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Abstract
This paper investigates data-driven output-feedback predictive control of linear systems subject
to stochastic disturbances. The scheme relies on the recursive solution of a suitable data-driven
reformulation of a stochastic Optimal Control Problem (OCP), which allows for forward prediction
and optimization of statistical distributions of inputs and outputs. Our approach avoids the use
of parametric system models. Instead it is based on previously recorded data and on a recently
proposed stochastic variant of Willems’ fundamental lemma. The stochastic variant of the lemma
is applicable to linear dynamics subject to a large class of stochastic disturbances of Gaussian
or non-Gaussian nature. To ensure recursive feasibility, the initial condition of the OCP—which
consists of information about past inputs and outputs—is considered as an extra decision variable
of the OCP. We provide sufficient conditions for recursive feasibility of the proposed scheme as
well as a bound on the asymptotic average performance. Finally, a numerical example illustrates
the efficacy and the closed-loop properties of the proposed scheme.
Keywords: Data-driven control, stochastic predictive control, Willems’ fundamental lemma

1. Introduction

Data-driven control based on the so-called fundamental lemma by Willems et al. (2005) has attracted
a lot of research interest, see Markovsky and Dörfler (2021); De Persis and Tesi (2020) for recent
reviews. The pivotal insight of the fundamental lemma is that any controllable LTI system can be
characterized by its recorded input-output trajectories provided a persistency of excitation condition
to be satisfied. In the context of predictive control this implies that the prediction of future input
and output trajectories can be done based on measurements of past trajectories thus alleviating the
need for system identification and state estimator design (Yang and Li, 2015; Coulson et al., 2019;
Lian and Jones, 2021; Allibhoy and Cortes, 2020). Hence data-driven predictive control schemes
are considered for different applications, e.g. (Carlet et al., 2023; Bilgic et al., 2022; Wang et al.,
2022a). Rigorous guarantees for closed-loop properties are provided by Berberich et al. (2020,
2021); Bongard et al. (2023) for data-driven predictive control schemes with respect to deterministic
LTI systems subjected to noisy measurements.

However, besides measurement noise, so far little has been done on data-driven predictive con-
trol for LTI systems subject to stochastic disturbances. One key challenge is the prediction of the
future evolution of statistical distributions of the inputs (respectively input policies) and outputs in
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a data-driven fashion. One approach is to predict the expected value of the future trajectory by the
fundamental lemma while handling the stochastic uncertainties offline by probabilistic constraint
tightening (Kerz et al., 2021) or directly omitting the stochastic uncertainties in the prediction
(Wang et al., 2022b). Alternatively, leveraging the framework of Polynomial Chaos Expansions
(PCEs) (Sullivan, 2015) a stochastic variant of Willems’ fundamental lemma has been proposed
(Pan et al., 2022b). It allows to predict future statistical distributions of inputs and outputs via
previously recorded data and knowledge about the distribution of the disturbance.

Extending the conceptual ideas of Pan et al. (2022b) towards stochastic data-driven predictive
control with guarantees, Pan et al. (2022c) present first results in a state-feedback setting, while the
output-feedback case is discussed by Pan et al. (2022a). Therein, sufficient conditions for recursive
feasibility and a bound on the asymptotic average performance are provided by a data-driven design
of terminal ingredients and a selection strategy of the initial condition which is similar to the model-
based approach of Farina et al. (2013, 2015). The selection of initial conditions considers a binary
choice: the current measured value or its predicted value based on the last optimal solution.

In this paper, we extend the data-driven stochastic output-feedback predictive scheme proposed
by Pan et al. (2022a) with an improved initialization strategy. Instead of the binary selection strat-
egy described above, the proposed scheme interpolates between the measured value and the latest
prediction in a continuous fashion. In model-based stochastic predictive control this has been con-
sidered by Köhler and Zeilinger (2022); Schlüter and Allgöwer (2022); while an alternative initial-
ization strategy is considered by Korda et al. (2011). The main contribution of the present paper are
sufficient conditions for recursive feasibility and a bound on the asymptotic average performance of
the proposed data-driven stochastic output-feedback scheme.

2. Problem statement and preliminaries

We investigate a stochastic output feedback approach to control LTI systems with unknown system
matrices. Hence, we first detail the considered setting, then we recall the representation of L2

random variables via polynomial chaos, before we arrive at the stochastic fundamental lemma.

2.1. Considered system class

We consider stochastic LTI systems in AutoRegressive with eXtra input (ARX) form

Yk = ΦZk +DUk +Wk, Z0 = Zini, (1)

with input Uk ∈ L2(Ω,F , µ;Rnu), output Yk ∈L2(Ω,F , µ;Rny), disturbance Wk ∈L2(Ω,F , µ;Rnw)
(nw = ny), and extended state

Zk
.
=

[
U[k−Tini,k−1]

Y[k−Tini,k−1]

]
=
[
U⊤
k−Tini

, U⊤
k−Tini+1, · · · , U⊤

k−1, Y
⊤
k−Tini

, · · · , Y ⊤
k−1

]⊤
∈ L2(Ω,F , µ;Rnz),

with nz = Tini(nu + ny) which contains last Tini inputs and outputs.
Here, Ω denotes the sample space, F is a σ algebra, and µ is the considered probability mea-

sure. With the specification of the underlying probability space (Ω,F , µ) to be L2, we restrict the
consideration to random variables with finite expectation and finite (co)-variance. Throughout this
paper, the system matrices Φ ∈ Rny×nz and D ∈ Rny×nu are considered to be unknown, while
the statistical distributions of initial condition Zini and disturbances {Wk}k∈N are supposed to be
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known. Furthermore, we consider that all {Wk}k∈N are identical independently distributed (i.i.d.)
with zero mean and finite co-variance, i.e., we assume for all k ∈ N, E[Wk] = 0 and Σ[Wk] = ΣW .
We remark that the initial condition and the disturbances are not restricted to be Gaussian.

For a specific uncertainty outcome ω ∈ Ω, we denote the realization of Wk as wk
.
= Wk(ω).

Likewise, the input, output, and extended state realizations are written as uk
.
= Uk(ω), yk

.
= Yk(ω),

and zk
.
= Zk(ω), respectively. Moreover, given zini and wk, k ∈ N, the stochastic system (1)

induces the realization dynamics

yk = Φzk +Duk + wk, z0 = zini. (2)

Throughout the paper, we assume the input, output, and disturbance realizations uk, yk, and wk−1 to
be measured at time instant k. For the case of unmeasured disturbances, we refer to the disturbance
estimation schemes tailored to ARX models, see (Pan et al., 2022b; Wang et al., 2022b) .

Assumption 1 There exists a minimal state-space representation

Xk+1 = AXk +BUk + EWk, X0 = Xini, Yk = CXk +DUk +Wk, (3)

with (A,B) controllable and (A,C) observable such that for some initial condition Xini and Wk,
k ∈ N, the input-output trajectories of (1) and (3) coincide.

For insights into the problem of mapping a ARX model to its minimal state-space representations,
see Sadamoto (2022); Wu (2022). Moreover, consider Zk as state, one—not necessarily minimal—
state-space realization of the ARX model (1) is given by

Zk+1 = ÃXk + B̃Uk + ẼWk, Z0 = Zini, Yk = ΦXk +DUk +Wk, (4)

with

Ã =

 0 I(Tini−1)nu
0 0

0nu×nu 0 0nu×ny 0
0 0 0 I(Tini−1)ny

Φ

 , B̃ =

 0
Inu

0

D

 , Ẽ =

[
0
Iny

]
.

Note that due to Assumption 1 the pair (Ã, B̃) is stabilizable (Bongard et al., 2023).

2.2. Representation of random variables via polynomial chaos expansions

It is well-known that for stochastic LTI systems subject to Gaussian disturbances, the evolution of
statistical distributions of inputs (generated via affine policies) and outputs can be exactly repre-
sented by the first two moments, cf. Farina et al. (2013, 2015). However, this is not necessarily
the case for non-Gaussian disturbances. Moreover, observe that already in a Gaussian setting mo-
ments constitute non-linear representations of random variables as any scalar Gaussian is given
by the sum of its mean with its standard deviation (= square root of variance) times a standard
normal-distributed random variable. Alternatively, one could rely on scenario-based approaches
and sampling strategies (Kantas et al., 2009; Tempo et al., 2013; Schildbach et al., 2014). However,
this induces substantial computational effort.

Alternatively, we employ Polynomial Chaos Expansions (PCE) to provide a tractable linear
surrogate of (1) by representing L2 random variables in a suitable polynomial basis. PCE dates
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back to Wiener (1938), and we refer to Sullivan (2015) for a general introduction, see, e.g., (Paulson
et al., 2014; Mesbah et al., 2014; Ou et al., 2021) for applications in control.

Consider an orthogonal polynomial basis {ϕj}∞j=0 which spans L2(Ω,F , µ;R), i.e., ⟨ϕi, ϕj⟩ .
=∫

Ω ϕi(ω)ϕj(ω) dµ(ω) = δij∥ϕj∥2, where δij is the Kronecker delta and ∥V ∥ .
=
√
⟨V, V ⟩ is the

L2 norm of V ∈ L2(Ω,F , µ;R). With respect to the basis {ϕj}∞j=0, a real-valued random scalar
variable V ∈ L2(Ω,F , µ;R) can be expressed as V =

∑∞
j=0 v

jϕj with vj = ⟨V, ϕj⟩/∥ϕj∥2,
where vj ∈ R is called the j-th PCE coefficient. For a vector-valued random variable V ∈
L2(Ω,F , µ;Rnv), applying PCE component-wise, the j-th coefficient is given as vj = [v1,j v2,j · · ·
vnv ,j ]⊤ with vi,j as the j-th PCE coefficient of the component V i of V .

In practice one often terminates the PCE series after a finite number of terms for more efficient
computation. However, this may lead to truncation errors (Mühlpfordt et al., 2018). Fortunately,
random variables that follow some widely-used distributions admit exact finite-dimensional PCEs
with only two terms in suitable polynomial bases, see (Koekoek and Swarttouw, 1998; Xiu and
Karniadakis, 2002). For example, the Legendre basis is preferably chosen for uniformly-distributed
random variables and Hermite polynomials are used for Gaussians.

Definition 1 (Exact PCE representation (Mühlpfordt et al., 2018)) The PCE of a random vari-
able V ∈ L2(Ω,F , µ;Rnv) is said to be exact with dimension L if V −

∑L−1
j=0 vjϕj = 0.

Notice that with an exact PCE of finite dimension, the expected value, variance, and covariance of
V ∈ L2(Ω,F , µ;Rnv) can be efficiently calculated from its PCE coefficients

E
[
V
]
= v0, V

[
V
]
=
∑L−1

j=1 (v
j)2∥ϕj∥2, Σ

[
V
]
=
∑L−1

j=1 vjvj⊤∥ϕj∥2, (5)

where (vj)2
.
= vj ◦ vj denotes the Hadamard product (Lefebvre, 2021). Finally, observe that (finite

or infinite) PCEs of L2 random variables constitute linear representations of random variables.
To the end of reformulation of (1) with finite dimensional PCEs, we assume that Zini and

Wk, k ∈ N+ admit exact PCEs in the basis {ϕj
ini}

Lini−1
j=0 , respectively, in the basis {φj

k}
Lw−1
j=0 . Con-

sider system (1) for a finite horizon N ∈ N and the finite-dimensional joint basis

{ϕj}L−1
j=0 =

{
1, {ϕj

ini}
Lini−1
j=1 ,

⋃N−1
i=0 {φj

i}
Lw−1
j=1

}
, L = Lini +N(Lw − 1) ∈ N+. (6)

Then, for all k ∈ I[0,N−1], Uk, Yk, and thus Zk also admit exact PCEs in the chosen basis if Uk

is determined from an affine function of the extended state Zk, cf. the formal proofs given in (Pan
et al., 2022a,b). Note that the key aspect of {ϕj}L−1

j=0 is that it is the union of the bases for Zini and
Wk, k ∈ I[0,N−1]. Thus, PCE enables uncertainty propagation over any finite prediction horizon.

Replacing all random variables in (1) with their PCE representation in the basis {ϕj}L−1
j=0 and

projecting onto the basis functions ϕj , we obtain the dynamics of the PCE coefficients. For given
zjini and wj

k, k ∈ N, the dynamics of the PCE coefficients read

yjk = Φzjk +Dujk + wj
k, zj0 = zjini, j ∈ I[0,L−1]. (7)

2.3. Data-driven system representation via a stochastic fundamental lemma

It is the linearity of the series expansion which ensures that the original stochastic system (1) and
its PCE formulation (7) are structurally similar. Subsequently, we recall a stochastic variant of
Willems’ fundamental lemma which exploits this structural similarity.
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Definition 2 (Persistency of excitation (Willems et al., 2005)) Let T, t ∈ N+. An input sequence

u[0,T−1] is said to be persistently exciting of order t if the Hankel matrix Ht(u[0,T−1])
.
=

[
u0 ··· uT−t

...
. . .

...
ut−1 ··· uT−1

]
is of full row rank.

Lemma 3 (Lem. 4, Cor. 2 (Pan et al., 2022b)) Let Assumption 1 hold. Consider system (1) and a
T -length realization trajectory tuple (u,w,y)[0,T−1] of its corresponding realization dynamics (2).
Let (u,w)[0,T−1] be persistently exciting of order nx + t. Then (U,W,Y)[0,t−1] is a trajectory of

(7) if and only if there exists G ∈ L2(Ω,F , µ;RT−t+1) such that Ht(v[0,T−1])G = Ṽ[0,t−1] holds
for all (v,V) ∈ {(u,U), (w,W), (y,Y)}.

Moreover, (u,w, y)j[0,t−1],, j ∈ I[0,L−1] is a trajectory of the dynamics of PCE coefficients (7) if

and only if there exists gj ∈ RT−t+1 such that Ht(v[0,T−1])g
j = vj[0,t−1], j ∈ I[0,L−1], holds for all

(v, v) ∈ {(u, u), (w,w), (y, y)}. □

As the page limit prohibits the detailed discussion of the above we refer to Pan et al. (2022b);
Faulwasser et al. (2023) for proofs and examples. However, the key insight underlying the above
results is that the dynamics of random variables (1), its realization dynamics (2), and the dynamics
of PCE coefficients (7) share the same system structure and matrices. Hence, their finite-length
trajectories can be linked to the trajectories of realization dynamics (2) as shown in Lemma 3. Put
differently, in Lemma 3 Hankel matrices in measured realization data are used to predict the future
evolution of random variables.

3. Data-driven stochastic output-feedback predictive control

In this section, we extend the data-driven stochastic output-feedback predictive control by Pan et al.
(2022a) through interpolation of the initial condition. We provide sufficient conditions for recursive
feasibility and a bound on the asymptotic average performance of the extended scheme.

3.1. Data-driven stochastic OCP with interpolated initial conditions

Consider the stochastic LTI system (1), its realization dynamics (2), and its PCE coefficients dynam-
ics (7) with respect to the basis {ϕj}L−1

j=0 , cf. (6). Suppose that a realization trajectory (u,w,y)[0,T−1]

of (2) is available with (u,w)[0,T−1] persistently exciting of order nx +N + Tini.
In the following, consider v .

= [v0⊤, v1⊤, . . . , vL−1⊤]⊤ as the vectorization of PCE coefficients
over PCE dimensions, and let vji|k be the predicted value of vjk+i at time instant k, v ∈ {u, y, z}.
At time instant k ∈ N, given the PCE coefficients of the disturbances, i.e. wk+i, i ∈ I[0,N−1], the
realization of the current extended state zk, and the predicted PCE coefficients from last step z⋆1|k−1,
we consider the following data-driven stochastic OCP

VN

(
zk, z

⋆
1|k−1

)
.
= min

(u,y,z)··|k,g
·,µ

L−1∑
j=0

∥ϕj∥2
(

N−1∑
i=0

(
∥yji|k∥

2
Q + ∥uji|k∥

2
R

)
+ ∥zjN |k∥

2
P

)
(8a)

subject to

 HN+Tini(u[0,T−1])

HN+Tini(y[0,T−1])

HN (w[Tini,T−1])

 gj =

 uj[−Tini,N−1]|k
yj[−Tini,N−1]|k
wj
[k,k+N−1]

 , ∀j ∈ I[0,L−1] (8b)
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z0|k ∈ Zini

(
µ, zk, z

⋆
1|k−1

)
(8c)

u0i|k ± σ(εu)
√∑L−1

j=1 (u
j)2⟨ϕj⟩2 ∈ U, y0i|k ± σ(εy)

√∑L−1
j=1 (y

j)2⟨ϕj⟩2 ∈ Y, ∀i ∈ I[0,N−1] (8d)

uj
′

i|k = 0, ∀j′ ∈ I[Lini+i(Lw−1),L−1], ∀i ∈ I[0,N−1], (8e)

z0N |k ∈ Zf,
∑L−1

j=1 zj⊤N |kΓz
j
N |k∥ϕ

j∥2 ≤ γ, (8f)

zji|k =
[
uj⊤[i−Tini,i−1]|k, y

j⊤
[i−Tini,i−1]|k

]⊤
, i ∈ I[0,N ], j ∈ I[0,L−1]. (8g)

Observe that the decision variables z are redundant. They are introduced for the sake of compact
notation and they can easily be avoided via (8g). The objective function (8a) penalizes the predicted
input and output PCE coefficients with R = R⊤ ≻ 0 and Q = Q⊤ ≻ 0. Moreover, P = P⊤ ≻ 0
characterizes the terminal cost with respect to the PCE coefficients zjN |k. Formulated in terms of
PCE coefficients, the objective function (8a) is equivalent to the expected value of its counterpart
with random variables (Pan et al., 2022b). The linear equalities (8b)–(8c) encode the dynamics of
the PCE coefficients (7) in a non-parametric fashion and based on measured data, cf. Lemma 3.

Furthermore, (8d) is a usually conservative approximation of chance constraints with σ(εv) =√
(2− εv)/εv, v ∈ {u, y} (Farina et al., 2013). The required probabilities are indicated by 1 − εu

and 1− εy. Causality is ensured in (8e) by specifying the PCE coefficients of Ui|k to be zero if they
correspond to the non-past disturbances Wi′ , i′ ≥ i. The terminal constraints are specified in (8f).
Specifically, considering ZN |k

.
=
∑L−1

j=0 zjN |kϕ
j , the terminal constraints (8f) require the expected

value of ZN |k to be inside of the terminal region Zf and the trace of its covariance weighted by Γ to
be smaller than γ ∈ R+. Precisely, the terminal ingredients satisfy the following assumption.

Assumption 2 (Terminal ingredients (Pan et al., 2022a)) Consider system (4) given by the ma-
trices Ã, B̃, and Ẽ. There exist matrices P = P⊤ ≻ 0 ∈ Rnz×nz , Γ = Γ⊤ ≻ 0 ∈ Rnz×nz ,
K ∈ Rnu×nz and a positive real number γ ∈ R+ such that AK = Ã+B̃K is Schur, A⊤

KPAK−P =

−K⊤RK −A⊤
KẼQẼ⊤AK , A⊤

KΓAK −Γ = −Inz , and γ = λmax(Γ) · trace
(
ΣW Ẽ⊤ΓẼ

)
. More-

over, there exists a set Zf ⊆ UTini×YTini such that for all z[0,L−1] satisfying (8f), we have AKz0 ∈ Zf,

Kz0+σ(εu)
√∑L−1

j=1 (Kzj)2∥ϕj∥2 ∈ U, and Ẽ⊤AKz0+σ(εy)
√∑L−1

j=1 (Ẽ⊤AKzj)2∥ϕj∥2 + V[W ] ∈
Y.

For more details on the data-driven design of the terminal ingredients, we refer to the discussions
by Pan et al. (2022a).

The initial condition of OCP (8) is considered in (8c). Given z⋆1|k−1 as the predicted value of zjk
with respect to the optimal solution at time instant k − 1, we specify the constraint set in (8c) as

Zini

(
µ, zk, z

⋆
1|k−1

)
.
=


z0|k

∣∣∣∣∣∣∣∣∣∣∣∣

z00|k = µzk + (1− µ)z0,⋆1|k−1, 0 ≤ µ ≤ 1

Lini−1∑
j=1

zj0|kz
j⊤
0|k∥ϕ

j∥2 = (1− µ)2
L−1∑
j=1

zj,⋆1|k−1z
j,⋆⊤
1|k−1∥ϕ

j∥2

zj0|k = 0, j = I[Lini,L−1].


(9)

Note that in (9) we consider the initial condition Z0|k =
∑L−1

j=0 zj0|kϕ
j to be a random variable

rather than the current realization zk. Specifically, as µ ∈ [0, 1] we enforce the expected value

6
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(the PCE coefficients with j = 0) and the covariance of Z0|k to be a convex combination of zk
and Z⋆

1|k−1 =
∑L−1

j=0 zj,⋆1|k−1ϕ
j which is the predicted valued of Zk. In addition, we can design the

distribution of Z0|k by the choice of {ϕj
ini}

Lini−1
j=0 which is equivalent to {ϕj}Lini−1

j=0 as shown in (6).
For the sake of efficient computation, we consider {ϕj

ini}
Lini−1
j=1 to be nz dimensional i.i.d. Gaussian,

ϕ0
ini = 1, Lini = nz + 1, ϕj

ini ∼ N (0, 1), ∀j ∈ I[1,nz ]. (10)

This way, we have Z0|k also to be Gaussian since it is a linear combination of {ϕj
ini}

Lini−1
j=0 . Notice

that this choice does not prevent the consideration of non-Gaussian disturbances since the basis φj

for disturbances in (6) is chosen according to the underlying distribution.
Moreover, with {ϕj

ini}
Lini−1
j=0 satisfying (10), we reformulate the quadratic and nonconvex equal-

ity constraints of (9) in a linear fashion. Specifically, note that the right-hand-side matrix of the
quadratic equality constraint Qrhs

.
=
∑L−1

j=1 zj,⋆1|k−1z
j,⋆⊤
1|k−1∥ϕ

j∥2 = Q⊤
rhs ⪰ 0 is known prior to solv-

ing the OCP. Hence, we can compute its eigen-decomposition Qrhs = Urhs DrhsU
⊤
rhs, where Drhs

is a diagonal matrix with non-negative elements. Then, one positive semi-definite solution of the
non-convex quadratic equality constraint reads

[z10|k, z
2
0|k, . . . , z

nz

0|k] = (1− µ)UrhsD
1
2
rhsU

⊤
rhs, (11)

since ∥ϕj∥2 = ∥ϕj
ini∥2 = 1 holds for j ∈ I[1,nz ] if (10) is considered. Substituting the second

constraint of (9) by (11), we avoid the non-convexity at the cost of computing one small-scale
eigen-decomposition prior to each optimization. This reformulation may cause performance loss
since it replaces the original quadratic equality with one specific feasible solution.

3.2. Predictive control scheme and closed-loop properties

With the interpolated initial conditions, we extend the output-feedback stochastic data-driven pre-
dictive control scheme proposed by Pan et al. (2022a) based on OCP (8).

The predictive control scheme consists of an off-line data collection phase and an on-line op-
timization phase. In the off-line phase, a random input and disturbance trajectory (u,w)[0,T−1] is
generated to obtain y[0,T−1]. Note that the disturbance trajectory w[0,T−1] can also be estimated
from output data, cf. (Pan et al., 2022b; Wang et al., 2022b) for details. Moreover, the recorded
input, output, and disturbance trajectories are used to determine the terminal ingredients and to
construct the Hankel matrices for OCP (8).

In the on-line optimization phase, we assume the OCP (8) is feasible at time instant k = 0
with z0,⋆1|−1 = z0, z

j,⋆
1|−1 = 0, j ∈ I[1,L−1] in (8c) such that only the measured initial condition z0 is

considered. Then at each time k, we solve OCP (8) to obtain the PCE coefficients of the first optimal
input and the interpolated initial condition, i.e. uj,⋆0|k and zj,⋆0|k, respectively. Notice that uj,⋆0|k = 0
holds for j ∈ I[Lini,L−1] due to the causality condition (8e). Specifically, we consider the feedback
input ucl

k as a realization of random variable given by uj,⋆0|k, that is ucl
k =

∑Lini−1
j=0 uj,⋆0|kϕ

j
ini(ω), where

{ϕj
ini(ω)}

Lini−1
j=1 are obtained by considering the the current measured zk as a realization of random

variable given by zj,⋆0|k, cf. (Pan et al., 2022a). With the basis for the initial condition as specified in

(10), ucl
k =

∑Lini−1
j=0 uj,⋆0|kϕ

j
ini(ω) then is a linear system of equations. Finally, the optimal solution to

OCP (8) is indeed an affine feedback policy in the realizations ϕj
ini(ω).

7
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Applying the feedback input ucl
k determined from above, the closed-loop dynamics of (2) for a

given initial condition zcl
ini and disturbances {wk}k∈N read

ycl
k = Φzcl

k +Ducl
k + wk, zcl

0 = zcl
ini. (12a)

Moreover, we obtain the sequence VN,k ∈ R, k ∈ N corresponding to the optimal value function of
(8) evaluated in the closed loop. Accordingly, considering a probabilistic initial condition Zcl

ini and
probabilistic disturbance Wk, k ∈ N, we obtain the closed-loop dynamics in random variables

Y cl
k = ΦZcl

k +DU cl
k +Wk, Zcl

0 = Zcl
ini, (12b)

where conceptually the realization of U cl
k is ucl

k . Similarly, we define the probabilistic optimal cost
VN,k ∈ L2(Ω,F , µ;R) as VN,k(ω) = VN,k. The following theorem summarizes the closed-loop
properties of the proposed scheme.

Theorem 4 (Recursive feasibility and asymptotic average cost bound) Consider the closed-loop
dynamics (12) resulting from the proposed predictive control algorithm based on OCP (8). Let As-
sumptions 1–2 hold. Suppose that at time instant k = 0, OCP (8) is feasible with the initial condition
in (8c) as z0,⋆1|−1 = zcl

0 = zcl
ini, z

j,⋆
1|−1 = 0, j ∈ I[1,L−1]. Then, OCP (8) is feasible at all time instants

k ∈ N+ with the initial condition in (8c) updated with the current measured initial condition zcl
k

and the predicted PCE coefficients z⋆1|k−1 based on the optimal solution of the previous solution
obtained at k − 1.

Moreover, let α .
= trace

(
ΣW (Q+ Ẽ⊤PẼ)

)
∈ R+, then the following statements hold:

(i) The optimal performance index of OCP (8) at consecutive time instants satisfies
E [VN,k+1 − VN,k] ≤ −E

[
∥U cl

k ∥2R + ∥Y cl
k ∥2Q

]
+ α.

(ii) In addition, limk→∞
1
k

∑k
i=0 E

[
∥U cl

i ∥2R + ∥Y cl
i ∥2Q

]
≤ α, i.e., the asymptotic average cost of

the proposed algorithm is bounded from above by α.

Proof (Sketch) In Pan et al. (2022a), we present sufficient conditions for recursive feasibility and
the asymptotic average cost bound of the aforementioned predictive scheme with binary selection of
initial condition, i.e. µ ∈ {0, 1}. The proof relies on the fact that with µ = 1 OCP (8) is recursively
feasible, cf. (Pan et al., 2022a, Proposition 1). Hence, with the interpolation condition (9), i.e.
µ ∈ [0, 1], the recursive feasibility naturally holds since µ = 1 is included. Moreover, due to the
optimization over the initial condition, the optimal cost VN,k with µ ∈ [0, 1] is bounded from above
by the one with µ ∈ {0, 1}, which allows to infer the bound for the asymptotic average cost via the
proof of (Pan et al., 2022a, Theorem 1).

4. Numerical Example

We consider the LTI aircraft model given by Maciejowski (2002) exactly discretized with sampling
time ts = 0.5 s. The system matrices are

Φ =

− 0.019 − 1.440 − 0.201 0.256 0.050 0.160 − 0.256 0.0860
0.711 − 1.800 − 4.773 3.6875 0.650 2.982 − 2.688 1.707
1.444 − 26.922 − 15.746 12.898 2.319 10.461 −12.897 5.171

,
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and D = 03×1 with ny = 3, nu = 1, Tini = 2, and thus nz = 8. Its minimal state-space
representation with nx = 4 can be found in (Pan et al., 2022b). As the simulated plant, we consider
the system dynamics (1), where Wk, k ∈ N are i.i.d. uniform random variables with their support
on [−0.01, 0.01] × [−1, 1] × [−0.1, 0.1]. Note that Y j denotes the j-th element of Y . We impose
a chance constraint on Y 1, i.e. P[Y 1 ∈ Y1] ≥ 1 − εy, where Y1 = [−1, 1], εy = 0.1, and
σ(εy) =

√
(2− εy)/εy = 4.359. The weighting matrices are Q = diag([1, 1, 1]) and R = 1.

We apply the proposed scheme with prediction horizon N = 10. In the data collection phase
we record input-output trajectories of 90 steps to construct the Hankel matrices and to determine
terminal ingredients P , Γ, γ and Zf, cf. (Pan et al., 2022a). To obtain an exact PCE for each
component of Wk, we employ Legendre polynomials component-wisely such that Lw = 4. As
shown in (10), we choose the basis for initial condition accordingly with Lini = 1 + nz = 9. Thus,
from (6), the dimension of the overall PCE basis as L = 39.

With 50 different sampled sequences of disturbance realizations, we show the corresponding
closed-loop realization trajectories of the proposed scheme in the left top of Figure 1. It can be
seen that the chance constraint for output Y 1 is satisfied with a high probability, while Y 2 and Y 3

converged to a neighborhood of 0. The averaged-in-time cost trajectories are depicted in the left
bottom of Figure 1 in a semi-logarithmic plot. We see the sampled averaged asymptotic value is
251.0 and is bounded from above by α = 295.21. This is in line with the insights of Theorem 4.
To illustrate the evolution of statistical distributions of the closed-loop trajectories (12b), we sample
a total of 1000 sequences of disturbance realizations and initial conditions around [0,−100, 0]⊤.
Then, we compute the corresponding closed-loop responses. The time evolution of the normalized
histograms of the output realizations y2 at k = 0, 5, 10, 15, 20 is depicted in the right of Figure 1,
where the vertical axis can be regarded as the approximated probability density of Y 2. As one can
see, the proposed control scheme controls the system to a narrow distribution for Y 2 centred at 0.

Furthermore, we compare the proposed scheme with the interpolation of initial conditions to
the binary selection in Pan et al. (2022a). This is done by evaluating the 50-steps closed-loop
system responses for both schemes with the same closed-loop initial condition zcl

ini and the same
disturbance sequence {wk}k∈N. The binary selection scheme takes about 100.68 s to evaluate, while
the proposed interpolation scheme takes 54.44 s. The reason for this performance difference lies in
the fact that the binary scheme occasionally needs to solve two OCPs. More precisely, the binary
scheme solves two OCPs 28 times in the 50 time steps that is about 60% of the whole closed-loop
steps. As shown in Figure 2, the system responses are almost identical for the two schemes with the
maximal input difference of 4.29 · 10−8 rad. The evolution of the interpolation scalar µ is depicted
in the last plot of Figure 2.

5. Conclusion

This paper has investigated data-driven stochastic output-feedback predictive control of linear time-
invariant systems. We have shown that the concept of interpolating initial conditions can and should
be exploited in the data-driven stochastic setting. Specifically, we have given sufficient conditions
for recursive feasibility and practical stability as well as a corresponding performance bound. Nu-
merical results illustrate the efficacy of the proposed approach. Our results, which are based on
a recently proposed stochastic extension to Willems’ fundamental lemma, underpin that stochas-
tic predictive control can be formulated in data-driven fashion. Future work will consider tailored
numerical methods for real-time feasible implementation and less restrictive stability conditions.
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Figure 1: (Left-top) 50 different closed-loop realization trajectories. The red-dashed lines show the
chance constraints. (Left-bottom) Averaged cost (over time) of 50 different closed-loop
realization trajectories. The red dashed lines depict the averaged asymptotic cost over
samplings; the blue dash-dotted line denotes the bound α as in Theorem 4. (Right) His-
tograms of the output Y 2 from 1000 closed-loop realization trajectories.
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Figure 2: Comparison of system responses for schemes with the interpolation or the binary selec-
tion of the initial conditions. The black line denotes the system response of the interpola-
tion scheme; the red dashed line denotes the system response of the binary scheme.
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