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Abstract
In this work, we propose a dissipativity-based method for Lipschitz constant estimation of 1D
convolutional neural networks (CNNs). In particular, we analyze the dissipativity properties of
convolutional, pooling, and fully connected layers making use of incremental quadratic constraints
for nonlinear activation functions and pooling operations. The Lipschitz constant of the concatena-
tion of these mappings is then estimated by solving a semidefinite program which we derive from
dissipativity theory. To make our method as efficient as possible, we exploit the structure of con-
volutional layers by realizing these finite impulse response filters as causal dynamical systems in
state space and carrying out the dissipativity analysis for the state space realizations. The examples
we provide show that our Lipschitz bounds are advantageous in terms of accuracy and scalability.
Keywords: Convolutional neural networks, robustness, dissipativity, incremental quadratic con-
straints

1. Introduction

Convolutional neural networks (CNNs) achieve excellent results in practical applications, wherein
convolutional layers detect meaningful features in small sections of an input signal while necessitat-
ing significantly fewer parameters than fully connected layers. CNNs have hence become the state
of the art in many machine learning applications. While 2D CNNs are prevalently used in image and
video processing, applications of 1D CNNs include classification of medical data, health monitor-
ing, fault detection in electrical machines, and audio processing (Kiranyaz et al., 2021; Oord et al.,
2016). Safety-critical applications especially require neural networks (NNs) to perform robustly
and reliably, for which the Lipschitz constant has become a generally accepted robustness measure
(Szegedy et al., 2013). Thus, recently, efforts have been made to finding accurate upper bounds on
the Lipschitz constant of NNs. For example, Latorre et al. (2020) formulated a polynomial opti-
mization problem for Lipschitz constant estimation and in particular, they study Lipschitz bounds
of general CNNs with respect to the ℓ∞ norm. Combettes and Pesquet (2020) proposed bounds
viewing activation functions as averaged operators and Fazlyab et al. (2019) derived a semidefinite
program (SDP) based on incremental quadratic constraints (QCs) to over-approximate the nonlinear
activation functions. However, both latter methods have limited scalability to NNs of practically rel-
evant scale. One reason for this limitation in (Fazlyab et al., 2019) is the use of a sparse linear matrix
inequality (LMI). Newton and Papachristodoulou (2021); Xue et al. (2022) suggested to exploit the
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underlying structure of this LMI, i. e., its chordal sparsity pattern, to break down the corresponding
LMI into multiple smaller LMIs. Similarly, we consider properties of individual layers, also yield-
ing a set of smaller layer-wise LMIs instead of one large and sparse one, which is advantageous in
terms of computational tractability of the underyling SDP.

Previous SDP-based approaches (Fazlyab et al., 2019; Xue et al., 2022) are formulated for fully
connected NNs, yet they can be applied to CNNs by transforming the convolutional layers to fully
connected layers. This corresponds to studying the Toeplitz matrices of the convolutional layers
(Pauli et al., 2022a; Aquino et al., 2022), that, unfortunately, are highly redundant, i. e., they have
a high degree of sparsity and repeated entries, which causes a significant computational overhead.
Our approach of viewing convolutional layers as dynamical systems reduces this redundancy by
exploiting the structure of CNNs in SDP-based Lipschitz constant estimation, which thus leads to
better scalability. This observation that convolutional layers are dynamical systems is non-trivial
to exploit, since other components of CNNs, such as pooling layers, are not linear time-invariant
systems. We handle this heterogeneous feed-forward interconnection of systems (layers) by carry-
ing out a dissipativity analysis for each layer type separately. Subsequently, we derive the Lipschitz
bound of the input-output mapping based on the dissipativity properties of each individual layer and
the underlying feed-forward interconnection of the CNN, like it is oftentimes done in multi-agent
control (Arcak et al., 2016) or has been suggested for the robustness analysis of NNs (Aquino et al.,
2022). Other than previous works, our approach considers pooling layers in the Lipschitz constant
estimation, by deriving incremental QCs for them. In this work, we focus on 1D CNNs to lay out
our novel dissipativity-based concept for the derivation of an SDP for Lipschitz constant estima-
tion. However, using a compact 2D systems respresenation of 2D CNNs (Gramlich et al., 2023),
the framework can be extended to the more popular class of 2D CNNs. Note further that in the
same way (Fazlyab et al., 2019) can be applied to CNNs, our approach can be applied to 2D CNNs,
necessitating to represent 2D convolutions as 1D convolutions.

Our main contributions can be summarized as follows. We provide a first result on how to
exploit CNN structures in SDP-based Lipschitz constant estimation. To this end, we introduce a
dissipativity-based method to derive layer-wise LMIs. Both our compact description of convolu-
tions and the layer-wise LMIs improve the computational tractability over previous approaches. In
Section 2, we formally state the problem and in Section 3, we outline the dissipativity-based ap-
proach for Lipschitz constant estimation for 1D CNNs. In doing so, we introduce the description
of convolutional layers in state space, derive incremental QCs for the nonlinear activation functions
and pooling layers, and subsequently, we establish an SDP to determine an upper bound on the
Lipschitz constant for a given 1D CNN. Finally, in Section 4 we compare our approach to Fazlyab
et al. (2019) in terms of computation time and accuracy and, in Section 5, we conclude the paper.

Notation: By Sn (Sn+), we denote the set of n-dimensional symmetric (positive definite) matri-
ces. By Dn (Dn

+), we denote the set of n-dimensional (positive definite) diagonal matrices, and by
N+ the natural numbers without zero. I is a set of indices with elements i ∈ N+, and |I| gives the
number of elements in the index set I. The subscripts a, b in νa and νb label two instances of ν.

2. Problem statement

We consider a 1D CNN as shown in Fig. 1, consisting of convolutional layers Ci : Rci−1×Ni−1 →
Rci×Ni with indices i ∈ IC , pooling layers Pi : Rci−1×Ni−1 → Rci×Ni with indices i ∈ IP ,
and fully connected layers Li : Rni−1 → Rni with indices i ∈ IF , adding up to a total number of
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Figure 1: 1D CNN structure of (1) including convolutions, pooling and linear layers as well as
nonlinear activation functions and a flattening layer.

l = |IC |+ |IP |+ |IF | layers. Here, ci−1 and ci denote the input and output channel sizes, Ni−1 and
Ni the input and output dimensions in pooling and covolutional layers, and ni−1 and ni the input
and output dimensions in fully connected layers, respectively. We study the CNN as a concatenation
of the individual layers

CNNθ = Ll ◦ . . . ◦ Lp+1 ◦ F ◦ Pp ◦ Cp−1 ◦ . . . ◦ P2 ◦ C1, (1)

wherein the only formal restriction is the separation into two parts: (i) the part containing fully
connected layers IF = {p + 1, . . . , l} and (ii) the part consisting of convolutional and pooling
layers IC ∪ IP = {1, . . . , p} where p is the index of the last layer of part (ii), which can either be a
convolutional or a pooling layer. Further, the transition between the two parts requires a flattening
operation F : Rcp×Np → Rnp of the output of the p-th layer, where np = cpNp.

To enable an efficient description of the layers constituting the CNN (1), we denote the signals
between those layers by wi, i. e., wi = Ci(wi−1), wi = Li(w

i−1), or wi = Pi(w
i−1) depending

on the type of the i-th layer. Note that a signal wi can either be an element of Rci×Ni in the case
of the convolutional part (ii) of the network, or an element of Rni in the case of the fully connected
part (i) of the network. With this notation, we define each layer (Ci/Pi/Li) through the way it acts
on its input wi−1. A convolutional layer

Ci : wi
k = ϕi

bi +

ℓi−1∑
j=0

Ki
jw

i−1
k−j

 , k = 0, . . . , Ni − 1, ∀i ∈ IC , (2)

with convolution kernel Ki
j ∈ Rci×ci−1 , j = 0, . . . , ℓi − 1, kernel size ℓi, and bias bi ∈ Rci , as the

first instance, performs a convolution on wi−1 ∈ Rci−1×Ni−1 and subsequently, applies an element-
wise nonlinear activation function ϕi : Rci → Rci to obtain the output wi ∈ Rci×Ni , wherein we
denote all entries along the channel dimension at propagation/time step k by wi

k ∈ Rci . Note that in
(2) we define wi−1

k−j as zero whenever k − j ≤ 0, i. e., we apply zero padding.
In order to downsample a signal wi−1 convolutional layers are potentially followed by pooling

layers. To this end, we consider average pooling layers and maximum pooling layers

Pav
i : wi

k =
1

ℓi

ℓi∑
j=1

wi−1
ℓi(k−1)+j , Pmax

i : wi
k = max

j=1,...,ℓi
wi−1
ℓi(k−1)+j ,

k = 0, . . . , Ni − 1,

∀i ∈ IP ,
(3)
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where ℓi is the size of the pooling kernel, which both are standard components in CNNs. Throughout
this paper, we only consider the case that stride and kernel size are both ℓi, such that the output
dimension is Ni = Ni−1/ℓi, which requires that ℓi divides Ni−1. However, the approach can be
extended to the general case of stride and pooling kernel size being different.

Finally, a CNN typically holds fully connected layers, which we define as mappings

Li : w
i = ϕi(Wiw

i−1 + bi) ∀i ∈ IF \{l}, Ll : w
l = Wlw

l−1 + bl (4)

with weights Wi ∈ Rni×ni−1 , biases bi ∈ Rni and activation functions ϕi : Rni → Rni .
The CNN fθ(w

0) = wl is thus characterized by θ = {{Ki, bi}i∈IC , {Wi, bi}i∈IF } and the
chosen pooling layers and nonlinear activation functions. The aim of this paper is to find a Lipschitz
certificate γ for 1D CNNs.

Problem 1 For a given 1D convolutional neural network CNNθ with fixed parameter θ, find an
upper bound on the Lipschitz constant, i. e., find a value γ > 0 such that

∥CNNθ(w
0
a)− CNNθ(w

0
b )∥2 ≤ γ∥w0

a − w0
b∥2 ∀w0

a, w
0
b ∈ RN0 . (5)

3. Dissipativity-based Lipschitz constant estimation for 1D CNNs

To solve Problem 1, we establish dissipativity properties for the individual layers, i. e., we find Qi,
Si, Ri that satisfy the incremental quadratic constraints

s(∆wi−1,∆wi) :=

[
wi

a − wi
b

wi−1
a − wi−1

b

]⊤ [
Qi Si

S⊤
i Ri

] [
wi

a − wi
b

wi−1
a − wi−1

b

]
≥ 0 ∀wi−1

a , wi−1
b ∈ Rni−1 (6)

for each Ci-, Li-, and Pi-layer, where wi−1 denotes a column-wise stacked vector of dimension
ni = ciNi if it comes from Rci×Ni and corresponds to wi−1 if it comes from Rni , and where
∆wi = wi

a − wi
b. To further estimate the Lipschitz constant of the input-output mapping of the

1D CNN (1), we connect the different layers through their dissipativity properties, considering the
CNN’s cascaded interconnection structure. To account for this structure, we introduce the block-
tridiagonal coupling matrix (Kanellopoulos et al., 2019)

H :=



γ2I −R1 −S⊤
1 0 . . . 0

−S1 −Q1 −R2 −S⊤
2

. . .
...

0 −S2 −Q2 −R3
. . . 0

...
. . . . . . . . . −S⊤

l

0 . . . 0 −Sl −Ql − I


⪰ 0, (7)

where the layer indices {1, . . . , l} = IC ∪IP ∪IF count through all |IC | convolutional layers, |IP |
pooling layers, and |IF | fully connected layers.

Theorem 1 Let CNNθ and γ > 0 be given. If there exist Qi ∈ Sni , Si ∈ Rni×ni−1 , Ri ∈ Sni−1

such that (6) is satisfied for all i = 1, . . . , l layers and if in addition (7) holds, then the CNNθ is
γ-Lipschitz continuous.
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Proof We left and right multiply (7) by
[
∆w0⊤ ∆w1⊤ . . . ∆wl⊤

]
and its transpose, respec-

tively, and obtain

γ2∆w0⊤∆w0−s(∆w0,∆w1)︸ ︷︷ ︸
≤0

− . . .−s(∆wl−1,∆wl)︸ ︷︷ ︸
≤0

−∆wl⊤∆wl ≥ 0,

The supply functions s(∆wi−1,∆wi) are nonnegative by (6) which implies γ2∥∆w0∥22−∥∆wl∥22 ≥
0, i. e., γ-Lipschitz continuity of CNNθ.

In the following Sections 3.1 to 3.3, we discuss incremental QCs for the different layer types and
in Section 3.4, we establish an SDP that renders Theorem 1 computational, providing an accurate
upper bound on the Lipschitz constant of a given 1D CNN.

3.1. Incremental quadratic constraints for convolutional layers

Previous approaches to analyze the Lipschitz constant of CNNs using LMIs and incremental QCs
rely on rewriting convolutional layers as sparse fully connected layers using Toeplitz matrices (Pauli
et al., 2022a; Aquino et al., 2022). In the present section, we introduce a compact and non-sparse
state space representation for convolutional layers which significantly reduces the size of the convo-
lutional layer description, yielding a scalable SDP-based approach for Lipschitz constant estimation.

A discrete-time state space representation of the finite impulse response (FIR) filter (2) is, for
example, given by

xik+1 = Aix
i
k +Biw

i−1
k , yik = Cix

i
k +Diw

i−1
k + bi, wi

k = ϕ(yik) ∀i ∈ IC

with state xk ∈ Rnxi and state dimension nxi = (ℓi − 1)ci−1. Here, the matrices Ai, Bi, Ci, Di are

Ai =

[
0 I
0 0

]
, Bi =

[
0
I

]
, Ci =

[
Ki

ℓi−1 . . . Ki
1

]
, Di = Ki

0

or similarity transformations (EAE−1, EB,CE−1, D) thereof for some invertible E ∈ Rnxi×nxi .
Note that the formulation of a state space representation of (2) requires causality. In standard CNN
literature, 1D convolutions are given by an acausal FIR filter yik = bi+

∑ℓ̃i
j=−ℓ̃i

Ki
jw

i−1
k−j . A change

of indices, however, yields (2). One clear advantage of representing the convolutional layer com-
pactly in state space rather than by a Toeplitz matrix is that it is independent of the signal’s input
dimension Ni−1 and scales with the channel sizes ci−1 and ci and the kernel size ℓi of the convolu-
tion filter instead. This means that the computational expense of analyzing a convolutional layer is
the same for inputs of arbitrary input dimension Ni−1.

In addition to the convolution operation, a convolutional layer (2) consists of a nonlinear acti-
vation function. Commonly used activation functions, such as ReLU, tanh and sigmoid, are slope-
restricted which can be captured by an incremental QC as follows.

Lemma 2 (Fazlyab et al. (2019); Pauli et al. (2022c)) Let φ : R → R be slope-restricted on
[0, 1]. Then, for any Λi ∈ Dci

+ the vector-valued function ϕ(νi) =
[
φ(νi1) . . . φ(νici)

]⊤
: Rci →

Rci satisfies [
ϕ(νia)− ϕ(νib)

νia − νib

]⊤ [
−2Λi Λi

Λi 0

] [
ϕ(νia)− ϕ(νib)

νia − νib

]
≥ 0 ∀ νia, ν

i
b ∈ Rci . (8)
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By virtue of Lemma 2, we replace constraints wi
a −wi

b = ϕ(νia)− ϕ(νib) with the inequality (8)
which relaxes the nonlinear constraint. This kind of approach is common practice in robust control
(Scherer and Weiland, 2000), where control engineers routinely interpret nonlinearities, such as
slope-restricted activation functions, as uncertainties and use QCs to perform a convex relaxation of
the constraints imposed by these nonlinearities to render a problem computationally tractable.

Using these QCs and the state space realization of the convolution, we introduce the concept
of layer-wise incremental dissipativity for an individual convolutional layer (2). We denote the
incremental difference of the unrolled signal by ∆wi = wi

a − wi
b and the incremental difference at

propagation step k by ∆i
w = wi

a,k − wi
b,k.

Definition 3 (Incremental dissipativity of convolutional layers) We call the i-th convolutional
layer Ci incrementally (Q,S,R)-dissipative if any input-output pair {∆wi−1,∆wi} stemming from
(2) satisfies

s(∆wi−1,∆wi) =

Ni−1∑
k=0

∆i
w
⊤
Q̃i∆

i
w + 2∆i

w
⊤
S̃i∆

i−1
w +∆i−1

w
⊤
R̃i∆

i−1
w ≥ 0 ∀ Ni ∈ N+ (9)

with some matrices Q̃i ∈ Sci , S̃i ∈ Rci×ci−1 , R̃i ∈ Sci−1 .

Such incremental dissipativity certificates can capture, e.g., Lipschitz continuity (Q̃i = −I , R̃i =
γ2I , S̃i = 0), slope restriction (Q̃i = 0, R̃i = 2Λi, S̃i = −Λi) or other behavioral properties such
as incremental passivity (Q̃i = R̃i = 0, S̃i = I) (Hill and Moylan, 1976). Our goal is to find some
Q̃i, S̃i, and R̃i such that the i-th convolutional layer satisfies (9). The following lemma provides us
with a sufficient condition for dissipativity of convolutional layers Ci.

Lemma 4 If for some matrices Q̃i ∈ Sci , S̃i ∈ Rci×ci−1 , R̃i ∈ Sci−1 there exist Pi ∈ Snxi
+ ,

Λi ∈ Dci
+ such that Pi −A⊤

i PiAi −A⊤
i PiBi −C⊤

i Λi

−B⊤
i PiAi R̃i −B⊤

i PiBi S̃⊤
i −D⊤

i Λi

−ΛiCi S̃i − ΛiDi 2Λi + Q̃i

 ⪰ 0 (10)

holds, then the i-th convolutional layer Ci is (Q,S,R)-dissipative.

The proof follows along the lines of typical arguments used in dissipativity analysis (Goodwin and
Sin, 2014) and robust control (Scherer and Weiland, 2000) and is for completeness included in
Appendix 1 in Pauli et al. (2022b).

A convolutional layer that satisfies (9) also satisfies (6), choosing the parameterization

Qi = blkdiag(Q̃i, . . . , Q̃i), Si = blkdiag(S̃i, . . . , S̃i), Ri = blkdiag(R̃i, . . . , R̃i),

where the matrices Q̃i, S̃i, R̃i appear Ni times as entries of block-diagonal matrices, which means
that (10) ensures the incremental QC (6) for convolutional layers Ci.

3.2. Incremental quadratic constraints for fully connected layers

Similarly, we next consider fully connected layers (4) of the CNN individually and address incre-
mental dissipativity for these layers.
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Definition 5 (Incremental dissipativity of fully connected layers) We call the i-th fully connected
layer Li incrementally (Q,S,R)-dissipative if any input-output pair {∆wi−1,∆wi} stemming from
(4) satisfies

s(∆wi−1,∆wi) = ∆wi⊤Qi∆wi + 2∆wi⊤Si∆wi−1 +∆wi−1⊤Ri∆wi−1 ≥ 0 (11)

with some matrices Qi ∈ Sni , Si ∈ Rni×ni−1 , Ri ∈ Sni−1 .

Lemma 6 If for some matrices Qi ∈ Sni , Si ∈ Rni×ni−1 , Ri ∈ Sni−1 there exist Λi ∈ Dni
+ such

that [
Ri S⊤

i −W⊤
i Λi

Si − ΛiWi 2Λi +Qi

]
⪰ 0 (12)

holds, then the i-th fully connected layer Li is (Q,S,R)-dissipative.

The proof follows as a special case of the proof of Lemma 4 with Ai = 0, Bi = 0, Ci = 0, and
Di = Wi, as well as ci = ni, Ni = 1 and, accordingly, the LMI (12) ensures (Q,S,R)-dissipativity
(11) / the incremental QC (6) for fully connected layers (4).

3.3. Incremental quadratic constraints for pooling layers

Besides the relaxation of activation functions (Fazlyab et al., 2019), we newly introduce incremental
QCs to handle maximum and average pooling layers. These pooling layers downsample a signal
channel-wise, i. e., multiple successive time/propagation steps of the input signal are mapped to one
time/propagation step of the output signal. Such operations cannot easily be captured in a state
space formulation which is why we represent them via incremental QCs instead. Alternatively,
linear pooling layers, such as average pooling, can be unrolled to fully-connected layers, again
yielding a sparse and redundant formulation thereof (Fazlyab et al., 2019; Pauli et al., 2022a). The
use of incremental QCs suggested in this paper is not only more efficient but also allows to account
for nonlinear maximum pooling layers, which is not possible in (Fazlyab et al., 2019).

Average pooling Pav
i as defined in (3) is applied channel-wise such that for the j-th channel, we

can define

wi
jk =

1

ℓi

ℓi∑
s=1

wi−1
j,ℓi(k−1)+s =: Pool

av(vijk), k = 0, . . . , Ni − 1,

where vijk =
[
wi−1
j,ℓi(k−1)+1 . . . wi−1

j,ℓik

]⊤
∈ Rℓi .

Proposition 7 The average pooling operation Poolav is Lipschitz continuous with µi =
1√
ℓi

, i. e.,

|wi
a,jk − wi

b,jk|2 ≤ µ2
i ∥via,jk − vib,jk∥2 j = 1, . . . , ci, k = 1, . . . , Ni ∀via,jk, vib,jk ∈ Rℓi . (13)

The proof can be found in Appendix 2 in Pauli et al. (2022b). While (13) only considers Lipschitz
continuity of one channel, the following incremental QC holds for all channels, for which we define
the vertically flattened vector

vik=
[
wi−1
1,ℓi(k−1)+1 . . . wi−1

ci,ℓi(k−1)+1 wi−1
1,ℓi(k−1)+2 . . . wi−1

ci,ℓi(k−1)+2 . . . wi−1
1,ℓik

. . . wi−1
ci,ℓik

]⊤
,

that collects entries from all ci = ci−1 channels and from all ℓi propagation steps (of the (i− 1)-th
signal) that are combined in the pooling operation corresponding to propagation step k (of the i-th
signal).

7
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Lemma 8 For all Ti ∈ Sci+, the average pooling operation Pav
i fulfills

[
wi
a,k − wi

b,k

via,k − vib,k

]⊤ 
−Ti 0 . . . 0

0 µ2
iTi

...
. . . 0

0 0 µ2
iTi


[
wi
a,k − wi

b,k

via,k − vib,k

]
≥ 0,

k = 1, . . . , Ni,

∀via,k, vib,k ∈ Rℓici .
(14)

This implies that all i ∈ Iav
P average pooling layers are (Q,S,R)-dissipative, i. e., they satisfy (6)

with Qi = −blkdiag(Ti, . . . , Ti) ∈ Sni , Si = 0, Ri = µ2
i blkdiag(Ti, . . . , Ti) ∈ Sni−1 .

Proof The positive semidefinite matrix Ti has a factorization Ti = L⊤
i Li, Li ∈ Rci×ci , which we

use to define ṽik := blkdiag(Li, . . . , Li)v
i
k, k = 1, . . . , Ni. As average pooling is a linear operator,

Li can be pulled out of the pooling operation, i. e., w̃i
k = Liw

i
k. Hence, (14) is equivalent to[

w̃i
a,k − w̃i

b,k

ṽia,k − ṽib,k

]⊤ [
−Ici 0
0 µ2

i Iℓici

] [
w̃i
a,k − w̃i

b,k

ṽia,k − ṽib,k

]
≥ 0, k = 1, . . . , Ni, ∀ṽia,k, ṽib,k ∈ Rℓici ,

which is the channel-wise stacked up version of the Lipschitz condition (13). This can easily be
seen by reordering the entries of the flattened vectors ṽia,k and ṽib,k. Stacking up the incremental QC
(14) for all k = 1, . . . , Ni propagation steps yields a special case of (6).

An alternative commonly used pooling operation is maximum pooling Pmax
i as defined in (3).

This nonlinear operation is 1-Lipschitz in case the kernel size and the stride coincide.

Lemma 9 For all Σi ∈ Dci
+, the maximum pooling operation Pmax

i fulfills

[
wi
a,k − wi

b,k

via,k − vib,k

]⊤ 
−Σi 0 . . . 0

0 Σi
...

. . .
0 Σi


[
wi
a,k − wi

b,k

via,k − vib,k

]
≥ 0,

k = 1, . . . , Ni,

∀via,k, vib,k ∈ Rℓici .
(15)

This implies that all i ∈ Imax
P maximum pooling layers are (Q,S,R)-dissipative, i. e., they satisfy

(6) with Qi = −blkdiag(Σi, . . . ,Σi) ∈ Dni , Si = 0, Ri = blkdiag(Σi, . . . ,Σi) ∈ Dni−1 .

Proof Condition (15) is the stacked up version of the incremental QCs

σi|wi
a,jk − wi

b,jk|2 ≤ σi∥via,jk − vib,jk∥2, j = 1, . . . , ci, k = 1, . . . , Ni, ∀via,jk, vib,jk ∈ Rℓi ,

which holds true for all nonnegative scalars σi ≥ 0 by 1-Lipschitz continuity of the maximum
pooling operation. The multiplier is then Σi = diag(σ1, . . . , σci). Accordingly to the proof of
Lemma 8, we can stack up (15) for all k = 1, . . . , Ni propagation steps to obtain a special case of
(6).

The incremental QC (14) describing average pooling allows full matrices Ti as multipliers,
whereas maximum pooling requires Σi in (15) to be diagonal. This result corresponds to the main
results in (Kulkarni and Safonov, 2002) who address that only linear operations maintain incremen-
tal positivity. Note that Fazlyab et al. (2019) wrongly proposed full matrices Λi as multipliers in (8)
which was later corrected by Pauli et al. (2022c).
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3.4. Semidefinite program for Lipschitz constant estimation

In this section, we propose an SDP to certify an upper bound on the Lipschitz constant for a given
1D CNN, that renders Theorem 1 computational.

Pooling layers are incrementally (Q,S,R)-dissipative by design according to Lemma 8 and
Lemma 9, respectively, and in addition Lemma 4 and Lemma 6 provide us LMIs to enforce dis-
sipativity onto convolutional and fully connected layers such that all Ci-, Pi-, and Fi-layers in (1)
are incrementally (Q,S,R)-dissipative. Our goal is to determine an accurate Lipschitz bound of
the input-output mapping defined by a given 1D CNN, for which the dissipativity properties of the
individual layers are a utility. Hence, in all i ∈ IC ∪ IF , we consider Qi, Si, and Ri as decision
variables that provide us degrees of freedom in the optimization. To reduce the number of decision
variables, which is computationally favorable, we parameterize Qi, Si, and Ri in such a way that
H as defined in (7) is equal to zero. This yields R1 = Q0 = γ2I , Si = 0, and Ri = −Qi−1,
i = 1, . . . , l, Ql = −I . Further, we note that in pooling layers Qi and Ri are both parameterized by
the same matrix, such that we use this information to specify the structure of Q̃i−1 of the preceding
convolutional layer, which yields Corollary 10.

Corollary 10 Let CNNθ and γ > 0 be given and let all activation functions be slope-restricted on
[0, 1]. Further, we choose Q̃0 = −γ̃2I , where γ = γ̃

∏
s∈Iav

P
µs. If there exist

(i) Q̃i ∈ Sci (Q̃i ∈ Dci if a convolutional layer is followed by a maximum pooling layer),
Pi ∈ Snxi

+ , and Λi ∈ Dci
+ such thatPi −A⊤
i PiAi −A⊤

i PiBi −C⊤
i Λi

−B⊤
i PiAi −Q̃i−1 −B⊤

i PiBi −D⊤
i Λi

−ΛiCi −ΛiDi 2Λi + Q̃i

 ⪰ 0 ∀i ∈ IC , (16)

(ii) Qi ∈ Sni and Λi ∈ Dni
+ such that[

−Qi−1 −W⊤
i Λi

−ΛiWi 2Λi +Qi

]
⪰ 0 ∀i = IF \{l},

[
−Ql−1 −W⊤

l

−Wl I

]
⪰ 0, (17)

then the CNNθ is γ-Lipschitz continuous.

A complete proof is given in Appendix 3 in Pauli et al. (2022b). For a given CNN, we can find
an upper bound on the Lipschitz constant by solving the semidefinite program

min
γ2,Q,Λ,P

γ2 s. t. (16), (17), (18)

where Λ = {Λi}i∈IC∪IF \{l}, Q = {Qi}i∈IC∪IF \{l}, P = {Pi}i∈IC .

Remark 11 The matrices Qi carry information on the layer-wise worst-case gain and worst-case
direction of the corresponding input to the layer. In case a maximum pooling layer exists, we lose
the information of the worst-case direction through the parameterization of Qi as a diagonal matrix.

Remark 12 For fully connected NNs, the set of layer-wise LMIs (17) is equivalent to the LMI in
Fazlyab et al. (2019) by chordal sparsity (Xue et al., 2022). For CNNs our approach is slightly less
accurate than Fazlyab et al. (2019) , but unlike Fazlyab, we can provide Lipschitz constant estimates
that hold for all input dimensions. In addition, our method utilizes multipliers Λi of dimension ci,
whereas using Toeplitz matrices and the approach in Fazlyab et al. (2019) requires the use of larger
multipliers of size ciNi for each layer, i.e., more degrees of freedom.
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Figure 2: Comparison of our method (–) , LipSDP-Neuron (–), LipSDP-Layer (–), and the spectral
norm product (–). Left: Lipschitz bounds and computation time for fully convolutional
neural network over input dimension, middle: architecture of CNN, right: Normalized
Lipschitz bounds and normalized computation times over increasing channel sizes.

4. Simulation results

In the following, we compare our approach for Lipschitz constant estimation to the approaches
LipSDP-Neuron and LipSDP-Layer suggested by Fazlyab et al. (2019) and to the trivial bound
obtained from multiplication of spectral norms of weight matrices (Szegedy et al., 2013)

4.1. Fully convolutional neural networks

We set up a fully convolutional neural network with three convolutional layers, no pooling layers,
and no fully connected layers with channel dimensions [1, 3, 5, 10] and kernel sizes [3, 3, 3] and ran-
domly generate a set of convolution kernels for the CNN. In Fig. 2 on the left, we see the Lipschitz
bounds for different input signal dimensions N0 and the corresponding computation times. We ob-
serve that for small input dimensions the Lipschitz bounds LipSDP-Neuron and LipSDP-Layer are
superior to our approach. However, for larger input dimensions the computation time increases dras-
tically and, in this example, our method outperforms LipSDP-Layer for input dimensions N0 > 15.

4.2. Deep CNNs

For the CNN shown in Fig. 2 in the middle, we generate six different CNNs with different chan-
nel sizes c1 and c2 and compare the Lipschitz bounds and the computation times of our method,
LipSDP-Neuron, LipSDP-Layer, and the spectral norm product. While the computational over-
head of LipSDP-Neuron/Layer is huge the Lipschitz bound is comparable to the one obtained using
our approach which is clearly more accurate than the spectral norm bound. We note that, unlike
LipSDP-Neuron/-Layer, our approach scales to significantly larger CNNs than shown in Fig. 2.

5. Conclusion and future work

In this paper, we proposed an efficient SDP to determine accurate upper bounds on the Lipschitz
constant for 1D CNNs based on dissipativity theory. To do so, we derived incremental QCs for
pooling layers and activation functions and further chose a compact state space representation for
convolutional layers. A future direction is to directly exploit the structure of a 2D convolution for
improved scalability.
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