ϵ.
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Figure 2: Illustration of the encoding technique in Algorithm 1. The agent computes the innovation
signal et that belongs to Bd(0, pt) with high probability. An ϵpt-net of Bd(0, pt) is
constructed, and the center ẽt of the ball containing et is decoded by the server.

Next, consider the least-squares estimate θ̂
(a)
t maintained by the agent: θ̂(a)t = V −1

t

∑t
s=1 asys,

where Vt = λId +
∑t

s=1 asa
′
s is the covariance matrix at time-step t. Here, λ > 0 is a scalar

regularization parameter. Let θ̂(s)t be the estimate of θ∗ maintained by the server; θ̂(s)t is initialized
from any arbitrary vector in Θ at time-step T̄ + 1. The choice of this initial vector is known to both
the agent and the server.

Main Ideas. The key ideas guiding our encoding strategy are as follows. Once the agent has
acquired sufficiently many observations, the gap θ̂

(a)
t − θ̂

(a)
t−1 between successive estimates will start

shrinking due to the pure exploration phase. Thus, at this stage, if the gap θ̂
(a)
t−1 − θ̂

(s)
t−1 is not too

large, then the gap et = θ̂
(a)
t − θ̂

(s)
t−1 should not be too large either. In other words, eventually, a new

observation yt will not cause the agent’s estimate of θ∗ to deviate drastically from the estimate of θ∗
held by the server. Intuitively, it thus makes sense to encode and transmit only the new information
about θ∗ contained in yt, i.e., the “innovation" signal et (as opposed to encoding θ̂

(a)
t ). However,

given the stochastic nature of our setup, et is a random variable. Thus, encoding et poses the technical
hurdle of characterizing the region containing et with high probability. To this end, in Lemma 3
of Section 4, we establish that with high probability, ∀t ≥ T̄ + 1, et ∈ Bd(0, pt), where pt is the
radius of the ball containing the innovation et. Our encoding strategy is adaptive since it requires
dynamically updating the radius pt (via Eq. (3)) based on statistical concentration bounds.

Algorithm 1 Adaptive Encoding at the Agent

1: Input Parameters: θ̂(s)
T̄

is any arbitrary vector in Θ; qT̄ = 10M ; and f(T ) = 3
5L

√
βT

T log(dLT ) .

2: for t ∈ {T̄ + 1, . . . , T} do
3: Observe yt; compute θ̂

(a)
t = V −1

t

∑t
s=1 asys and innovation et = θ̂

(a)
t − θ̂

(s)
t−1.

4: Construct an ϵpt-net of Bd(0, pt) to encode the innovation et, with pt as given below:

qt = ϵ (qt−1 + f(T )) ; pt = qt + f(T ). (3)

5: Determine the ball within Bd(0, pt) that et falls into, and transmit the symbol σ ∈ Σ corre-
sponding to that ball. If et /∈ Bd(0, pt), transmit overflow symbol.

6: end for
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Summary of Encoding Strategy. The overall encoding technique in Algorithm 1 can be
summarized as follows. At each time-step t ≥ T̄ + 1, the agent observes yt, computes θ̂(a)t , and then
evaluates the innovation signal et = θ̂

(a)
t − θ̂

(s)
t−1. Given that et ∈ Bd(0, pt) with high probability (as

justified by Lemma 3), the region Bd(0, pt) is covered by balls of radius ϵpt, where ϵ ∈ (0, 1) is a
pre-decided constant, i.e., the agent constructs an ϵpt-net of Bd(0, pt).3 The agent then determines
the ball et falls into, and transmits the symbol σ ∈ Σ corresponding to that ball.4 If et falls outside
Bd(0, pt), the agent transmits a special symbol to indicate an overflow. We succinctly represent the
entire operation described above by a dynamic encoder map Et that takes as input et and generates as
output the symbolic encoding σt ∈ Σ that is transmitted to the server.

Decoding at Server. For correct decoding, we assume that the server is aware of the encoding
operation at the agent. Note that the sequences {pt} and {qt} defined in Eq. (3) are deterministic,
and can be computed by the server at its end. Thus, at any time-step t ≥ T̄ + 1, the server is aware
of the region Bd(0, pt) being encoded. Upon receiving σt, the server can thus correctly determine
the center ẽt of the ball containing et. We represent the above decoding operation at time t by the
decoder map Dt that takes as input σt and outputs ẽt. Having decoded the innovation signal, the
server computes an estimate θ̂

(s)
t of θ∗ as per line 11 of Algorithm 2. The agent computes θ̂(s)t on its

end as well in order to evaluate the innovation signal at time t+1. Our encoding-decoding technique
is illustrated in Figure 2.

Till now, we have only described how to transit finite-precision information about θ∗ from the
agent to the server. However, the key question that remains unanswered is the following: How
should the server take decisions that yield low cumulative regret while accounting for the additional
uncertainty introduced by the channel? We now turn to answering this question.

• Decision-Making at the Server. When there is no loss of information over the channel, i.e.,
when θ̂

(s)
t = θ̂

(a)
t , the LinUCB algorithm relies on the principle of optimism in the face of uncertainty.

Specifically, at each time-step, an ellipsoidal confidence set is constructed that contains θ∗ with
high-probability. The learner then acts optimistically by playing an action that yields the highest
reward over all possible values of θ in the confidence set. Our approach builds on the same high-level
principle, but relies crucially on the construction of a new “inflated" ellipsoidal confidence set:

C(s)
t = {θ ∈ Rd : ∥θ − θ̂

(s)
t−1∥Vt−1

≤
√

βT +
(√

λ+ (t− 1)L2
)
qt}, where (4)

√
βT =

√
λM +

√
2 log

(
1

δ

)
+ d log

(
dλ+ TL2

dλ

)
, (5)

qt is as in Eq. (3), and δ ∈ (0, 1) is a constant to be picked later. Notably, when θ̂
(s)
t−1 = θ̂

(a)
t−1, and

qt = 0, C(s)
t reduces to the confidence set in LinUCB. The inflation in the radius of the confidence

set (relative to LinUCB) carefully accounts for the compression errors resulting from the finite
capacity of the channel. Our main technical contribution here is to establish that ∀t ≥ T̄ + 2,
θ∗ ∈ C(s)

t with high probability; see Lemma 4 in Section 4. This result, in turn, justifies the
optimistic decision-making rule of IC-LinUCB in line 12 of Algo. 2. During the pure exploration

3. For a discussion on constructing such coverings, see (Dumer et al., 2004; Verger-Gaugry, 2005) and the references
therein.

4. In case et lands on the boundary of more than one ball, it is assigned the label/symbol of any one of those balls based
on a fixed priority rule.
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Algorithm 2 Information Constrained LinUCB (IC-LinUCB)

1: Input Parameters: T̄ = ⌈10L2d
√
T log(dLT )⌉.

2: Phase I: Pure Exploration
3: for t ∈ {1, . . . , T̄ + 1} do
4: Server plays at ∼ Unif(Sd−1).
5: Agent receives reward yt as per (1) and computes estimate θ̂

(a)
t = V −1

t

∑t
s=1 asys.

6: end for
7: Agent encodes eT̄+1 = θ̂

(a)

T̄+1
− θ̂

(s)

T̄
as per Algo. 1, and transmits σT̄+1 = ET̄+1

(
eT̄+1

)
.

8:

9: Phase II: Information-Constrained Exploration-Exploitation
10: for t ∈ {T̄ + 2, . . . , T} do
11: Server decodes ẽt−1 = Dt−1(σt−1), and generates θ̂(s)t−1 = θ̂

(s)
t−2 + ẽt−1.

12: Server constructs the confidence set C(s)
t described in Eq. (4), and plays the action at =

argmaxa∈At
max

θ∈C(s)
t
⟨θ, a⟩.

13: Agent receives reward yt as per (1) and computes estimate θ̂
(a)
t = V −1

t

∑t
s=1 asys.

14: Agent encodes the innovation et = θ̂
(a)
t − θ̂

(s)
t−1 as per Algo. 1, and transmits σt = Et(et).

15: end for

phase, the server simply samples actions independently from the uniform distribution over Sd−1, i.e.,
at ∼ Unif(Sd−1),∀t ∈ [T̄ +1].5 At every t ∈ [T ], the action at decided upon by the server is passed
down to the agent without any loss of information. This completes the description of IC-LinUCB.

4. Main Result and Analysis

Our main result concerning the performance of the IC-LinUCB algorithm is as follows.

Theorem 2 (Regret of IC-LinUCB) Suppose Assumption 1 holds, and let the channel capacity
satisfy B ≥ 6d. Then, with ϵ = 1/2 and δ = 1/T , IC-LinUCB guarantees:

RT = O
(
L2d

√
T log(dLT )

)
= Õ

(
d
√
T
)
. (6)

Discussion. We note that for the IC-LinUCB algorithm, the dependence of the regret on d
and T exactly matches that of LinUCB. Thus, our work is the first to establish that with a horizon-
independent channel capacity of O(d) bits, one can achieve the same performance as when the
channel has infinite capacity. Interestingly, Mayekar and Tyagi (2020) recently showed that for
stochastic optimization with d-dimensional quantized gradients, a bit-rate of Ω(d) is necessary for
achieving the optimal convergence rate of O(1/

√
T ), where T is the number of iterations. Verifying

whether a similar lower bound holds for our setting as well is left for future work.
Analysis. Due to space constraints, a detailed proof of Theorem 2 is omitted here, but can be

found in (Mitra et al., 2022). Nonetheless, in what follows, we outline the key technical steps in the
analysis of IC-LinUCB.

5. A random variable Z is uniformly distributed on Sd−1 if, for every Borel subset K ⊂ Sd−1, the probability P(Z ∈ K)
equals the ratio of the (d− 1)-dimensional areas of K and Sd−1.
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There are three main steps in the proof of Theorem 2.
• Step 1. We construct an appropriate clean event G of measure at least 1− 5/T , and argue that

on this event, the gap between successive model estimates at the agent is eventually small: in (Mitra
et al., 2022, Lemma 8), we establish that ∥θ̂(a)t+1 − θ̂

(a)
t ∥

2
≤ f(T ),∀t ≥ T̄ , where f(T ) is as defined

in the input parameters of Algorithm 1. The proof of this result, in turn, relies on the fact that with
high probability, λmin(Vt) ≥ 5L2

√
T log(dLT ),∀t ≥ T̄ . The above claim is established in (Mitra

et al., 2022, Lemma 6) by appealing to the Matrix Bernstein inequality.
• Step 2. The next key result justifies the encoding strategy in Algorithm 1.

Lemma 3 (Encoding Region) With probability at least 1 − 5/T , we have: et ∈ Bd(0, pt),∀t ∈
{T̄ + 1, . . . , T}, where et is the innovation in line 3 of Algorithm 1, and pt is as defined in Eq. (3).

Lemma 3 tells us that with high probability, the innovation random variable et always falls within
the desired encoding region, i.e., there is never any overflow on the event G.

• Step 3. It remains to justify the choice of the confidence set C(s)
t in Eq. (4). This is achieved in

the following lemma.

Lemma 4 (Confidence Region at Server) With probability at least 1− 5/T , the following is true:
θ∗ ∈ C(s)

t ,∀t ∈ {T̄ + 2, . . . , T}, where C(s)
t is the confidence set defined in Eq. (4). Moreover,

∀t ≥ T̄ + T̃ , we have
(√

λ+ (t− 1)L2
)
qt ≤ 4

√
βT /log(dLT ), where T̃ = O (log(dLT )) .

The above result implies that the inflated confidence set (that accounts for encoding errors)
eventually contains the true parameter θ∗ with high probability. At the same time, the quantization
error qt decays fast enough to ensure that the radius of the confidence set is eventually O(

√
βT ) -

exactly as in the LinUCB algorithm. In other words, our approach ensures that the impact of the
quantization error on decision-making vanishes over time.

5. One Bit Capacity is Sufficient for the Multi-armed Bandit Problem

In Section 3, we saw that for a d-dimensional model, O(d) bits suffice to achieve order-optimal
regret. In this section, we investigate whether one can achieve similar order-optimal regret bounds
with fewer bits when the set of feasible actions has additional structure. We will show that this is
indeed the case for a particular setting of interest when At = {e1, . . . , ed},∀t ∈ [T ], where (ei)i are
the standard orthonormal unit vectors. This setting represents the popular unstructured multi-armed
bandit problem with a finite number of arms. Our main insight is the following: playing action/arm i
only reveals information about the i-th component of θ∗, denoted by θi, and hence, when the i-th
action is played, it makes sense for the agent to encode and transmit the innovation related to only θi.
In other words, the above intuition suggests that encoding a scalar innovation signal (as opposed to a
d-dimensional innovation vector) should suffice for the specific setting under consideration. In what
follows, we formalize this reasoning.

To get started, let us note that the optimal action a∗ is the unit vector corresponding to the largest
component of θ∗. Without loss of generality, let this component be θ1, i.e., θ1 = maxi∈[d] θi. We

thus have a∗ = e1. Let us denote by θ̂
(a)
i,k (resp., θ̂(s)i,k ) the estimate of θi at the agent (resp., at the

server) after arm i has been played k times. We now develop an information-constrained variant of
the celebrated upper confidence bound algorithm that we call IC-UCB.

9
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Description of IC-UCB. Let γ = 1/2B where B is the channel capacity, and define:

pk+1 = γpk + 2fk; qk = γpk; fk = 2
√

log T/k, (7)

where p1 = m + f1, and m ≥ 1 is such that maxi∈[d] |θi| ≤ m. Suppose the action at time t is
at = ei. The agent first updates its estimate of θi:

θ̂
(a)
i,ni(t)

=
1

ni(t)

ni(t)∑
k=1

yi,k, (8)

where yi,k is the agent’s observation when the i-th arm is played the k-th time, and ni(t) is the
number of times arm i is played up to (and including) time-step t. It then computes the scalar
innovation ei,ni(t) = θ̂

(a)
i,ni(t)

− θ̂
(s)
i,ni(t)−1, where θ̂

(s)
i,0 = 0,∀i ∈ [d]. If ei,ni(t) falls in the interval

Zi,t = [−pni(t), pni(t)], then Zi,t is partitioned uniformly into 2B bins, and the symbol σt ∈ Σ
encoding the bin containing ei,ni(t) is transmitted to the server. The server then decodes the center

ẽi,ni(t) of that bin, and computes θ̂
(s)
i,ni(t)

= θ̂
(s)
i,ni(t)−1 + ẽi,ni(t). If ei,ni(t) /∈ Zi,t, then there is no

transmission from the agent to the server. As for decision-making, each arm is first played once by
the server. Subsequently, the action chosen by the server at time-step t+ 1 is the one that maximizes
the following index:

IC-UCBi(t) = θ̂
(s)
i,ni(t)

+ qni(t) + fni(t), (9)

where qni(t) and fni(t) are generated as per Eq. (7). Let ∆i = θ1 − θi denote the sub-optimality gap
of arm i. To present our results in a clean way, we will focus on the particularly important case where
the sub-optimality gaps are small: ∆i ∈ (0, 1], ∀i ∈ [d] \ {1}. Our results can be easily generalized
to arbitrary sub-optimality gaps. For the setting considered in this section, it is easy to verify that the
regret RT in Eq. (2) simplifies to RT =

∑d
i=1∆iE[ni(T )].

The main results of this section are as follows.

Theorem 5 (Regret of IC-UCB) Suppose the channel capacity is at least 1 bit, i.e., B ≥ 1. The
IC-UCB algorithm then guarantees: RT ≤ 5

∑d
i=1∆i +

∑d
i=1O (log(mT )/∆i) .

We can also establish the following gap-independent bound.

Theorem 6 (Gap-independent bound) Suppose B ≥ 1. The IC-UCB algorithm then guarantees:
RT ≤ 5

∑d
i=1∆i +O

(√
dT log(mT )

)
.

Discussion: Our bounds above match those for UCB, revealing that for the MAB problem, one
can achieve order-optimal bounds with a bit-rate of just 1 bit. The main takeaway here is that when
the action sets have more structure, one can achieve optimal performance with fewer than O(d) bits.
As future work, it would be interesting to see if one can draw similar conclusions for other types of
common action sets.

6. Conclusion

We introduced and studied a new linear stochastic bandit problem subject to communication channel
constraints. We developed a general algorithmic framework comprising of an adaptive compression
mechanism, and a decision-making rule that explicitly accounts for encoding errors. We then showed
how this framework leads to order-optimal regret bounds for (i) the linear bandit setting, and (ii) the
MAB problem, with horizon-independent bit-rates. Ongoing work involves deriving lower bounds
for our setup, and also generalizing our algorithms and results to MDPs.

10



LINEAR STOCHASTIC BANDITS OVER A BIT-CONSTRAINED CHANNEL

Acknowledgments

This work was supported by NSF Award 1837253, NSF CAREER award CIF 1943064, and the
Air Force Office of Scientific Research Young Investigator Program (AFOSR-YIP) under award
FA9550-20-1-0111.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

Mridul Agarwal, Vaneet Aggarwal, and Kamyar Azizzadenesheli. Multi-agent multi-armed bandits
with limited communication. arXiv preprint arXiv:2102.08462, 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 30:1709–1720, 2017.

Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Linear stochastic bandits under
safety constraints. arXiv preprint arXiv:1908.05814, 2019.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. The gossiping
insert-eliminate algorithm for multi-agent bandits. In International Conference on Artificial
Intelligence and Statistics, pages 3471–3481. PMLR, 2020.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed td (0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on
Machine Learning, pages 1626–1635. PMLR, 2019.

Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. arXiv preprint
arXiv:2010.11425, 2020.

Ilya Dumer, Mark S Pinsker, and Vyacheslav V Prelov. On coverings of ellipsoids in euclidean
spaces. IEEE transactions on information theory, 50(10):2348–2356, 2004.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent. In International Conference on Artificial Intelligence and Statistics,
pages 2197–2205. PMLR, 2021.

Konstantinos Gatsis, Hamed Hassani, and George J Pappas. Latency-reliability tradeoffs for state
estimation. IEEE Transactions on Automatic Control, 66(3):1009–1023, 2020.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in Neural Information Processing Systems, 34, 2021.

11



LINEAR STOCHASTIC BANDITS OVER A BIT-CONSTRAINED CHANNEL

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Federated reinforcement
learning with environment heterogeneity. In International Conference on Artificial Intelligence
and Statistics, pages 18–37. PMLR, 2022.

Anatoly Khina, Elias Riedel Gårding, Gustav M Pettersson, Victoria Kostina, and Babak Hassibi.
Control over gaussian channels with and without source–channel separation. IEEE Transactions
on Automatic Control, 64(9):3690–3705, 2019.

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under markovian sampling. In International Conference on Machine
Learning, pages 10997–11057. PMLR, 2022.
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