Proceedings of Machine Learning Research vol 211:1-11, 2023 Sth Annual Conference on Learning for Dynamics and Control

Model-Based Reinforcement Learning for Cavity Filter Tuning

Doumitrou Daniil Nimara DDNIMARA @ GMAIL.COM
Ericsson GAIA, Sweden

Mohammadreza Malek-Mohammadi MOHAMMA @KTH.SE
Qualcomm, Sweden *

Jieqiang Wei JIEQIANG.WEI@ERICSSON.COM
Ericsson GAIA, Sweden

Vincent Huang VINCENT.A.HUANG @ERICSSON.COM
Ericsson GAIA, Sweden

Petter Ogren PETTER @KTH.SE
Division of Robotics, Perception and Learning, KTH

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract

The ongoing development of telecommunication systems like 5G has led to an increase in demand
of well calibrated base transceiver station (BTS) components. A pivotal component of every BTS
is cavity filters, which provide a sharp frequency characteristic to select a particular band of in-
terest and reject the rest. Unfortunately, their characteristics in combination with manufacturing
tolerances make them difficult for mass production and often lead to costly manual post-production
fine tuning. To address this, numerous approaches have been proposed to automate the tuning
process. One particularly promising one, that has emerged in the past few years, is to use model
free reinforcement learning (MFRL); however, the agents are not sample efficient. This poses a
serious bottleneck, as utilising complex simulators or training with real filters is prohibitively time
demanding. This work advocates for the usage of model based reinforcement learning (MBRL)
and showcases how its utilisation can significantly decrease sample complexity, while maintaining
similar levels of success rate. More specifically, we propose an improvement over a state-of-the-
art (SoTA) MBRL algorithm, namely the Dreamer algorithm. This improvement can serve as a
template for applications in other similar, high-dimensional non-image data problems. We carry
experiments on two complex filter types, and show that our novel modification on the Dreamer
architecture reduces sample complexity by a factor of 4 and 10, respectively. Our findings pioneer
the usage of MBRL which paves the way for utilising more precise and accurate simulators which
was previously prohibitively time demanding.

Keywords: Reinforcement Learning, Model Based Reinforcement Learning, Telecommunication

1. Introduction

Automated microwave filter tuning via artificial intelligence (Al) is an established scientific field,
which was pioneered in the middle of the past century [Dishal (1951)]. At the core of telecommu-
nication is the manipulation of information which inhibit certain frequencies. However, to process
such frequencies, telecommunication devices employ filters which allow desirable frequency bands

* The work of second author was done while he was with Ericsson.

© 2023 D.D. Nimara, M. Malek-Mohammadi, J. Wei, V. Huang & P. Ogren.

MBRL FOR CAVITY FILTER TUNING

-20

-80

—100 4

4600 4700 4800 4900 5000 5100 5200
Frequency (MHz)

Figure 1: Frequency response of a detuned filter. The x and y axis correspond to the frequency (in
MHz) and S-Parameter (in dB) respectively. The plotted lines correspond to 20 log | S;;|; see Section
2 for definition of S;;. Red: So1, green: Si1. A filter is tuned when 11 lies below the red bar in the
passband (center) and So; lies below the blue bars in the stopband (non-center) and above the black
bar in the pass band (center). Our goal is to devise an agent which can reach such a configuration.

while simultaneously rejecting undesired ones (noise and interference) which are present in the
spectrum. In the precipice of 5G, (microwave) radio frequency (RF) filters are of particular impor-
tance as they can operate on medium to high frequency ranges. From the vast array of different
RF filters, cavity filters (CF) are widely employed for their high Q-factor, steep skirt selectivity and
ability to handle high power signals

CF are vital and numerous instances are used in the base stations. Their high frequency selec-
tiveness, however, comes at a cost, as they require an extremely accurate manufacturing process
which is unattainable at a reasonable cost. Thus, a post-production tuning step is required, in which
one alters the filter’s tunable characteristics by interacting with screws that lie on top of the filter.
However, the tuning process is both costly and time consuming, as highly-trained personnel must
be employed to manually tune CFs in a lengthy process (which can take up to 30 minutes per filter).
Therefore, there is an ever increasing interest in automating this process, as illustrated in Figure 1.

We narrow our attention to a particularly promising solution for automating tuning, which lever-
ages Reinforcement Learning (RL). The training of the RL agent is done once, by interacting with
i.i.d. detuned instances of filters of a particular type. Following this, no further training is required
and the agent can be deployed for tuning any filter of that type. We examine and propose relevant
modifications to a particularly efficient state-of-the-art (SoTA) model based RL (MBRL) algorithm
named Dreamer [Hafner et al. (2019, 2020)]. We present our novel modification on the Dreamer and
compare it with a well established model free RL (MFRL) algorithm, SAC [Haarnoja et al. (2018)].
Broadly speaking, MBRL is expected to exhibit good sample efficiency at the cost of asymptotic
performance [Mordatch and Hamrick (2020)]. This, along many other MBRL characteristics was
studied by Wang et al. (2019). However, such comparisons are made in typical gym environments
[openAl (2021)] exhibiting low-dimensional observations or images. Our work explores this with
high-dimensional, non-image observations.

The main contribution of this paper can be summarised as follows; our work:

MBRL FOR CAVITY FILTER TUNING

 provides a novel extension of the Dreamer architecture which outperforms its predecessor for
CF tuning. Our modifications allow the Dreamer’s observation model to become progres-
sively more robust, in a modular way which can be easily extended for similar tasks,

» compares and showcases how MBRL reduces sample complexity by a factor of 4 and 10 on
two different type of filters, and

* pioneers the usage of MBRL for the well established field of automated CF tuning in a way
that allows the tackling of more complex filters

1.1. Related Work

As mentioned earlier, automated CF tuning is a well-established field, spanning numerous diverse
approaches. Broadly speaking, we can categorise them in optimisation based or RL based.

Perhaps the most intuitive optimisation approach is proposed in Harscher et al. (2001) which
decomposes the problem into two steps. In the first stage, they try to infer the underlying filter
parameters based solely on observed S-parameters. They do so by finding the model parameters
gmodel which showcases a similar frequency response. Next, one tries to map screw adjustements
to changes in §°%! via sensitivity analysis. Finally, they compare §°%! with #/¢?! and exert the
necessary screw adjustments (based on their prior sensitivity analysis), such that §medel —, gideal

A different approach was employed by Wang (2015), which advocated for the usage of MFRL.
They examined a simplified scenario, in which only two out of the seven screws were interactable
by the agent. Furthermore, only one screw could turn at a time. A binary r € {0, 1} reward was
used, rewarding the agent with 1 if the action resulted in a more tuned configuration. Actions were
discretized and DQN [Mnih et al. (2015)] was employed. Their attempts proved fruitful in tackling
the so called 4p0z filter!.

In a later work, Wang et al. (2018) reexamined the problem, this time, however, in the continuous
domain, by leveraging DDPG [Lillicrap et al. (2016)] and allowing the tuning of more than one
screw at a time. This resulted in a decrease in sample complexity. Larsson (2018) adopted a similar
approach to tackle 4p0z and 4p1z.

A more intricate scenario was examined by Lindstéh and Lan (2020), which tackled a 13 screw
filter (6p2z) by developing the DIRT algorithm. Their approach first leverages imitation learning
to initialize the agent with guidance from expert trajectories Deypert = {(Si; Texpert(si)}. Next,
DDPG is employed, followed by DQN for screw selection. More precisely, DQN receives as an
input the proposed screw rotations from DDPG and outputs m Q values (one for each screw). The
agent may then turn the screw showcasing the largest Q value. This approach not only tackled more
complicated filters, but also presented a screw selection method.

This study differs from the one presented above in that MBRL is applied to the filter tuning
problem. To the best of our knowledge, our work pioneers the usage of MBRL in this field.

2. Problem Formulation

In this section, we will first describe key components of our CF environment which are present in
the simulations. We will next formulate this environment as a Markov Decision Process so that we
can treat it within the RL setting.

1. PpZz denotes a filter with P poles and Z zeroes. Generally, filter complexity increases with P and Z.

MBRL FOR CAVITY FILTER TUNING

CFs consist of several resonators, each of which encapsulated within a conducting box (cav-
ity). The location of the passband along the frequency spectrum dictates its gating capabilities and
depends on the overall resonance frequency f,.. In turn, f, depends on the geometry of the cav-
ities, which, if shifted, will result in a change in f, and hence in the passband. For production,
filters are often designed using 3D simulators; however, sometimes, it is easier to approximate their
functionalities by adopting a simpler (less computationally intensive) circuit model. This model is
comprised of capacitors and inductors (each subscribing to a tunable resonance frequency).

The number of cavities and the topology of the filter characterise the filter’s complexity [Richard
J. Cameron (2007)]. We describe the different filters by typical industry convention, writing PpZz
when referring to a filter with P number of poles and Z number of zeros (e.g., 6p2z refers to a 6-pole,
2-zero filter).

The frequency response of the filter is characterised by its Scattering Parameters (S-parameters).
S-parameters are complex values and a function of frequency f, given by:

Ii,out(f) B,out(f)
Liin(f) Pjin(f)

where I; ou¢, Ijin describe the Laplace transform of the outward and inward current at port i and j
respectively, while P describes the electrical power. The circuit model employed herein is a 2-port
circuit, which implies 4, j € {1,2}. A particularly useful tool employed by human experts when
tuning CFs is Vector Network analysers (VNA) which plot 201og; |S;;| (dB scale) over a range
of frequency values (see Figure 1). Overall, four curves may be observed (511, S12, So1 and S32).
However, for cavity filters, these relations hold:

Sij = , 1Sij] = €))

S11 = Sa2, So1 = ST ()
We formulate this environment as an MDP:

* Environment: We utilise a circuit simulator developed at Ericsson, which we extended to
provide feedback and interactability to the agent. Two filters are examined, namely 6p2z and
8p4z, which vary in topology, number of screws and cavity resonators and overall complexity.

* Action Space (continuous): An agent’s actions define the way in which it can interact with
the filter. The filter’s tunable parameters can be affected via tuning screws located on top of
the filter. As such, the action space is [—1, 1], where m denotes the number of screws. For
example, executing Ax; = 1 results in turning the i-th screw by a max angle, which we set to
1080 degrees.

» State Space (continuous): The state or observation space needs to describe what is visible
to the agent. It is only natural, then, to define the state space as that which contains all
possible S-Curve configurations. The agent does not have access to the screw’s absolute
position. Instead, its observation consists of N 4-tuples {S; ;|1,7 € {1,2}})_,. We generate
those 4-tuples by discretizing [finin, fmaz) into N frequency points and examining the filter’s
behaviour in each one of these points. As the S-parameters are complex, we further separate
the imaginary and real part, leading to a state space S C R8" .

* Reward: The reward function must be such that it favours configurations of tuned filters.
As such, we examine the VNA frequency curves (recall Figure 1) on the aforementioned N

MBRL FOR CAVITY FILTER TUNING

frequency points and check whether they satisfy the requirements or not. More specifically,
we sum up the —¢» point-to-threshold distance (points that do not violate the threshold do not
negatively impact the reward) as reward. If all the requirements are met, we reward the agent
with 7eztrq = 100.

* Transition probability 7: Measurement noise (noisy .S parameters) in conjunction with
non-tunable parameters (parameters which are unaffected by screw rotations, e.g. Q-factor)
means that actions a; performed on a particular state s; can lead to a different next state
St4+1 T(.‘St, at).

* Goal: Our goal is to devise a policy 7y which optimises J(6) = Es, [ZtT:o vire(se, at)|ar ~
7 (st)], where v denotes the discount factor, E, is the expectation over transitions and initial
states so.

3. Model

In this section, we will present the Dreamer Algorithm as well as the modifications we suggest to
address the problem defined above. Since the original implementation was not tested in a similar
environment (high dimensional, non image observations), we also propose modifications which
adapt it to this particular setting.

The Dreamer algorithm builds upon the MFRL baseline algorithm named Soft Actor Critic
(SAC). SAC augments the traditional RL reward, by adding an entropy term which acts as a explo-
ration regulariser, like so:

™ = argmax B, 7 s [;wst, ar) + BH(r(s0)))|ac ~ (s0)] @)

where H(m) = E,[— log 7] is the entropy of the distribution of our policy. Recall that the entropy
measures the randomness of a distribution. For instance, the uniform distribution exhibits the high-
est entropy. In essence, the policy is such that it not only maximises the accumulated immediate
reward (s, a;), but is also exploratory enough (when needed) to exhibit high entropy. The trade
off between exploratory and exploitative policies is being handled by f.

The Dreamer owes its name to the fact that the unfolding of the world model happens in a lower
dimensional latent space. This is particularly helpful when dealing with large dimensional environ-
ments (as is the case in our setting), where compounding errors can be devastating when utilising the
world model for long horizons. Like in the original paper, training consists of three phases which
loop until convergence: (i) learning world dynamics, (ii) training Actor Critic on latent space and
(iii) generating new observations. During stage (i), an encoder decoder structure is utilised to embed
our observations o; into latent states s;. During this phase, the encoder ¢(s;|o;), decoder q(o¢|s;)
(also called observation model), reward network ¢(r¢|s;), a transition model ¢g(s¢|s;—1,a;—1) and
representation model q(s¢|s;—1,a¢—1,0¢) are trained. During stage (ii), the policy and critic net-
works are trained. Stage (iii) populates the replay buffer with more experiences for training. The
function optimised by the world model is the one presented in the original paper by Hafner et al.

MBRL FOR CAVITY FILTER TUNING

(2019):

JrEC = Ep{Z(log q(ot|s¢) +log q(re|se) — BKL(q(s¢|st—1, ar—1, 0¢)||q(st|ar—1, St—1)>)]
t
“4)

Notice how maximising Jrgc, means better reconstructions (log g(o¢|s;)) and more accurate re-
ward estimates (log q(7¢|s;)), while simultaneously decreasing the distance (KL divergence) be-
tween the prior ¢(s¢|a;—1, s¢—1) and posterior ¢(s¢|s¢—1,ai—1,0¢).

Changes had to be made on hyperparameters to address the high dimensional aspect of our
setting. Furthermore, unlike the original work, the terminal network, which predicted early episode
termination was not utilised. In their work, terminal states occur early and are the result of a failed
agent. In our environment, terminal states are ”goals” and occur only with good agents. Adopting
such a network is not beneficial and destabilises training, as it only starts getting terminal examples
deep within the training cycle (once the agent becomes better).

We also applied some more substantial changes on the Dreamer. First, we swapped convolu-
tional layers with Fully Connected ones. Next, our experiments found that certain changes had to
be made to the decoder g(o;|s;) network. The decoder is used to generate S-curve reconstruction
based on the latent space representation s;. In the original work, ¢(o:|s;) modelled a generative
N (u(st), I). Hence, during training, only the mean was learnable by the network. We propose that
it instead also learns the diagonal covariance matrix ¥ = Yj(s;), to allow for more precise and
more confident reconstructions.

3.1. Dreamer Modification Significance

What proved pivotal in making MBRL a viable and efficient alternative in CF Tuning was proposing
the modification in the decoder section of the Dreamer.

As stated previously, the authors of the Dreamer utilised the decoder g(o¢|s;) subnetwork to
model N (u(s¢),I). This fixed level of confidence proved too large for our reconstructed observa-
tions where each component lies in [—1, 1]. Naturally, we tried modelling it as N (u(s;), 0%I), for
different values of 02 < 1, but found that asking for high precision from an initially suboptimal
agent destabilised training, due to high gradient magnitudes.

Instead, we propose a simple, modular modification to help address this issue. We alter the final
layer of the decoder to also allow the learning of the diagonal elements of the Covariance matrix.
In other words, the decoder models N (p(s;), 2(s¢)). Intuitively, this approach allows the agent to
be less precise initially, before increasing it as it becomes more proficient. In practice, this led to
improved training metrics, as seen in Figure 2a. This approach is modular, as the notion of learning
all the parameters of a distribution for your decoder can be extended for other distributions described
by similar statistics.

The training metrics lead to actual improved performance, as is evident in Figure 2b. First,
we find that the instability induced in training from using ¢ = 0.01 leads to slower training. The
simpler task of o = 1 suffers from the bottleneck shown in Figure 2a and leads to plateauing at a
suboptimal performance. Our proposed modification is significantly more efficient, reaching tuned
configurations (positive reward) after only 16k steps. Figure 3 showcases a typical example of the
tuning process.

MBRL FOR CAVITY FILTER TUNING

World Model Loss comparison Dreamer Reward Curve
4000 —— non fixed std
3000 — std=1
0
2000 —— std=0.01
g
= 1000 500
S ®
S o \w‘ g
2 9]
] -4
S -1000
g -1000
o
~2000 — std=1
3000 1500 non fixed std
~4000 —— std=0.01
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Steps Steps
(@) (b)

Figure 2: (a) Reconstruction loss (negative log likelihood) of observations. Using a fixed 0 = 1
leads to fast convergence (since the task is simpler), bottlenecking performance. Using a smaller
fixed o = 0.01 is a more difficult task and training commences slower. Notice, also, how the curve
is not as smooth. Allowing for learnable, non fixed standard deviation combines the best of both
approaches. (b) Reward curve comparison before and after modification.

4. Experiments

All experiments leveraged a circuit model simulator developed at Ericsson. Two different type of
filters were simulated: 6p2z and 8p4z. The first one serves as a proof of concept, as it is a non
trivial, yet substantially simpler filter than 8p4z. The latter is a real filter, currently deployed in
many BTS. As training is faster on 6p2z, all hyperparameter and MBRL comparison experiments
were conducted using it. More specifically:

* 6p2z: The examined frequency range is [850, 950] MHz which is sampled with a step of 1,
leading to a 808 dimensional observation space with 13 tunable screws.

* 8p4z: The examined frequency range is [4600, 5200] MHz which is sampled with a step of
5, leading to a 968 dimensional observation space with 19 tunable screws.

The resonance frequencies f;’s and mutual coupling between resonators, BW;;, describe the
filter’s frequency response. These parameters are tunable, as the agent is able to alter them by
interacting with the filter screws. A tuned filter exhibits an ideal configuration for these parameters.
We model different instances of detuned filters, by applying a uniform pertubation around each such
nominal value (e.g. £50 MHz). The filter is also described by other sets of parameters which are not
affected by the screws and are thus called non-tunable (e.g. Q factor). These model different filter
variants within the filter type. All parameters take a new value at the beginning of each episode. On
top of this, some non-tunable parameters are pertubed slightly at every step within the episode to
model measurement noise.

All experiments were conducted on a 16-core CPU (Intel(R) Xeon(R) CPU E5-2697 v3 @
2.60GHz) with 32 GB of RAM. Although training time varied, training of MFRL took around 2
hours on 6p2z and 1 day on 8p4z, while MBRL techniques averaged around one and three days
respectively. When comparing MFRL with MBRL, all shared hyperparameters were kept the same,

MBRL FOR CAVITY FILTER TUNING

S curve at time 0

Gain [dB]
8

840 860 880 900 920 940 960
frequency [MHz]

(a) Initial, detuned S-parameter
configuration

S curve at time 2

Gain [dB]

840 860 880 900 920 940 960
frequency [MHz]

(c) S-parameter configuration after 2
steps.

S curve at time 1

Gain [dB]
|
8

840 860 880 900 920 940 960
frequency [MHz]

(b) S-parameter configuration after 1
step

S curve at time 3

Gain [dB]
|

840 860 880 900 920 940 960
frequency [MHz]

(d) S-parameter configuration after 3
steps.

Figure 3: Typical example of tuning process on 6p2z.

to ensure that any performance boost can be directly attributed to the addition of a world model. We
used the openly available implementations of SAC? and Dreamer>, on top of which we performed
the modifications described in the previous section.

4.1. Comparison with MFRL

Two properties play an integral role in model comparison: success rate and sample complexity. To
measure success rate, we generate 10000 i.i.d. initially detuned filters and measure the proportion
that gets tuned within the episode horizon. For the latter, we measure how many interactions with
the environment are required before we reach a desirable success rate. Our findings are summarised
in the following tables.

Table 1 summarises the results of the Dreamer on 6p2z. We see that the modified Dreamer
performs similarly with that of the MFRL agent, while decreasing sample complexity by a factor of
4. It is also worth noting that the unmodified Dreamer was also less robust to its hyperparameters,
often exhibiting too unstable training to even tune a filter (0 % success rate). Finally, table 2 show-
cases the performance of the modified Dreamer on the 8p4z environment. The agent manages to
reduce sample complexity by a factor of 10. Figures 4a and 4b illustrate the reward training curves.

2. https://stable-baselines.readthedocs.io/en/master/modules/sac.html
3. https://github.com/danijar/dreamerv2

https://stable-baselines.readthedocs.io/en/master/modules/sac.html
https://github.com/danijar/dreamerv2

MBRL FOR CAVITY FILTER TUNING

Dreamer Results on 6p2z
MFRL (SAC) Dreamer (Original) | Dreamer (Improved)
Success rate || 99.93 % 69.81 % 98.87 % 1 99.72 %
Steps 100k 100k 16k / 32k

Table 1: Dreamer results on 6p2z. Success rate was measured on 10000 i.i.d. randomly initialised
filter instances. MFRL reaches 99.93 % performance after 100k iterations, however it reaches
similar performance with the improved Dreamer (99 %) after roughly 70k steps.

Dreamer results on 8p4z

MEFRL (SAC) Dreamer (Improved)
Success rate || 93.00 % / 98.95 | 93.69 %

%
Steps 700k /1M 70k

Table 2: Dreamer results on 8p4z. Success rate was measured on 10000 i.i.d. randomly initialised
filter instances.

reward curve 6p2z Reward Curve on 8pdz

W ol NI il i it i o
0
~1000 1

000000

0 2500 5000 7500 10000 12500 15000 17500 20000 13 20000 40000 60000 w0 0 000
steps

(@) (D)

Figure 4: (a) Modified Dreamer on 6p2z. Mean and 95 % confidence interval plotted from 10 trials.
(b) Modified Dreamer on 8p4z. Mean and 95 % confidence interval plotted from 10 trials.

5. Discussion and Future Work

One of the characteristics of MBRL is that they are very environment dependent [Wang et al.
(2019)]. That is, certain models can outperform others in one environment and get outperformed
in another. This can be attributed to the different assumptions and structures their world models
employ. For instance, the modified dreamer architecture is able to effectively traverse the high di-
mensional observations of our environment, by leveraging its learned latent state representation. In
fact, we also tried two different MBRL methods, namely SVG(H)-SAC [Amos et al. (2020)] and
MBPO [Janner et al. (2019)] and found that their performance were not on par with our modified
Dreamer. We argue that the Dreamer consistently outperforms them in this particular settings for
two key reasons: (i) Its low dimensional latent space (the other two techniques were never tested
on such high dimensional data) and (ii) it employs the usage of a model with memory (unlike
MBPO). In essence, memory allows the agent to retain prior information gained throughout the

MBRL FOR CAVITY FILTER TUNING

episode which can then be use to infer about the untunable background parameters which affect the
environment dynamics.

Regarding hyperparameters, we found that the entropy coefficient and the discount y are by far
the most influential in model performance. Overall, the modified dreamer was fairly robust to its
hyperparameters, exhibiting great, consistent performance for many different values. This is crucial,
as low hyperparameter sensitivity shortens the duration of the hyperparameter tuning stage, which
can be a prohibitively lengthy process in more complex environments or simulators.

Overall, we can say that MBRL does indeed showcase the potential to outperform MFRL on the
CF Environment. The improvement, however, generally requires more extensive hyperparameter
tuning and careful model selection. Unlike the MFRL SAC method, which was able to perform
well (albeit not optimally) even with the hyperparameter settings provided by the original paper, the
MBRL techniques required more meticulous hyperparameter search and modifications to ensure
that we did not exhibit exploding gradients and bad performance (plateauing reward curve).

For more detailed information regarding hyperparameter significance, SVG(H)-SAC and MBPO
performance comparison, please refer to the Thesis Work [Nimara (2021)] this paper is based on (in
particular, sections 6.1, 6.2 and appendix).

There are many potential avenues for future work. First, a more thorough hyperparameter tun-
ing process for 8p4z can be performed in order to further increase the performance of the agent.
Alternatively, one could try to test our agent on more complex filters or realistic simulators (e.g. 3D
simulator instead of a circuit model).

6. Conclusions

In this paper, we pioneer the usage of MBRL for the well established field of automated cavity filter
tuning. Traditional techniques have proven efficient in tackling simpler filters, while MFRL, which
can indeed tackle more complicated tasks, suffers from high sample complexity. This is particularly
prohibitive in our setting, where more accurate simulators may require several minutes to generate
a single environment observation. Our modifications on the Dreamer allowed the robust application
of MBRL, decreasing sample complexity by orders of magnitude, while maintaining comparable
performance with MFRL techniques. Finaly, we believe our findings may also be applicable in
other environments with high dimensional non-image observations.

References

Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson. On the model-based
stochastic value gradient for continuous reinforcement learning, 2020.

M. Dishal. Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters. Pro-
ceedings of the IRE, 39:1448—1455, 1951.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic al-
gorithms and applications. CoRR, abs/1812.05905, 2018. URL http://arxiv.org/abs/
1812.05905.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

10

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905

MBRL FOR CAVITY FILTER TUNING

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

P. Harscher, R. Vahldieck, and S. Amari. Automated filter tuning using generalized low-pass proto-
type networks and gradient-based parameter extraction. IEEE Transactions on Microwave Theory
and Techniques, 49(12):2532-2538, 2001. doi: 10.1109/22.971646.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, 2019.

H. Larsson. Deep reinforcement learning for cavity filter tuning. 2018.

T. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez, Yuval Tassa, D. Silver, and Daan
Wierstra. Continuous control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

S. Lindstéh and X. Lan. Reinforcement learning with imitation for cavity filter tuning. In 2020
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 1335-
1340, 2020. doi: 10.1109/AIM43001.2020.9158839.

V. Mnih, K. Kavukcuoglu, D. Silver, Andrei A. Rusu, J. Veness, Marc G. Bellemare, A. Graves,
Martin A. Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, S. Petersen, C. Beattie, A. Sadik,
Ioannis Antonoglou, H. King, D. Kumaran, Daan Wierstra, S. Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518:529-533, 2015.

Igor Mordatch and Jessica Hamrick. Model based reinforcement learning tutorial. https://
sites.google.com/view/mbrl-tutorial/, 2020.

Doumitrou Daniil Nimara. Model Based Reinforcement Learning for the tuning of Cavity Filters.
M.Sc., Dept. of Electrical Engineering and Computer Science, KTH, 2021.

openAl. https://gym.openai.com/,2021.

Raafat R. Mansour Richard J. Cameron, Chandra M. Kudsia. Microwave Filters for Communication
Systems: Fundamentals, Design, and Applications. 2007.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shun-
shi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based rein-
forcement learning. CoRR, abs/1907.02057, 2019. URL http://arxiv.org/abs/1907.
02057.

Zhiyang Wang. Reinforcement learning approach to learning human experience in tuning cavity
filters. 12 2015. doi: 10.1109/ROBI0O.2015.7419091.

Zhiyang Wang, Yongsheng Ou, Xinyu Wu, and Wei Feng. Continuous reinforcement learning
with knowledge-inspired reward shaping for autonomous cavity filter tuning. 10 2018. doi:
10.1109/CBS.2018.8612197.

11

https://sites.google.com/view/mbrl-tutorial/
https://sites.google.com/view/mbrl-tutorial/
https://gym.openai.com/
http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/1907.02057

	Introduction
	Related Work

	Problem Formulation
	Model
	Dreamer Modification Significance

	Experiments
	Comparison with MFRL

	Discussion and Future Work
	Conclusions

