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Abstract
We study the problem of online learning in two-sided non-stationary matching markets, where

the objective is to converge to a stable match. In particular, we consider the setting where one
side of the market, the arms, has fixed known set of preferences over the other side, the players.
While this problem has been studied when the players have fixed but unknown preferences, in this
work we study the problem of how to learn when the preferences of the players are time varying
and unknown. Our contribution is a methodology that can handle any type of preference structure
and variation scenario. We show that, with the proposed algorithm, each player receives a uniform
sub-linear regret of Õ(L

1/2
T T 1/2) up to the number of changes in the underlying preferences of the

agents, LT . Therefore, we show that the optimal rates for single-agent learning can be achieved in
spite of the competition up to a difference of a constant factor. We also discuss extensions of this
algorithm to the case where the number of changes need not be known a priori.
Keywords: Matching Markets, Non-stationary multi-armed bandits.

1. INTRODUCTION

Matching market design has been influential and instrumental in many markets such as kidney
markets, school exchange markets, labor markets etc. Matching markets are essentially two-sided
markets where participants on either side of the market have preferences over the other side. The
typical goal in a matching market is to match the players on one side to the players on the other side
with desirable properties such as stability, maximality, efficiency, and strategy proofness etc. Several
papers have been published exploring the various properties such as stability (Gale and Shapley
(1962); Knuth (1997)), maximality (Edmonds (1965)), strategy proofness (Roth (1982)), and several
applications such as housing allocation Roth (1984), content delivery Maggs and Sitaraman (2015),
kidney exchanges Roth et al. (2005), control applications such as Transportation (Lowalekar et al.,
2018, Ride Sharing Platforms), Smart Grids (Muthirayan et al., 2020, Peer-to-Peer Markets), etc.
Thus, matching markets have significant relevance and importance.

In spite of the many advances in matching markets, majority of these studies ignore the fact that,
in many practical circumstances, the participants of the markets may not know their underlying
preferences. In addition, the participants may only be able to observe the outcome after a match
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and that too with high statistical uncertainty. Therefore, the participants will have to learn their
preferences with the added complexity that their exploration can be hampered by the other agents
who are competing over the same resources. Thus, in such circumstances, the learning will have to
be coordinated in a way that all the participants can uncover their underlying preferences and the
market can reach its desired equilibrium.

Liu et al. (2020) introduced the competing bandits framework to study the interaction of learning
and competition in the context of two-sided online matching markets settings. The competing ban-
dits framework Liu et al. (2020) is inspired by many modern matching markets where the markets
are two-sided and there are multiple rounds of interactions. In this framework, in each round, the
participants submit their preferences and the market is cleared by the submitted preferences. After
the market is cleared or the matching is made, the participants get to observe the final outcome or
the reward from their matching, which can be prone to statistical uncertainty. Thus, the feedback the
participants get is like a bandit type feedback. The players need to learn their preferences over the
other side of the market from just the bandit feedback, with the added complexity that what they get
to explore is also impacted by the other participants. Thus, the competing bandits allows us to study
the interaction of learning, where multiple participants are simultaneously learning and competing.
The goal is to design an algorithm that can enable the participants to learn their underlying prefer-
ences and enable the market to reach a stable match in spite of the complex interplay of competition
and learning.

Contribution: We study an extension of the competing bandits problem where the underlying
unknown preferences of the participants can be time varying. While Liu et al. (2020) study the
competing bandits framework, they assume that the participants’ preferences are fixed in time. This
may not be realistic, given that the participants’ preferences are not likely to be stationary. In this
work, we present algorithms and guarantees for the scenario where the participants’ preferences
can be time variant. While Ghosh et al. (2022) study the same problem for a serial dictatorship
preference structure and smoothly varying preferences, the methodology we propose can handle
any type of preference structure and any type of variation, and is also very efficient at the same
time. This is our key contribution to this line of work. We show that, with our approach, each
agent can incur a regret of Õ(L

1/2
T T 1/2), where T is the number of rounds and LT is the number

of changes in the preference ordering over the T rounds across all the participants, matching the
optimal regret rates for single-agent bandit learning (Auer et al., 2019).

2. RELATED WORKS

This section discusses the literature on time-varying bandits and learning in matching markets.

Time Varying Multi-armed Bandits. Non-stationary Multi-Armed Bandits (MAB) problem was
first studied by Auer et al. (2002). They proposed a variant of the EXP3 algorithm called EXP3.S
and showed that EXP3.S can achieve Minimax optimal regret O(

√
KLT ) up to logarithmic factors,

where K is the number of arms, L is the number of abrupt changes and T is the number of itera-
tions. There were other studies such as Garivier and Moulines (2011) and Allesiardo et al. (2017)
that demonstrated that a sliding window approach or a restart approach can also achieve the Mini-
max optimal regret. Recently, Auer et al. (2019) proposed a near-optimal regret algorithm for the
same problem that does not need the knowledge of the number of changes. Besbes et al. (2019); Kr-
ishnamurthy and Gopalan (2021) studied the non-stationary MAB with slowly changing variations,
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and showed that a regret of Õ
(
P

1/3
T T 2/3

)
can be achieved, where PT denotes the total variation.

The non-stationary linear bandits problem was studied by Cheung et al. (2019); Russac et al. (2019);
Zhao et al. (2020). These works proposed approaches like sliding window least-squares, weighted
UCB and restart strategy respectively and showed that a regret of Õ

(
P

1/4
T T 3/4

)
can be achieved

by all these approaches.

Learning in Two-sided Matching Markets. Learning in the context of two-sided matching mar-
kets is a new and active research area (Das and Kamenica, 2005; Liu et al., 2020, 2021; Jagadeesan
et al., 2021; Maheshwari et al., 2022; Basu et al., 2021; Cen and Shah, 2022; Dai and Jordan, 2021).
Das and Kamenica (2005) was the first work which employed multi-armed bandit algorithms to
learn preferences in matching markets. However, it was only recently that Liu et al. (2020) for-
mulated the problem more formally. One can classify the existing literature in this space into two
classes. First is the setting where the true underlying preferences of the players over the firms are
fixed (Liu et al., 2020; Jagadeesan et al., 2021; Cen and Shah, 2022; Basu et al., 2021; Sankarara-
man et al., 2021; Maheshwari et al., 2022; Kong et al., 2022), and second is the setting where the
underlying preferences can change with time (Min et al., 2022; Ghosh et al., 2022). Interestingly,
the literature on learning in time-varying matching markets is relatively sparse (Min et al., 2022;
Ghosh et al., 2022). Min et al. (2022) consider the setting of Markov Matching Market where the
preferences of agents depends on some underlying context which changes based on planner’s pol-
icy in a Markovian manner. Meanwhile, in Ghosh et al. (2022), the authors consider the problem
of learning in smoothly varying matching markets where the underlying preferences of agents are
allowed to change by a certain threshold at every time step. Although the authors consider learning
in a decentralized context, the preference structure they study is restricted to a serial dictatorship.

3. PROBLEM FORMULATION

Consider a two-sided matching market comprised of players and arms, to be referred respectively as
the two sides, who gain some positive utility if matched with one another. More formally, we denote
the set of N players by N = {p1, p2, . . . , pN} and the set of K arms by K = {a1, a2, . . . , aK}. An
important feature of two-sided matching market is that each side of the market has preference over
the other side. Preference of any arm aj ∈ K over players is captured by the utility πj ∈ RN

+ , where
πj(i) is the utility derived by arm aj on getting matched with player pi. Analogously, preference of
a player pi ∈ N over arms is captured by utility µi ∈ RK

+ , where µi(k) denotes the utility derived
by player pi on getting matched with arm ak.

For the sake of concise notation, if arm aj prefers player pi over pi′ then we represent it as
pi′ ≻j pi. Similarly, if player pi prefers arm ak over ak′ then we represent it as ak ≻i ak′ .

In what follows, we first describe the framework of two-sided matching market and state relevant
background in Section 3.1. Following which, in Section 3.2, we describe the problem formulation
for learning in two-sided time-varying matching markets.

3.1. Preliminaries on Matching Markets

In order to formally present the setup in this paper, we recall some relevant concepts on the literature
on two-sided matching markets. A matching m : N → K is an injective map such that m(p) = a
denotes that player p ∈ N is matched with arm a ∈ K.
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Definition 1 (Blocking Pair) We say a tuple (pi, aj) ∈ N × K is a blocking pair for a matching
m if player pi is matched to an arm aj′ = m(pi) but aj ≻i aj′ and aj is either unmatched or
pi ≻j m

−1(aj). We say that the triplet (pi, aj , aj′) blocks the matching m.

Having defined the notion of blocking pair, we are now ready to define stable matching.

Definition 2 (Stable matching) A matching m is called stable if there is no blocking pair. Alterna-
tively, a matching is called unstable if there exists atleast one blocking pair for it.

Gale and Shapley 1962 proposed a polynomial time algorithm – referred as Deferred-Acceptance
(DA) algorithm – to find a stable matching. Without enforcing any specific assumptions on the
underlying preference structure, the stable matching is not unique. Therefore, we define the notion
of valid partners of a player which captures the set of all arm to which it can match in some stable
matching.

Definition 3 (Valid partner) Given the full preference rankings of arms and players, we call arm
aj to be a valid partner of player pi if there exists a stable matching m such that m(pi) = aj .

We now define two important types of matching which are very crucial for subsequent exposition.

Definition 4 (Optimal matching and pessimal matching) We say a matching m to be optimal match-
ing if every player is matched to its most preferred valid partner. Similarly we say a matching m to
be pessimal matching if every player is matched to its least preferred valid partner.

In order to find optimal and pessimal matching one can initialize the Deferred-Acceptance algorithm
from players side and the arms side respectively. Note that if there is a unique stable matching then
the optimal and pessimal matching coincide. Interestingly, in Karpov (2019) the authors provide
necessary and sufficient conditions on underlying preference structure which ensure unique stable
matching.

3.2. Learning in Time Varying Matching Markets

While a stable matching can be identified directly by employing Deferred-Acceptance algorithm
when the players know their preferences, in many modern matching markets the players can be
unaware of their preferences. Furthermore, the underlying preferences can be time-varying. In
this paper, we study the problem of bandit learning in time varying matching markets, where the
objective is to find a stable match by repeated interactions. As an example, consider the setting
of online labor markets where the two sides of the market are employers (players) and freelancers
(arms) respectively. Due to the scale of system, the employers do not know apriori the quality of
work by a freelancer and has to repeatedly interact with it. Furthermore, the inherent quality of
work by a freelancer could change in a nonstationary manner due to some health reasons, personal
problems etc. Consequently the employers have to adapt to this nonstationary change while deciding
its preference estimates.

We formulate the repeated market setting as follows. We assume that the preferences of arms
are fixed and is common knowledge. However, the preferences of players are unknown and time-
varying. The players and arms interact with each other for a total of T rounds, indexed by t. At any
time t, the true underlying preference of any player pi ∈ N over any arm aj ∈ K is encapsulated
by mean reward of its interaction, denoted by µi,t(j), which is unknown. The players repeatedly
interact with arms through a platform to learn the underlying utilities.
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At every round t, the players submit their estimate of their preferences over the arms to a plat-
form based on past rounds of interaction. The platform then computes a stable matching mt based
on the submitted preferences and assigns the players to the arms accordingly. Upon being assigned
or matched an arm mt(i), the player pi pulls the arm mt(i) and receives a stochastic reward Xi,mt

sampled from a 1-subGaussian distribution with mean µi,t(mt(i)). The players use the observed
reward to update their estimate of preferences over the arms.

In order to evaluate the performance of any online learning algorithm this setup, we introduce the
relevant notion of regret. Unlike the single player learning setting, in a two-sided matching market,
all of the players cannot be assigned their most preferred arm due to the misaligned preference
structure of the different players and arms. With this consideration, Liu et al. (2020) proposed a
regret metric for the stationary preference setting which we extend here to non-stationary setting.
This notion of regret, termed as arm-stable regret with respect to a stable matching m = (mt)t∈[T ]

corresponding to true underlying preferences, is given by

Ri
T (m) =

T∑
t=1

µi,t(mt(i))−
T∑
t=1

µi,t(mt(i)), (1)

where µi,t(mt(i)) is the mean reward of the arm that would be assigned to a player pi in a stable
matching outcome if the players know the true underlying preference. In any two-sided matching
market there are two important matchings: player-optimal and player-pessimal matching. Con-
sequently, there are two associated regret metrics: player-optimal regret, which is the regret with
respect to m optimal matching, and the other notion is the player-pessimal regret, which is the regret
with respect to m the pessimal match. As pointed out in Liu et al. (2020), it is not possible to achieve
sub-linear player-optimal regret even in static environment without imposing any assumptions on
the underlying preference structure. Therefore, we adopt the player-pessimal regret as the metric of
performance.

In order to quantify the non-stationarity in an environment, we introduce the notion of time-
variation which capture the variability in the underlying true preferences. The time-variation in a
single player bandit learning is typically specified by a quantity called the total variation Besbes
et al. (2019) or the total number of changes Auer et al. (2019). The nature of the interdependence in
the matching setting is such the change in other players’ preferences can lead to lower reward than
pessimal match often even sans changes to its own preferences. Such occurrences are not bounded
by the extent of variation and are only dependent on occurrence of changes in the order of player’s
preferences. Therefore, we adopt the notion of number of changes as the variation measure for
the competing bandits setting. Specifically, we define the variation measure as the total number of
changes across all the players:

LT =

T∑
t=2

∑
i∈N

∑
j∈K

I[µi,t(j) ̸= µi,t−1(j)], (2)

where I[·] is the standard indicator function. Such a definition accounts for all the variations in the
market and its impact uniformly across all the players. Naturally, if the player’s preferences are
fixed then LT = 0.

In any realistic scenario the preferences does not change arbitrarily over time. Furthermore,
it is required to assume certain structure on the underlying preference structure to get any mean-
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ingful quantitative guarantees. Against this backdrop, we make the following assumption on the
preferences of players.

Assumption 1 We make the following assumptions on the mean reward of arms

(i) The mean reward of arms are bounded. That is µi,t(k) ≤ µ̄ for all t ∈ [T ], i ∈ [N ], k ∈ [K];

(ii) The gap between the arms for any player is always greater than ∆. That is,
0 < ∆ = mintmini,k,k′ |µi,t(k)− µi,t(k

′)|

Some remarks about Assumption 1 are in order. Assumption 1-(i) and 1-(ii) are required to
obtain any meaningful regret guarantees for competing bandits in non-stationary matching markets
with no structure on preferences. Furthermore, we argue that these are practical assumptions on
the reward obtained in any real-world application. Our focus here is on changing preferences on
which we do not impose any restriction at all. We note that we do not require any assumption on
the magnitude of instantaneous change on the preferences of any player, as it typically assumed
in many prior works on non-stationary bandits Krishnamurthy and Gopalan (2021); Garivier and
Moulines (2011). Furthermore, the change in underlying true preferences of players can occur
asynchronously.

4. ALGORITHM AND RESULTS

There are three key challenges associated with designing effective algorithm that works in this set-
ting: uncertainty, competition and non-stationarity. Overcoming each of these challenges individu-
ally has been studied extensively in the existing literature. However, the key challenge is to develop
a provable effective algorithm that can overcome these challenges in a holistic manner. Particularly,
any single player cannot explore independently in order learn its preferences because the arm it gets
matched with is decided by submitted preferences of all players who are also exploring different
arms simultaneously. Furthermore, this challenge gets exacerbated by inherent non-stationarity in
the environment as the change in preference of any single player can effect the stable match. In-
terestingly, we show that the proposed algorithmic design, to be presented, handles this challenge
while being able to achieve low player pessimal regret.

4.1. Algorithmic Description

Our algorithm is an extension of the bandit learning algorithm proposed by Liu et al. (2020) for
the stationary setting, where players repeatedly interact with the market platform by submitting a
preference order over the arms. After receiving the preferences, the platform assigns players to arms
as per a stable matching computed using the DA algorithm on the set of preferences submitted by
the players. Upon getting matched to an arm, the players receive a reward, which they then use to
update their preferences before the next round. The key idea in Liu et al. (2020) is how the players
compute their preferences, which enables them to efficiently explore the arms and let the market
converge to the stable outcome in spite of the competition among the players. Specifically, each
player submits the preference order as per the Upper Confidence Bound (UCB) for the mean reward
of the arms, computed using the collected reward from previous time steps.

We extend this algorithm to the time varying setting by adopting a restart strategy. Restart
strategy is a widely used strategy for time varying bandit learning (Zhao et al., 2020). The idea in
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restart strategy is to restart a base algorithm (such as UCB algorithm) after a certain period H . If the
number of changes LT is known, then the restart period can be chosen optimally a priori. We adopt
this simple strategy to handle the time variations in the competing bandits case. Specifically, in
the algorithm we propose, the market platform ensures that players restart the local UCB algorithm
after every H number of rounds and between two restarts the players run their local UCB algorithms
just as in the stationary case Liu et al. (2020). The complete algorithm is shown in Algorithm 1.

Algorithm 1: Restart Competing Bandits (RCB) Algorithm
Input: Common Restart Period: H
Set k = 1
for t = {1, . . . , T} do

If k = 1, set Ti,t(j) = 0 for all j ∈ [K], i ∈ [N ]
Players update the UCB, (ui,t(j))j∈K for their respective arms using (3).
Players submit their rank ordering r̂i,t computed according to ui,t(j) using (4).
Players are matched to arms as per optimal stable matching mt computed using r̂i,t and πj .
For all i ∈ [N ], update Ti,t+1(mt(i)) = Ti,t(mt(i)) + 1
If k ≤ H update k = k + 1, else update k = 1

end

We now introduce the algorithm more formally. Let Ti,t(j) denote the number of times player
pi is matched with arm aj by the platform after the latest restart. After every restart, Ti,t(j) is
assigned to zero, and Ti,t(j) is incremented by one whenever player pi is matched with arm aj . Let
µ̂i,t(j) denote the mean of the rewards observed whenever player pi pulls arm aj after a restart and
till t − 1. Let St denote the latest restart before time step t. Then, µ̂i,t(j) is given by µ̂i,t(j) =∑t−1

k=St
Xi,mk

I[mk(i)=j]

Ti,t−1(j)
. Then, for a player pi, the upper confidence bound for arm aj in the current

period is given by

ui,t(j) =

{
∞ Ti,t(j) = 0

µ̂i,t(j) +
√

3 log(t−St)
2Ti,t−1(j)

Otherwise.
(3)

At the beginning of every round t, each player updates its UCB for the arms as in Eq. (3). The play-
ers then compute their respective rank ordering r̂i,t according to the updated UCBs. Specifically,
the rank ordering r̂i,t is computed as follows: for any two arms aj , aj′

r̂i,t(j) > r̂i,t(j
′) if ui,t(j) > ui,t(j

′). (4)

The platform receives these rank orderings from every player, computes a stable matching, and
assigns the matched arms to the respective players. This completes a round.

Algorithm 1 has several important features: first, it is a simple algorithm which us computation-
ally efficient and intuitive. Second, the algorithm does not require storing exact rewards obtained in
past rounds at the end of both players and platforms. Third, the preferences of players are updated
only using local information which is a crucial aspect to ensure privacy and reliability of the system.

4.2. Regret Result

Below, we characterize the regret accrued by a player while using the RCB algorithm (Algorithm
1) under time-varying preferences.
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Theorem 5 Suppose Assumption 1 holds. Under RCB algorithm (Algorithm 1), with the common
restart period H = L

−1/2
T T 1/2, the pessimal regret for each player i is given as

Ri
T = Õ

(
L
1/2
T T 1/2

(
1 +

1

∆2

))
.

Some comments about Theorem 5 are in order. First, we note that the constant in the above regret
bound can be exponentially large in the size of the market, which is also the case with Liu et al.
(2020) which considered stationary preferences of players. Second, the achievable regret bounds in
a single agent MAB setting is Õ(

√
KLTT ) Auer et al. (2002). Our regret bounds are similar to the

single agent multi-arm bandit setting up to some constant, although under the assumption that the
gap between the arm of any two players is greater than ∆ at all the times. As pointed out in Liu
et al. (2020), the dependence on ∆2 cannot be improved in general because of the dependence of a
player’s regret on the gaps of other players in the competing bandit setting. For the same reason, it
is not be possible to extend the results to the case where the arm gaps for a player can be arbitrarily
close to each other. Third, we note that the regret RT can be negative, which is not less desirable as
player’s can receive better utility than the pessimal matching.

A detailed proof of Theorem 1 can be found in the extended version of this paper Muthirayan
et al. (2022). However, we provide a sketch of the proof below.

Proof Sketch: In the following analysis we only give the key steps. We start by analyzing the
agent regret for a player pi within an interval of length H from one restart to the next. The total
regret can then be computed by summing the regret across the intervals of length H . Let us denote
the start and the end of the ℓth such interval by tℓs and tℓe. Let us denote the agent regret within the ℓth
interval by Ri

ℓ. Then, the player i’s regret in interval ℓ is Ri
ℓ =

∑tℓe
t=tℓs

(µi,t(mt(i))− µi,t(mt(i))) .

The critical part to bounding this is to account for the fact that (i) unlike in a single agent setting,
given that all the players are exploring and learning, an unstable match with lower reward than its
valid partners can be enforced on a player by the preferences submitted by the other players and
(ii) the underlying preferences and consequently the set of stable matching themselves are time
varying. While the first part was addressed by Liu et al. (2020) for the case where the underlying
preferences of the players are stationary, our analysis addresses how to account for time variation of
the underlying preferences and the further complexity this leads to on how the preferences submitted
by other players can force an unstable match. The key to our analysis is the use of the minimal cover
of an unstable match before the occurrence of the first change across the players within the interval.
Below, we present a crucial lemma which provides the pessimal regret for any player between any
two restarts. The proof of the lemma is deferred to the appendix.

Lemma 6 Suppose Assumption 1 holds. Then, under the RCB algorithm (Algorithm 1), the pessi-
mal regret for a player i between (ℓ− 1)th restart and ℓth restart is given by

Ri
ℓ ≤ O(KLℓH) +O

(
K

(
1 +

log(H)

∆2

))
.

Then, the agent-stable regret for all the rounds can be bound by summing the pessimal regrets
for the individual intervals. Hence, Ri

T ≤
∑⌊T/H⌋

ℓ=1 Ri
ℓ ≤ O(LTH) + Õ

(
T

H∆2

)
. Substituting for

H = L
−1/2
T T 1/2 gives us the final result.
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Remark 7 (Relation to Liu et al. (2020)) The bound we present in Lemma 6 clearly brings out the
relation with respect to Liu et al. (2020). The lemma presents the regret incurred by a player within
an interval after the restart. The constant accompanying the main term Õ(1 + 1/∆2) is equivalent
to the constant in the time invariant case, which is the sum over the minimal cover induced by
blocking pairs that block an unstable match. The difference in our case is that this minimal cover
corresponds to the set of blocking pairs before the first change or variation within the interval under
consideration, which reduces to the constant in Liu et al. (2020) in the absence of time variations.
The first term in Lemma 6, O (LℓH), reflects the impact on the regret from the time variations. This
term obviously vanishes in the absence of time variations.

5. EXTENSION TO UNKNOWN TIME VARIATION

Algorithm 1 required knowledge of time variation LT in order to compute the optimal restart period
H . However, in a lot of real-world applications it is not known a priori. One approach to extend the
RCB algorithm to the unknown time variation case is the bandits over bandits approach (Zhao et al.,
2020). The key idea in this approach is to adaptively tune the restart period by exploring the restart
periods from an ensemble that ranges from a very low restart period to a very high restart period.
Specifically, a meta-bandit algorithm is used to periodically reset the restart period of the base restart
algorithm by treating each period in the ensemble as an arm and employing a bandit algorithm to
choose the restart periods while resetting. The bandit algorithm ensures that the exploration of the
restart periods is efficient and that the process of exploring the restart period converges to the best
restart period.

The same idea can be extended to learning in two-sided matching markets. The platform can
employ a bandit meta-algorithm to explore and adaptively choose the best restart period for the base
RCB algorithm. To ensure that the ensemble of restart periods is sufficiently rich, the following
can be chosen as the ensemble: H = {H = 2j−1, j ∈ [1, N ]}, where N = ⌈1/2 log T ⌉ + 1.
Lets call the restart period defined in Theorem 5 by H∗. Then, H∗ = O(T 1/2) when LT = O(1)
and H∗ = O(1) when LT = O(T ). Therefore, the ensemble H as defined contains the H∗s
corresponding to the full range of LT and is thus sufficiently rich. To explore the restart periods,
the meta-algorithm can divide the overall duration T into periods of duration Υ = O(T 1/2) and
in each period it can explore a specific restart period. The meta-algorithm can employ a standard
bandit algorithm such as the EXP3 (Auer et al., 2002) to explore the restart periods efficiently.

The key issue in the competing bandits setting is how to define the reward for the EXP3 meta-
algorithm. We discuss this more elaborately below. Let the matching under RCB with the fixed
restart period H∗ be denoted by m∗

t . Then, the regret for each player can be split as

Ri
T =

T∑
t=1

µi,t(mt(i))−
T∑
t=1

µi,t(mt(i))

=

[
T∑
t=1

µi,t(mt(i))−
T∑
t=1

µi,t(m
∗
t (i))

]
︸ ︷︷ ︸

Base Regret for pi

+
T∑
t=1

[µi,t(m
∗
t (i))]−

T∑
t=1

[µi,t(mt(i))]︸ ︷︷ ︸
Meta-regret for pi

The first term is the regret incurred when following a fixed restart period. The second term is
the difference between the rewards accumulated by following a fixed restart period and the meta-
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algorithm that adaptively tunes the restart period by exploring from an ensemble of periods. We
refer to this second term as the meta-regret.

The current proof technique to bound base regret requires that all agents restart simultaneously.
Therefore, in this setting we consider that platform coordinates the restarting period uniformly
across all players. Consequently, we can only obtain bounds on the joint regret of all players.
Towards that goal, we define the reward for the meta-algorithm as the sum total of the accumulated
rewards over the period Υ across the players. The term

∑T
t=1 µi,t(m

∗
t (i)) corresponds to the to-

tal returns with the restart period H∗. Since H∗ ∈ H, the total return must be less than or equal
to the returns corresponding to the best restart period for the players. Therefore, the meta-regret
term must be upper bounded by the actual regret of the meta-algorithm, which can be bounded
just as in (Zhao et al., 2020, Theorem 3) by Õ(T 3/4); see (Zhao et al., 2020, Theorem 3) for
the details. Then, the joint regret when the number of changes are unknown can be bounded as∑N

i=1R
i
T = Õ

(
NL

1/2
T T 1/2

)
+ Õ(T 3/4).

The exploration required for the restart period results in an additional regret on top of the regret
in Theorem 5. Therefore, in the unknown LT case, the achievable total regret is limited by the
Õ(T 3/4) term. It is possible that our regret bounds could be improved by a better exploration
strategy. In addition, it remains an open problem to bound the individual regret of the players when
the number of changes are unknown.

6. CONCLUSIONS AND FUTURE WORK

In this work, we study the framework of competing bandits in time varying matching markets.
Specifically, we address the problem of how the players can learn the preferences amidst the compe-
tition so that the platform can converge to a stable matching outcome. While this specific challenge
has been studied earlier, we address how the players can learn when the players preferences them-
selves can be time varying. For this problem, we propose a Restart Competing Bandits algorithm
that can provably achieve sub-linear regret uniformly across the players up to sub-linear variations
in the total number of changes across the players. The key insight is that the non-stationarity does
not drastically impact learning in matching markets. Our result is first-of-its-kind for a general
preference structure. We also discuss extension of our algorithm to the case where the number of
changes need not be known a priori and discuss possible open challenges. There are several di-
rections for future work. One direction is the meta-algorithm strategy that can achieve the same
player pessimal regret for each player as the case where the total number of changes are known.
Another major direction is the decentralized setting where there is no central platform to coordinate
or communicate with the players. While this problem has been studied for the stationary case, its
extension to non-stationary environment is non-trivial.
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