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Abstract
Modified policy iteration (MPI) also known as optimistic policy iteration is at the core of many
reinforcement learning algorithms. It works by combining elements of policy iteration and value
iteration. The convergence of MPI has been well studied in the case of discounted and average-
cost MDPs. In this work, we consider the exponential cost risk-sensitive MDP formulation, which
is known to provide some robustness to model parameters. Although policy iteration and value
iteration have been well studied in the context of risk sensitive MDPs, modified policy iteration
is relatively unexplored. We provide the first proof that MPI also converges for the risk-sensitive
problem in the case of finite state and action spaces. Since the exponential cost formulation deals
with the multiplicative Bellman equation, our main contribution is a convergence proof which is
quite different than existing results for discounted and risk-neutral average-cost problems.
Keywords: Robust stochastic control, dynamic programming, risk-sensitive stochastic control

1. Introduction

We consider stochastic control problems over finite state and action spaces, also known as Markov
Decision Processes (MDPs). Traditional solutions to such problems use policy iteration, value
iteration or linear programming (Bertsekas (2012b), Bertsekas (2012a), Puterman (2014)). Rein-
forcement learning attempts to solve the control problem when the probability transition matrix is
either unknown or the probability transition matrix is known but the state space is very large to
obtain exact solutions (Sutton and Barto (2018)). Much of the prior work in this area focuses on
discounted-cost problems or average-cost problems. In this paper, we study a robust version of the
average-cost problem.

Robust control problems with linear state-space and quadratic costs have been well studied in
the control theory literature (Zhou and Doyle (1998), Dullerud and Paganini (2013), Başar and
Bernhard (2008)). It is also well-known that these robust control problems are closely related to the
control of systems with a risk-sensitive exponential cost (Whittle (1990)). Here, we consider the
finite-state, finite-action counterpart of such robust/risk-sensitive control problems Borkar (2002,
2010, 2001). Unlike, the LQG setting in Whittle (1990), the risk-sensitive MDP does not admit a
closed-form solution even when the system model is known.

The reinforcement learning (RL) problem in risk-sensitive MDPs have been considered in sev-
eral papers: (i) Borkar (2002) presents a Q-learning algorithm for the tabular case; (ii) Fei et al.
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(2020) provide regret bounds for risk sensitive Q-learning and risk sensitive value iteration in the
context of finite horizon MDPs (iii) Hai et al. (2022) address risk sensitive RL in the discounted-
cost setting through the use of time dependent risk factors, (iv) Moharrami et al. (2022) provide a
trajectory based policy gradient algorithm to obtain a stationary point of the risk sensitive objective
function and (v) Cavazos-Cadena and Montes-de Oca (2003) consider risk sensitive value iteration
for MDPs with multiple communicating classes that permit the existence of risk sensitive average
cost. However, their analysis depends crucially on value function iterates being related through the
optimal risk sensitive Bellman Operator, which is not the case with modified policy iteration. In gen-
eral,These algorithms have one of the following limitations: they do not solve the infinite-horizon,
risk-sensitive average-cost problem that we are interested in or are not computationally feasible or
do not find a global optimal policy. For these reasons, we focus on problems where the model
is known but obtaining the solution may be computationally infeasible. Many major successes in
RL fall in this category, e.g., board game-playing AI programs such as AlphaGo, AlphaGo Zero
and AlphaZero. Recently, there have several papers studying such RL problems using versions of
dynamic programming techniques that are computationally more tractable compared to traditional
value iteration or policy iteration (Efroni et al. (2018), Winnicki et al. (2021), Winnicki and Srikant
(2022)). These algorithms use two key ideas: (i) modified policy iteration: some version of policy
iteration is used, where instead of exact policy evaluation, a few iterations of fixed-point iterations
are performed (Puterman (2014)), and (ii) approximate policy iteration: both the policy evaluation
and the few iterations of fixed-point iterations mentioned in (i) are performed approximately (Bert-
sekas (2012a)). As shown in Efroni et al. (2018); Winnicki et al. (2021); Winnicki and Srikant
(2022), modified and approximate policy iterations can be used to model the concepts used in prac-
tical RL algorithms such as tree search, rollout, lookahead, and function approximation, However,
all the known results in this context are for the discounted-cost infinite-horizon problem.

To develop the analog of the rich theory that exists for discounted-cost problems, one has to
first develop a theory for modified policy iteration and approximate policy iteration in the context of
risk-sensitive exponential cost MDPs. For risk-neutral average cost problems, there exists a theory
of modified policy iteration (Van der Wal (1980)) but no complete theory for approximate policy
iteration exists. For risk-sensitive MDPs, we are unaware of any results for either modified policy
iteration or approximate policy iteration. In this paper, as a first step towards developing a theory of
RL for risk-sensitive problems with known but large probability transition matrices, we define the
equivalent of modified policy iteration in the case of risk-sensitive MDPs and prove that it converges.
In the case of discounted-cost problems and average-cost problems, the proof of convergence relies
on the properties of the Bellman operator which is additive in those cases. Our main contribution
in this paper is to show that the modified policy iteration algorithm converges in the risk-sensitive
setting despite the fact that the Bellman operator has multiplicative terms instead of additive terms,
which makes much of the existing theory of modified policy iteration inapplicable to our problem.
We will detail the differences in the proof techniques when we present the mathematical results later
in the paper.

The rest of the paper is organized as follows. In Section 2, we present a brief introduction to
risk-sensitive MDPs and in Section 3, we present the modified policy iteration algorithm, including
a specific normalization technique to ensure that the value function remains bounded. We note that
a large class of normalizations are possible in the case of risk-neutral average-cost problems, but a
specific form appears to be required in the case of the risk-sensitive cost problems. The main results
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are in Section 4, and the proofs of the supporting lemmas can be found in the appendix of Murthy
et al. (2023).

2. Preliminaries

In this section, we present our notation and briefly overview the risk-sensitive average cost formu-
lation and the associated multiplicative Bellman Operator.

We consider a Markov decision process with finite state space S, finite action space A, and
transition kernel P. The class of deterministic policies is denoted by Π = {f :S → A}, where
each policy assigns an action to each state. Given a policy f ∈ Π, the underlying Markov process
is denoted by Pf : S → S , where Pf (s

′|s) := P(s′|s, f(s)) is the probability of moving to state
s′ ∈ S from state s ∈ S upon taking action f(s) ∈ A. Associated with each state-action pair
(s, f(s)), there is a one-step cost which is denoted by cf (s) := c(s, f(s)) ∈ [c, c]. We assume that
the Markov process associated with each deterministic policy f ∈ Π is irreducible and aperiodic.
To ensure this, one can replace P with P̃ = (1 − ϵ)P + ϵ11⊤ where 1 is the all-one column vector
and ϵ > 0 is a fixed constant. We summarize our assumptions below.

Assumption 1 We assume that the state space and the action space are finite, and the one-step
cost associated with each state-action pair (s, a) ∈ S × A is deterministic and bounded. We also
assume that the Markov process associated with each deterministic policy f ∈ Π is irreducible and
aperiodic.

2.1. Risk Sensitive Average Cost Formulation

The average cost Jf associated with a deterministic policy f ∈ Π is given by,

Jf = lim
t→∞

1

t
E

[
t−1∑
k=0

cf (sk)

]
.

Here the expectation is taken with respect to the transition probability Pf associated with the policy
f . Equivalently, the average cost can be written in terms of the stationary distribution ηf associated
with the policy f as:

Jf = Es∼ηf [cf (s)] .

The traditional goal of reinforcement learning with average cost criteria is to minimize Jf across
all policies f ∈ Π. An approach to robust reinforcement learning is to take into account the model
uncertainties and to minimize the worst-case average cost over a KL-ball around the nominal model:

sup
Q:Es∼ηQ(DKL(Q(s,·)∥Pf (s,·)))≤β

Es∼ηQ [cf (s)] ,

where DKL denotes the Kullback-Leibler divergence, and β > 0 is the radius of the KL-ball. This
is known as the robust MDP objective. The dual formulation of the robust MDP objective is:

sup
Q≪Pf

Es∼ηQ [cf (s)]−
1

α
Es∼ηQ [DKL (Q(s, ·)∥Pf (s, ·))] ,
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where the constant α = α(β) > 0 depends on β and≪ represents absolute continuity. Using the
Donsker-Varadhan variational formula and Collatz–Wielandt formula, it can be shown that optimiz-
ing the robust MDP objective is equivalent to minimizing

Λf (α) = lim
t→∞

1

t
ln

(
E

[
exp

(
t−1∑
k=0

αcf (sk)

)∣∣∣∣ s0 = i

])
, (1)

where the expectation is taken with respect Pf . The existence of the above limit is a consequence of
the Perron-Frobenius theorem, whose details can be found in Moharrami et al. (2022), Basu et al.
(2008). Λf (α) is known as the risk sensitive average cost. Similar to Jf , the value of Λf (α) does
not depend on the initial state s0. α is thus referred to as the risk factor, since larger values of α
implies greater risk averseness. Note that in the limit as α → 0, the risk-sensitive average cost
converges to the risk neutral average cost, i.e., limα→0 Λf (α) = Jf . For simplicity, from now on,
we fix α > 0 and write Λf instead of Λf (α).
The above risk sensitive average cost can be expressed as the solution to the following multiplicative
Bellman equation,

eΛf eVf (i) = eαcf (i)
∑
j∈S

Pf (j|i)eVf (j), ∀ i ∈ S, (2)

where the relative value function eVf is the eigenvector corresponding to the Perron-Frobenius
eigenvalue Λf associated with the matrix M = [M ]i,j = [eαcf (i)P (j|i, f(i))]i,j .
Consequently, the multiplicative Bellman operator corresponding to a policy f , is an operator
Tf : R|S|

+ → R|S|
+ defined as:

Tfe
V (i) = eαcf (i)

∑
j∈S

Pf (j|i)eV (j).

The multiplicative Bellman optimality operator T : R|S|
+ → R|S|

+ is defined as:

TeV (i) = min
f∈Π

Tfe
V (i), ∀i ∈ S.

The optimal risk sensitive average cost is defined as the minimum risk averse average cost across
all policies, i.e.,

Λ∗ = min
f∈Π

Λf = min
f∈Π

lim
t→∞

1

t
ln

(
E

[
exp

(
t−1∑
k=0

αcf (sk)

)∣∣∣∣ s0 = i

])
. (3)

Let f ∈ Π denote the deterministic policy for which Λf = Λ∗, and let eV
∗
= eVf denote its relative

value function. It can be shown that the pair (Λ∗, eV
∗
) is the unique solution (up to multiplicative

constant of eV
∗
) to the following equation:

eΛ
∗
eV

∗(i) = min
f∈Π

eαcf (i)
∑
j∈S

Pf (j|i)eV (j), ∀ i ∈ S. (4)
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3. Problem Formulation

The goal of robust reinforcement learning is to find a policy f ∈ Π for which Λf = Λ∗. In this
work, we focus on developing a modified policy iteration to find such an optimal policy. To this end,
we change the dynamics of the underlying MDP by transforming its transition probability as well
as the one-step cost function. It can be shown that the optimality of a policy will not be affected by
this transformation. Similar ideas have been used in the case of risk neutral average cost; however,
the underlying transformation is different.

More specifically, fixing a constant κ ∈ (0, 1), we transform the dynamics of the MDP as
follows:

• The transformed cost is given by:

df (i) =
1

α
log((1− κ)eαcf (i) + κ), ∀i ∈ S.

• The transformed transition probabilities are given by:

Q(j|i, a) = (1− κ)eαc(i,a)P(j|i, a) + κ1(i = j)

(1− κ)eαc(i,a) + κ
, ∀(i, a) ∈ S ×A,

where 1(i = j) is the indicator function. For any policy f ∈ Π, Qf (j|i) denotes the proba-
bility of moving to state j ∈ S from state i ∈ S upon taking action f(i).

Notice that for all (i, a) ∈ S×A, we have Q(i|i, a) ≥ κ
(1−κ)eαc+κ

> 0. In particular, the probability
of staying in the same state under all policies is non-zero. In literature, such a transformation is
referred to as the aperiodicity transformation. Next, we state a theorem that establishes a one-to-one
correspondence between the optimal risk sensitive average cost and the associated relative value
function in the original MDP and the transformed MDP. Hence, finding an optimal policy for the
transformed dynamics is equivalent to finding an optimal policy for the original MDP.

Theorem 2 Given κ ∈ (0, 1), we have the followings:

1. Given (Λ∗, eV
∗
) satisfies (4), define

Λ̃∗ = log((1− κ)eΛ
∗
+ κ)

Then (Λ̃∗, eV
∗
) solves the following multiplicative Bellman equation:

eΛ̃
∗
eV

∗(i) = min
f∈Π

eαdf (i)
∑
j∈S

Qf (j|i)eV
∗(j), ∀ i ∈ S. (5)

2. Conversely, given (Λ̃∗, eV
∗
) satisfies (5), then

eΛ̃
∗ ≥ κ.

Define

Λ∗ = log

(
eΛ̃

∗ − κ

1− κ

)
. (6)

Then the pair (Λ∗, eV
∗
) satisfies (4).
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Proof The proof of the above theorem can be found in Cavazos-Cadena and Montes-de Oca
(2003). It can also be verified that both the transformed and original problems possess the same
optimal policies.

A crucial component to the convergence of the algorithm is a source of contraction, which is
obtained from any finite product of ergodic matrices. The transformation described is necessary to
ensure that such a contraction exists and is a consequence of the lemma stated below.

Lemma 3 There exists a finite natural number R such that for any sequence of policies f1, f2, · · ·,
fR ∈ Π,

min
i,j∈S

Qf1Qf2 · · ·QfR(j|i) > 0. (7)

The modified policy iteration algorithm in the context of risk sensitive exponential cost MDPs
for the transformed problem is stated below.

3.1. Algorithm

The algorithm takes as input a sequence of natural numbers (mi : i ∈ N) such that mi ≥ 1 and a
vector V ′

0 ∈ Rn such that
∑

i∈S eV
′
0(i) = 1.

Algorithm 1 Risk Sensitive Modified Policy Iteration
Require: (mi : i ∈ N), V ′

0 .
1: Set k = 0
2: Set fk+1(i) = argminf∈Π eαdf (i)

∑
j∈S

Q(j | i, f(i))eV ′
k(j) ∀i ∈ S ▷ Policy Improvement

Define e
αdfk+1

(i) ∑
j∈S

Q(j | i, fk+1(i))e
V ′
k(j) =

(
Tfk+1

eV
′
k

)
(i)

3: eVk+1(i) ←
(
Tmk
fk+1

eV
′
k

)
(i) for all i ∈ S. ▷ Partial Policy Evaluation

4: eV
′
k+1(i) ← eVk+1(i)∑

i e
Vk+1(i)

for all i ∈ S ▷ Normalization

Along with the partial policy evaluation and policy improvement steps, we also introduce a
normalization step where the value functions are scaled in every iteration. In the case of risk-neutral
average-cost modified policy iteration, the normalization step generally involves subtracting the
value function at some fixed state from the rest of the states. This ensures that the value function
iterates do not diverge with repeated execution of the algorithm. However, a similar normalization
trick would not work for risk sensitive modified policy iteration as not only do we need to ensure that
the value functions do not diverge, it is also necessary to make sure that they are uniformly bounded
away from zero. The value function being bounded away from zero is crucial to the convergence of
the proof as will be seen in the subsequent section.

4. Convergence Analysis of Algorithm

Let the risk sensitive average cost associated with policy fn+1 for the transformed model be rep-
resented as Λ̃fn+1 . In the context of value iteration, it is well known that the consecutive value
function iterates possess a span-seminorm contraction property (Bielecki et al. (1999), Borkar and

6



EXPONENTIAL COST RISK SENSITIVE MDPS - MODIFIED POLICY ITERATION

Meyn (2002)). More precisely, let g, h ∈ Rn. Then there exist constants τ, k, r such that 0 < τ < 1,
and N ∋ k, r <∞ such that

sp (gk − hk) ≤ τ rsp (g − h) ,

where the span of a vector v is defined as sp(v) = maxi v(i)−mini v(i) and

gk(i) = min
f∈Π

αdf (i) + ln

∑
j∈S

Q(j|i, f(i))egk−1(y)

 .

A similar contraction in the sup norm is satisfied in the discounted-cost setting, where the discount
factor serves as the source of contraction. A major roadblock in the convergence analysis of mod-
ified policy iteration in the average-cost setting (both risk-neutral and risk-sensitive) is that such a
property is not satisfied by consecutive value function iterates. To circumvent this issue, we exploit
an alternate property associated with the ratio of iterates obtained through a single step of policy
improvement. In order to explain this property, we define:

gn(i) =
TeV

′
n(i)

eV ′
n(i)

(8)

and set un and ℓn as

un = max
i∈S

(gn(i)) (9)

ℓn = min
i∈S

(gn(i)) (10)

Lemma 4 Let Λ̃∗ be the optimal risk sensitive average cost associated with the MDP considered
in Algorithm 1. Then ∀n > 0:

ℓn ≤ eΛ̃
∗ ≤ eΛ̃fn+1 ≤ un (11)

The above lemma is crucial to the proof of convergence of modified policy iteration.
A similar relation would hold for the reward maximization problem: ℓn ≤ eΛ̃fn+1 ≤ eΛ̃

∗ ≤ un.
Such a relation can be obtained in the context of risk-neutral average cost (Van der Wal (1980))
as well. But since the Bellman Operator is additive in that regime, the proof is relatively straight-
forward. The multiplicative nature of Bellman operator combined with the exponential cost for-
mulation, necessitates a different proof idea which hinges on the careful utilization of the Perron-
Frobenius theorem.

Such an observation helps us establish a contraction necessary to prove the convergence of un
to the optimal cost. Since un is lower bounded by eΛ̃

∗
, it is possible to show exponential conver-

gence of un (and therefore consequently eΛ̃fn+1 ) to eΛ̃
∗
. This is possible since un is monotonically

decreasing and evidently lower bounded.

Lemma 5 The sequence un is non-increasing, i.e. un ≤ un−1 for all n.
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Analogously, in the case of risk sensitive reward maximization, the sequence ℓn is monotonic in
nature, that is, ℓn ≥ ℓn−1.

Value Iteration leads to monotonicity in un(non-increasing) and ℓn(non-decreasing). This is a
consequence of improving the policy at every iteration without any partial policy evaluation. This
symmetric monotonicity leads to an overall span contraction in the value function. However, due
to partial policy evaluation in modified policy iteration, such a monotonicity is observed only for
the maximum of the ratio of iterates, ie., un (or ℓn in case risk sensitive reward maximization).
Consequently, there need not be a span contraction for the value functions. Hence it is necessary to
rely on arguments independent of span in order to prove algorithm convergence. This approach is
delineated in the theorem below.

Theorem 6 Let gn, un and ℓn be determined from Algorithm 1 as per (8), (9) and (10) respectively.
Then, un converges exponentially fast, i.e. there exist γ, k such that 0 < γ < 1 and for each n:(

un − eΛ̃
∗
)
≤ (1− γ)

(
un−k − eΛ̃

∗
)
.

Consequently, the risk sensitive average cost iterates converge to Λ̃∗, that is,

lim
n→∞

un = lim
n→∞

ℓn = eΛ̃
∗
. (12)

Before proving Theorem 6, it is necessary to prove the boundedness of the value function iterates
eV

′
n(i) for all n > 0. The parameter γ in Theorem 6 is obtained as a function of the product of ergodic

matrices and value function vectors eV
′
n . Hence in order for γ to be strictly positive, it is necessary

that the sequence eV
′
n is uniformly bounded away from zero. The normalization step in Algorithm

1 serves this purpose along with ensuring that the magnitude of the iterates do not diverge.

Lemma 7 Let maxk mk < C, where mk corresponds to the number of fixed point iterations
performed during partial policy evaluation during the kth execution of the algorithm. Then, there
exists β such that 0 < β < 1,

eV
′
m(i) > β > 0 ∀m ≥ 0. (13)

We are now ready to present the proof of Theorem 6.
Proof By definition of gn, we have

gn(i) =
TeV

′
n(i)

eV ′
n(i)

=

(
Q̃fn+1e

V ′
n

)
(i)

eV ′
n(i)

(a)

≤

(
Q̃fne

V ′
n

)
(i)

eV ′
n(i)

(b)
=

(
Q̃fne

Vn

)
(i)

eVn(i)
,

where
(
Q̃fne

Vn

)
(i) = eαdfn (i)

∑
j∈S Q(j|i, fn(i))eVn(j) (a) follows from the fact that fn+1 is the

minimizing policy, and (b) is due to eV
′
n(i) = eVn(i)∑

j∈S eVn(j) .
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Using the definition of eVn(i), we have

gn(i) ≤

((
Q̃fn

)(
Q̃mn−1

fn
· eV ′

n−1

))
(i)(

Q̃mn−1

fn
eV

′
n−1

)
(i)

=

(
Q̃mn−1

fn
Q̃fne

V ′
n−1

)
(i)(

Q̃mn−1

fn
eV

′
n−1

)
(i)

≤

(
Q̃mn−1

fn
· Q̃fn−1e

Vn−1

)
(i)(

Q̃mn−1

fn
eVn−1

)
(i)

=

(
Q̃mn−1

fn
Q̃mn−2

fn−1
Q̃fn−1e

V ′
n−2

)
(i)(

Q̃mn−1

fn
Q̃mn−2

fn−1
eV

′
n−2

)
(i)

.

Continuing the above for k time steps, we get

gn ≤

(
Q̃mn−1

fn
Q̃mn−2

fn−1
Q̃mn−3

fn−2
· · · Q̃mn−k

fn−k+1
Q̃fn−k+1

eV
′
n−k

)
(i)(

Q̃mn−1

fn
Q̃mn−2

fn−1
Q̃mn−3

fn−2
· · · Q̃mn−k

fn−k+1
eV

′
n−k

)
(i)

.

Let Hn,k := Q̃mn−1

fn
Q̃mn−2

fn−1
Q̃mn−3

fn−2
· · · Q̃mn−k

fn−k+1
. From Lemma 3, we know that Q induces an irre-

ducible Markov chain for any sequence of policies, i.e.:

∃ R <∞ such that ∀ π1, · · · , πR ∈ Π: (Qπ1Qπ2 · · ·QπR) (j|i) > 0 ∀i, j.

The number of time steps k is determined such that mn−1+mn−2+ · · ·+mn−k ≥ R. This implies
that Hn,k(j | i) > 0 for all i, j.

Let eW
′
n−k := Q̃fn−k+1

eV
′
n−k . We have

gn(i) ≤

(
Hn,ke

W ′
n−k

)
(i)

Hn,ke
V ′
n−k(i)

=

∑
j∈S Hn,k(j | i)eW

′
n−k(j)∑

ℓ∈S Hn,k (ℓ | i) eV
′
n−k(ℓ)

=

∑
j∈S

(
Hn,k(j | i)eW

′
n−k(j)

)
∑

ℓ∈S Hn,k(ℓ | i)eV
′
n−k(ℓ)

=

∑
j∈S

(
Hn,k(j | i)eV

′
n−k(j)

)
·
(

e
W ′

n−k(j)

e
V ′
n−k (j)

)
∑

ℓ∈S Hn,k (ℓ | i) eV
′
n−k(ℓ)

.

Define a probability measure q as follows:

q(j | i) :=
Hn,k(j | i)eV

′
n−k(j)∑

ℓ∈S Hn,k (ℓ | i) eV
′
n−k(ℓ)

9



EXPONENTIAL COST RISK SENSITIVE MDPS - MODIFIED POLICY ITERATION

Notice that 0 < q(j | i) < 1 since Hn,k(j | i) > 0 for all i, j and 0 < β < eV
′
n−k(i) ≤ 1 (from

Lemma 7) for all i ∈ S. Therefore,

gn(i) ≤
∑
j∈S

q(j | i)


(
Q̃fn−k+1

eV
′
n−k

)
(j)

eV
′
n−k(j)

 =
∑
j∈S

q(j | i)

(
TeV

′
n−k(j)

eV
′
n−k(j)

)
.

Let γ := mini,j q(j | i) > 0. We have

gn(i) ≤ γℓn−k + (1− γ)un−k ∀ i.

=⇒ un ≤ γℓn−k + (1− γ)un−k. (14)

Since ℓn−k ≤ eΛ̃
∗
, we have

un ≤ γeΛ̃
∗
+ (1− γ)un−k.

Therefore, (
un − eΛ̃

∗
)
≤ (1− γ)

(
un−k − eΛ̃

∗
)

(15)

Since un ≤ un−1 from lemma 5 and un ≥ eΛ̃
∗

from lemma 4, it follows from (15) that

un −→ eΛ̃
∗

From (14), we obtain

eΛ̃
∗ ≤ γℓn + (1− γ)un.

Therefore,

eΛ̃
∗ − un ≤ γ (ℓn − un) ,

which yields

0 ≤ γ (un − ℓn) ≤
(
un − eΛ̃

∗
)
.

Since un → eΛ̃
∗
, we conclude that ℓn → un =⇒ ℓn → eΛ̃

∗
as desired.

From Theorem 2 we can equivalently obtain the original optimal risk sensitive Λ∗ average cost

and the corresponding value function associated with it. Note that if (TeV )(i)
eV (i) = δ > 0, then the

transformation in Equation (6) provides a Λ which is in a δ-scaled neighbourhood of Λ∗. More
details can be found in Cavazos-Cadena and Montes-de Oca (2003).

5. Conclusion

We presented a modified policy iteration algorithm which can reduce the computational burden
of standard policy iteration for risk-sensitive MDPs. The proof of convergence relies on techniques
that are quite different from the existing literature for discounted and risk-neutral average-cost prob-
lems. As in prior work for discounted-cost problems, our results can further be used to provide
performance guarantees for RL algorithms.
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