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Abstract
In recent years, there has been a growing interest in the effects of data poisoning attacks on data-
driven control methods. Poisoning attacks are well-known to the Machine Learning community,
which, however, make use of assumptions, such as cross-sample independence, that in general
do not hold for linear dynamical systems. Consequently, these systems require different attack
and detection methods than those developed for supervised learning problems in the i.i.d. setting.
Since most data-driven control algorithms make use of the least-squares estimator, we study how
poisoning impacts the least-squares estimate through the lens of statistical testing, and question in
what way data poisoning attacks can be detected. We establish under which conditions the set of
models compatible with the data includes the true model of the system, and we analyze different
poisoning strategies for the attacker. On the basis of the arguments hereby presented, we propose
a stealthy data poisoning attack on the least-squares estimator that can escape classical statistical
tests, and conclude by showing the efficiency of the proposed attack. The code can be found here
https://github.com/rssalessio/data-poisoning-linear-systems.
Keywords: data poisoning; data corruption; data-driven control; linear systems.

1. Introduction

Over the past few decades, the rise in computational power, data accessibility, technological progress,
and successful results have fueled research in data-driven methods. Nonetheless, these methods may
be vulnerable to data poisoning attacks, which aim to degrade performance by altering the training
data Biggio et al. (2012); Barreno et al. (2006, 2010). The concept of poisoning was originally
introduced for anomaly detection Barreno et al. (2006); Kloft and Laskov (2010); Rubinstein et al.
(2009) and attacks against SVM models Biggio et al. (2012). Thereafter, various machine learning
models have been shown to be susceptible to poisoning attacks Jagielski et al. (2018); Xiao et al.
(2015); Zhang et al. (2020); Shafahi et al. (2018) (see also Tian et al. (2022) for a survey). In the
field of systems control, data-driven methods are used due to a variety of reasons, such as decreased
modeling complexity and/or reduced costs. In fact, data-driven control methods allow the user to
formulate a control law directly from the data, thus bypassing the need of modeling the dynamical
systems. There are a variety of these methods to use: techniques based on Willem’s et al. lemma
Willems et al. (2005); De Persis and Tesi (2019); Coulson et al. (2019), Virtual Reference Feedback
Tuning (VRFT) Campi et al. (2002), Iterative Feedback Tuning Hjalmarsson (2002), Correlation-
based Tuning Karimi et al. (2004), etc. However, data-driven control methods may also be affected
by poisoning attacks. In Russo and Proutiere (2021), the authors formulate a poisoning attack
against the VRFT method. Similarly, in Yu et al. (2022) the authors propose a poisoning attack
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against data-driven predictive control methods. In Showkatbakhsh et al. (2016); Feng and Lavaei
(2021), the authors consider how to recover the underlying model of the system from poisoned
data, while Chekan and Langbort (2020) considers enlarging the confidence set of the poisoned pa-
rameters to improve the performance of online LQR. The detection and analysis of these attacks,
however, have received limited attention. Through first principles thinking, we investigate which
models are compatible with the poisoned data. We focus on the least-squares (LS) estimator and
study how poisoning affects the performance of this estimator. Through the lens of statistical tests,
we examine how data can be poisoned and how these attacks can be detected. Our last contribution
is to propose an attack that can impact the LS estimator while being stealthy to classical statisti-
cal tests, including residual and correlation tests typically used for anomaly detection. We provide
examples and numerical simulations to accompany our results.

2. Related work

Data poisoning attacks can be categorized into two classes: untargeted poisoning attacks and tar-
geted poisoning attacks Tian et al. (2022). Attacks in the former class lead to some form of denial-
of-service and try to hinder the convergence of the target model. On the other hand, targeted attacks
change the data so that the trained model behaves according to the goal of the attacker Liu et al.
(2017); Shafahi et al. (2018). Countermeasures include preventive measures (e.g., encryption) or
reactive measures (e.g., detection). In Nguyen and Tran (2013); Bhatia et al. (2017), the authors
propose different techniques to recover a linear model from the data for oblivious adversaries, while
for adaptive adversaries recovery is possible under some stringent assumptions Bhatia et al. (2015).
As mentioned in Bhatia et al. (2017), it seems unlikely that consistent estimators are even possible
in face of a fully adaptive adversary.However, to the best of our knowledge, most of these techniques
are not directly applicable to control problems, due to the underlying dynamics of the system. In
Alfeld et al. (2016), the authors study a targeted attack that poisons the forecasting of an autore-
gressive model. In Showkatbakhsh et al. (2016), the authors consider the problem of identifying a
system whose output measurements have been corrupted by an adversary. They consider an om-
niscient adversary and given a bound on the number of attacked sensors, and some observability
conditions, it is possible to derive a model that is useful for stabilizing the original system. A sim-
ilar problem is studied in Feng and Lavaei (2021): the authors consider a linear system affected
by an unknown sparse adversarial disturbance dt, and study how to recover the original model of
the system. A different problem is studied in Chekan and Langbort (2020), where the authors con-
sider online poisoning of the adaptive LQR method Abbasi-Yadkori and Szepesvári (2011), and, to
compensate for the attack, they enlarge the confidence set of the estimator. In Russo and Proutiere
(2021) they formulate a bi-level optimization problem to compute poisoning attacks against data-
driven control methods. Their attack is then applied to the digital twin of a building to demonstrate
the potential of their attack Russo et al. (2021). Lastly, in Yu et al. (2022) they extend the bi-level
attack problem to attack data-driven predictive control methods.

3. Preliminaries

Model. We consider a discrete-time LTI system affected by process noise:

xt+1 = A⋆xt +B⋆ut + wt, (1)
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Figure 1: Data poisoning framework for data-driven control methods (figure adapted from Russo
and Proutiere (2021)).

where t ∈ Z is the discrete time variable, xt ∈ Rn is the state of the system, ut ∈ Rm is the
control signal, A⋆ ∈ Rn×n, B⋆ ∈ Rn×m are the unknown system matrices, and wt ∈ W ⊆ Rn is
an unmeasured disturbance belonging to some convex set W (which can be the entire Rn). For a
sequence of input-state measurements {uk}T−1

k=0 , {xk}Tk=0, we define ψt = (x⊤t , u
⊤
t )

⊤ ∈ Rn+m and
the following data matrices:

X+ :=
[
x1 . . . xT

]
, X− :=

[
x0 . . . xT−1

]
, U− :=

[
u0 . . . uT−1

]
,

and X =
[
x0 . . . xT

]
,Ψ− =

[
ψ0 . . . ψT−1

]
. We make the assumption that the user has

access to one trajectory of the system, used for identification or data-driven control.

Assumption 1 The data D = (U−, X) available to the user consists of one input-state trajectory
of length T . Furthermore, the data satisfy the rank condition rankΨ− = n+m.

This is a standard assumption in data-driven control, and it can be guaranteed for noise-free systems
by choosing a persistently exciting input signal of order n+ 1 Willems et al. (2005).

Data poisoning attacks. We denote by ∆D := (∆U−,∆X) the poisoning signals on the input-
state measurements, so that ∆U− =

[
∆u0 . . .∆uT−1

]
∈ Rm×T , ∆X =

[
∆x0 . . .∆xT

]
∈

Rn×T+1. We let Ũ− = U−+∆U−, X̃ = X +∆X be the resulting poisoned signals. Similarly, we
denote the poisoned dataset by D̃ := (Ũ−, X̃) and let ψ̃t = ψt+∆ψt, where ∆ψt = (∆x⊤t ,∆u

⊤
t )

⊤

(sim. we define Ψ̃−, and ∆Ψ−). Attacks in the literature are generally classified as targeted attacks
or untargeted attacks. Untargeted attacks just try to alter the performance of the data-driven control
scheme, causing a denial-of-service. On the other hand, targeted attacks are usually carried out by
the attacker to achieve some specific goals, e.g., making the closed-loop system unstable, maximiz-
ing the energy used by the system, making the system uncontrollable, etc. The attacker’s goal is
formulated as a bi-level optimization problem (see also Russo and Proutiere (2021))

max
(∆U−,∆X)∈U×X

A (D,K) s.t. K ∈ argmin
K′

L(U− +∆U−, X +∆X,K ′), (2)

where (U ,X ) is a convex set, K is the closed-loop controller, A represents the objective function
of the malicious agent, and L represents the function used by the victim to compute the control law
K according to the poisoned data (Ũ−, X̃).

3



ANALYSIS AND DETECTABILITY OF OFFLINE DATA POISONING ATTACKS ON LINEAR SYSTEMS

4. Attacks and Detection Strategies

In this section we examine what is the set of pairs (A,B) that are compatible with the poisoned
data D̃, and establish a sufficient and necessary condition for (A⋆, B⋆) to be compatible with D̃.
We investigate how least-squares estimate changes under poisoning, examine attack detection, and
propose a stealthy untargeted attack on the least-squares estimate.

4.1. The set of compatible models under data poisoning

Most data-driven control methods assume that there exists a linear system (A,B) that is consistent
with the data. Ignoring the noise term wt in eq. (1), consistency amounts to finding all (A,B) ∈
Rn×(n+m) that satisfy the equation X+ = AX− + BU− (i.e., all the pairs consistent with the
dataset). In presence of a noise signal wt, consistency is derived from the following relationship

[
In −A⋆ −B⋆

] [X+

Ψ−

]
=W−, (3)

where W− =
[
w0 w1 . . . wT−1

]
∈ WT (where WT :=×T

n=1W). Then, given a poisoned
dataset D̃ = (Ũ−, X̃), we wonder for which (A,B) ∈ Rn×(n+m) and W̃ ∈ WT the following
relationship holds

[
In −A −B

] [X̃+

Ψ̃−

]
= W̃−. (4)

To answer this question, we seek the set of noise sequences WD̃ that are compatible with the data
D̃. Following a similar approach as in Koch et al. (2020), we note that the compatible noise terms
{w̃t}t belong to the image of G̃ :=

[
X̃⊤

+ Ψ̃⊤
−
]⊤

. Straightforwardly, if W̃−G̃
⊥ = 0, then W̃− is

compatible with the data (where G̃⊥ denotes a basis of the kernel of G̃), and WD̃ is

WD̃ =
{
W̃− ∈ WT : W̃−G̃

⊥ = 0
}
. (5)

Therefore, the following result characterizes in which cases (A⋆, B⋆) ∈ ΣD̃.

Lemma 1 1 Consider a poisoned dataset D̃. The set of all pairs (A,B) that are consistent with
the data D̃ is ΣD̃ :=

{
(A,B) ∈ Rn×n+m : ∃W̃− ∈ WD̃ : (4) holds for (A,B, W̃−)

}
. Let W̃⋆ =

W−+∆W−, where ∆W− = ∆X+−A⋆∆X−−B⋆∆U−. Then (A⋆, B⋆) ∈ ΣD̃ ⇐⇒ W̃⋆ ∈ WT .

In most applications, W is considered to be Rn itself, which essentially guarantees that (A⋆, B⋆) ∈
ΣD̃. However, if the disturbance {wt}t≥0 is generated according to some probability measure P,
then the likelihood of W̃⋆ may be small under P depending on the attack. In other applications, W
is a known bounded convex set, and may not contain the sequence W̃⋆. In this case, it is necessary
to enlarge W to be able to recover the original model. Lastly, in some scenarios the user may know
in advance an over-approximate Σ̂D of ΣD, which can be used to infer if the data has been poisoned
in case Σ̂D and ΣD̃ are too different (using, for example, Bayesian hypothesis testing).

This result can also be interpreted in the following way: if W is a bounded convex set, an
attacker may try to bound ∆X and ∆U− to bound ∆W−, and, consequently, act on the compatibility

1. Refer to the technical report https://arxiv.org/abs/2211.08804 for all the proofs and numerical details.
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of the true system matrices. Obviously, upper bounding the norm of the poisoning signals seems like
a good way to make sure that is less detectable. However, just bounding the norm of the poisoning
signals, as we see in the forthcoming sections, is not enough to achieve undetectability of an attack.

4.2. Attack strategies for the least-squares estimator

To better understand how to formulate attack strategies, and analyze the problem of detectability,
we now turn our attention to the least-squares (LS) estimator. As pointed out in De Persis and Tesi
(2019), this LS estimate is used in the formulation of data-driven controllers. The unpoisoned LS
estimate can be compactly written as (ALS, BLS) = X+Ψ

†
− (Ψ†

− is the right inverse of Ψ−). We
also denote by (ALS, BLS) and (ÃLS, B̃LS) the LS estimates when, respectively, D and D̃ are used.
Furthermore, let (∆ÃLS,∆B̃LS) = (ÃLS − A⋆, B̃LS − B⋆) the difference between the LS estimate
and the true parameter, and indicate by ∆θ̃LS = vec(∆ÃLS,∆B̃LS) its vectorization. We further
assume that rank Ψ̃− = n + m. In presence of a poisoning attack (∆X,∆U−) we obtain the
following straightforward result, which is used to discuss possible attack strategies.

Lemma 2 The LS error is given by (∆ÃLS,∆B̃LS) = W̃⋆Ψ̃
†
−, where W̃⋆ is as in lemma 1. In

addition to that, we have σmin(W−)+σmin(∆W−) ≤ ∥Ψ̃−∥F∥∆θ̃LS∥2 ≤ σmax(W−)+σmax(∆W−),
where ∥·∥F indicates the Frobenius norm and σmin, σmax the minimum and maximum singular values.

Relationship between poisoning and exploration. This result provides a way to formulate pos-
sible attack strategies and to analyze their impact. The adversary clearly needs to minimize the
amount of exploration, quantified by the term ∥Ψ̃−∥F =

∑T−1
t=0 ∥ψ̃t∥2 to maximize the error. Fun-

damentally, any attack wishing to maximize the error needs to change the data as to minimize the
exploration performed by the victim. As an informal argument, define C̃T =

∑T−1
t=0 (ψ̃t ⊗ In)(ψ̃t ⊗

In)
⊤ and introduce the unexcitation subspace Ũ =

{
θ ∈ Rn(n+m) : lim supT→∞ θ⊤C̃T θ <∞

}

(see Bittanti et al. (1992)), and let Ẽ be its orthogonal complement (the data generation process
is undefined on purpose, since it is just an illustrative argument). Denote by ∆θ̃ẼLS and ∆θ̃ŨLS the
orthogonal projections of ∆θ̃LS on these two subspaces, so that ∆θ̃LS = ∆θ̃ẼLS + ∆θ̃ŨLS. Then,
under some simple assumptions, it is possible to show that asymptotically ∥∆θ̃LS∥2 = ∥∆θ̃ŨLS∥2.
Hence, maximizing ∥∆θ̃LS∥ amounts to changing the unpoisoned regressor ψt so that, the unex-
citation subspace becomes ”larger”, which implies that the amount of exploration is lowered. To
formalize the concept, let {vi}n(n+m)

i=1 be an orthonormal basis of Rn(n+m) with v1 = θLS/∥θLS∥2,
where θLS = vec(ALS, BLS) is the true LS-estimate for an unpoisoned dataset. Then, the estimation
error in the direction of vk is given by |v⊤k ∆θ̃LS|, which is lower bounded as follows.

Corollary 3 For any k = 1, . . . , n(n+m), and a poisoned dataset D̃
√

(v⊤k ∆θ̃LS)2 ≥
| cos(αk)|(σmin(W−) + σmin(∆W−))

∥VkΨ̃−∥F
, (6)

where Vk = vec−1
n,n+m(vk)

2, and αk is the angle between vec(VkΨ̃−) and vec(W̃⋆).

The term ∥VkΨ̃−∥F can be interpreted as the total amount of exploration in the direction of vk. Min-
imizing the exploration in the direction of the true estimate θLS implies a larger value of |v⊤1 ∆θ̃LS|,

2. vec−1
ab (x) reshapes a vector x ∈ Rab into a matrix of size a× b by arranging the elements of x column-wise.
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which is larger when the estimator error ∆θ̃LS is parallel to θLS, from which we deduce that asymp-
totically the unexcitation subspace includes the unpoisoned estimate θLS.

These results not only shed a light on the mechanics of poisoning, but also help us define a
possible attack. The attacker can compute some poisoning signals (∆X,∆U−) by solving the
convex problem min(∆X,∆U−)∈C ∥Ψ̃−∥F (or min(∆X,∆U−)∈C ∥V1Ψ̃−∥F), where C is some convex
set. Nevertheless, this simple attack ignores other terms, such as ∆W−, and therefore may not be
enough to significantly impact the LS estimate. As we discuss in the next sections, maximizing
the norm of the LS residuals fills this gap. Furthermore, as we see, an attacker needs to impose
additional constraints on the optimization problem to make an attack stealthy. To that aim, we begin
by discussing how statistical hypothesis testing can help to detect poisoning attacks.

4.3. Detection analysis for the LS estimator

The detection of any attack should be based on two important ingredients: (1) prior knowledge of the
system and its signals; (2) independent statistical tests. Prior knowledge is useful to detect possible
wrongdoings, however, that knowledge may be biased. Therefore, it is important to complement
tests based on prior knowledge with tests that are independent of that knowledge. In the following,
we relate poisoning attacks to classical statistical tests. We begin our study by considering attacks
on the input signal, and then consider attacks on the state signal as well.

4.3.1. DETECTION OF ATTACKS ON THE INPUT SIGNAL

The statistical properties of the input signal are usually assumed to be known. In fact, in most
experiments, the input is usually chosen as a white noise signal, as to excite the dynamics of the
system. Assuming {ut}t is a sequence of i.i.d. random variables with distribution P , whiteness tests
Box et al. (2015); Drouiche (2000) can be used to deduce if the samples in {ũt}t are white, while
one-sample tests (such as the Kolmogorov-Smirnov test Massey Jr (1951), or the Anderson-Darling
test Nelson (1998)) can be used to assess whether the samples in {ũt}t are distributed according to
P . More simply, if ut ∼ N (0, Im), then ∥U−∥2F ∼ χ2(Tm) is a Chi-squared distribution with Tm
degrees of freedom. Consequently, for a small δ ≥ 0 we see the constraint ∥∆U−∥F ≤ δ∥U−∥F
as a way to constraint the Chi-squared statistics. Along this reasoning, an important class of input
attacks can be derived when (ut, ũt) are indistinguishable, i.e., statistically equivalent.

Definition 4 Suppose that ut is i.i.d., distributed according to P for every t ≥ 0. Then, (ut, ũt) are
indistinguishable if ũt is i.i.d. and distributed according to P for every t ≥ 0.

To illustrate the attack, consider the following example.

Example 1 Consider the system xt+1 = a⋆xt + b⋆ut + wt, with (a⋆, b⋆) = (0.7, 0.5) and wt ∼
N (0, 1). In fig. 2 are shown the confidence intervals for the LS estimate when the input has been
poisoned according to the indistinguishable attack ũt, where (ut, ũt) are independent, i.i.d., and
distributed according to N (0, 1). Under poisoning, the estimate of b⋆ converges to 0 as T → ∞.

This insight leads us to the following result.

Lemma 5 Let {ut}T−1
t=0 be an i.i.d. sequence distributed according to N (0,Σu). Assume ∆ut =

−ut + at to be an indistinguishable attack, with at ∼ N (0,Σu) independent of ut, and ∆xt =
0, t ≥ 0. Then, if A is stable, ∆B̃LS → −B⋆ w.p. 1 as T → ∞.
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Figure 2: Example of input poisoning (see example 1). The colored ellipses depict the 95% con-
fidence interval of the LS estimates of the true parameters (a⋆, b⋆). When the input
data is poisoned, we obtain an F -statistic of ZD̃ ≈ (0.45, 0.62, 0.15) respectively for
T = (15, 100, 1000) samples. Otherwise, we obtain ZD ≈ (7.35, 29.05, 233.35).

Intuitively, if the poisoned input is completely uncorrelated from the data, then the best estimate of
B⋆ is 0. Simply, as the number of samples grows larger, B⋆ +∆B̃LS → 0.

To detect this type of attack, we propose to test the explanatory power of the input data. Using
classical partial F -tests Kleinbaum et al. (2013), we test the hypothesis H0 : ∥B⋆∥ = 0 against
H1 : ∥B⋆∥ ≠ 0. Assume the underlying system is affected by some process noise wt ∼ N (0,Σw).
Denote by Ã(1)

LS the LS estimate of A⋆ when the input signal ũt is not used by the LS estimator.
Similarly, denote by (Ã

(2)
LS , B̃

(2)
LS ) the LS estimate when ũt is considered in the estimation process.

Consider the LS residuals, and define the statistic

ZD̃ :=

∥∥∥X+ − Ã
(1)
LSX−

∥∥∥
2

F
−
∥∥∥X+ − Ã

(2)
LSX− + B̃

(2)
LS Ũ−

∥∥∥
2

F

(nm/(T − n(n+m)− 1))
∥∥∥X+ − Ã

(2)
LSX− + B̃

(2)
LS Ũ−

∥∥∥
2

F

. (7)

Under H0 it can be shown that the statistics ZD̃ follows an F distribution with (nm, T − n(n +
m)−1) degrees of freedom (follows from an application of (Ljung, 1998, Lemma II.4)). Using this
partial F -test, we reject H0 if and only if ZD̃ > fαnm,T−n(n+m)−1, where fαa,b is the upper α-point
of an F distribution with (a, b) degrees of freedom. In conclusion, not rejecting H0 may indicate
that the input data has been poisoned. Clearly, for more complex cases, we need to resort to other
tools, such as the analysis of the residuals, as explained in the following section.

4.3.2. RESIDUAL ANALYSIS

We claim that any attacker that wishes to remain stealthy needs to make sure that the residuals of the
LS procedure satisfy certain statistical conditions. We begin by deriving the following bound on the
residuals of the LS estimate for generic attacks that are independent of the noise signal {wt}t (this
includes the class of oblivious attacks). Let the residual of (ÃLS, B̃LS) at time t be R̃t = x̃t+1 −
ÃLSx̃t−B̃LSũt. In matrix notation, we write R̃ =

[
R̃0 R̃1 . . . R̃T−1

]
= X̃+−

[
ÃLS B̃LS

]
Ψ̃−

(similarly, we denote by R the residuals in absence of poisoning).

7
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Lemma 6 Assume {(∆xt,∆ut)}t to be independent of the i.i.d. noise sequence {wt}t, with wt ∼
N (0,Σw). Then, the MSE E

[
∥R̃∥2F

]
satisfies 0 ≤ E

[
∥R̃∥2F − ∥R∥2F

]
≤ E[

∑
i σ

2
i (∆W−)], where

σi is the i-th singular value. Furthermore, ∥R∥2F is a quadratic form of a normal random vector,
distributed according to

∑n
i=1 λiχ

2(T − n−m), with λi being the i-th eigenvalue of Σw.

In addition, observe the following lemma on the sensitivity of the residuals.

Lemma 7 (Sensitivity) For any fixed attack satisfying the rank condition rank Ψ̃− = n +m, we
obtain the following sensitivity on the residuals ∥R̃−R∥F

∥R∥F
≤ ∥∆Ψ−∥2∥Ψ̃−∥−1

F .

Lemma 6 and 7 link the problem of maximizing the LS error to that of minimizing the amount of
exploration ∥Ψ̃−∥F (as discussed in sec. 4.2) as well as maximizing the singular values of ∆W−.
Furthermore, Lemma 6 can be used to formulate a possible detection test on the variance of the
residuals. In fact, we note that any attack independent of the noise will necessarily increase the
variance of the residuals. This observation provides us a hint to test the variance of the residu-
als. It is possible to derive a two-tail test on the variance of the residuals (as long as the user
knows has some knowledge on the covariance of the noise) to verify that the data has not been
poisoned. The user can test whether ∥R̃∥2F belongs to the range Q(1−α)/2,T−n−M (λ1, . . . , λn) ≤
∥R̃∥2F ≤ Qα/2,T−n−M (λ1, . . . , λn), where Qx,d(λ1, . . . ) is the critical value of the distribution∑n

i=1 λiχ
2(d) with significance x ∈ (0, 1). Before we continue with an example, consider that

the assumption of independence between (∆U−,∆X) and W− may not be always satisfied: if the
attacker has access to the dataset D, then it is likely that she uses X , which depends on W−, to
compute the attack vector (∆U−,∆X). In other cases, for example, when the attacker has limited
capabilities on the dataset and/or the poisoned sensors, the assumption of independence is more
likely to hold. Similarly, the assumption holds whenever the attacker is executing an attack that has
been computed on a different set of data. Moreover, from simulations, it seems that this test is still
valid to detect a possible adaptive attack.

Example 2 (Untargeted attack) Consider an attacker that maximizes the norm of the residuals
∥R̃∥F as a proxy to maximize

∥∥[∆ÃLS ∆B̃LS
]∥∥

2
. Let δ ≥ 0 be a parameter that limits the ampli-

tude of the poisoning signals, and define ∆W̃− := ∆X+−ALS∆X−−BLS∆U−. Then, as detailed
in the appendix, the adversary can solve the following concave problem to compute an attack:

max
∆U−,∆X

Tr
(
(∆W̃− + 2R)∆W̃⊤

−

)
s.t. ∥∆X∥F ≤ δ∥X∥F, ∥∆U−∥F ≤ δ∥U−∥F. (8)

Consider the 4-dimensional system used in Russo and Proutiere (2021), affected by white noise with
standard deviation σw = 0.1. The victim has collected T = 200 samples using ut ∼ N (0, 1). In
fig. 3 are shown the results when (8) is solved using (1) convex-concave programming (CCP), (2) the
cross-entropy method De Boer et al. (2005) and (3) random sampling from a Gaussian distribution
(check the appendix for details). Note that the attacks can be easily detected for small values of
δ using the test on the residuals (central plot). On the right plot, observe that, as discussed after
corollary 3, the vectors θLS and ∆θ̃LS tend to align with each other when the attack is impactful.

This last example indicates that minimizing the norm of the poisoning signal is not enough to mini-
mize detectability. Even though the poisoned signal and the unpoisoned one are similar, maximizing
the MSE greatly affects the distribution of the residuals. Thereby, it may be more beneficial for the
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Ã

L
S

∆
B̃

L
S

] ‖
2

0.00

0.02

0.04

10−4 10−3 10−2 10−1

δ

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

0

10−3

10−4 10−3 10−2 10−1

δ

.51π

.57π

.64π

.7π

.76π

.83π

6
(θ

L
S
,∆
θ̃ L

S
)

[r
ad

]

Method: CCP CEM Random sampling

Figure 3: Untargeted attack that maximizes the MSE. The curves indicate an average and its 95%
confidence interval over 100 runs. From left to right : (1) impact on the LS estimate; (2)
the p-value (right-tail) under the assumption of white noise with σw = 0.1; (3) the angle
between the unpoisoned estimate θLS and the error of the poisoned estimate ∆θ̃LS.

adversary to directly maximize ∥
[
∆ÃLS ∆B̃LS

]
∥2 (which is a non-convex problem), while con-

straining the residuals of the models, to decrease detectability. A hint comes from the fact that the
noise term at time t is w̃t = wt + ∆wt = wt + ∆xt+1 − A⋆∆xt − B⋆∆ut. Since the noise w̃t

depends on ∆xt+1, the victim can expect to observe a large value in the correlation of the residuals
at lag 1. This last observation suggests that an adversary may consider constraining the correlation
of the residuals to reduce the detectability.

Correlation tests. Consider white process noisewt ∼ N (0,Σw), and let C̃τ = 1
T

∑T−τ−1
t=0 R̃tR̃

⊤
t+τ

be the sample correlation of the residuals at lag τ . Under the null hypothesis that the data has not
been poisoned, asymptotically we obtain

√
T vecCτ ∼ N (0,Σw ⊗ Σw) (from an application of

(Ljung, 1998, Lemma 9.A1)), from which we derive the statistics T∥CτC
−1
0 ∥2F ∼ χ2(n2). Simi-

larly, following a similar approach as in Hosking (1980), it is possible to derive the asymptotic Port-
manteau statistics to test the whiteness of the residuals T

∑T
τ=1 ∥CτC

−1
0 ∥2F ∼ χ2(n2(T −n−m)).

Using these statistics, it is possible to formulate a stealthy attack, as explained in the next section.

4.4. Stealthy untargeted attack

On the basis of the previous findings, we argue that the main quantities of interest to make a poi-
soning attack stealthy are (1) the norm of the poisoning signals; (2) ∥R̃∥2F the norm of the residuals;
(3) ∥C̃τ C̃

−1
0 ∥2F, τ = 1, . . . , T − 1, the norm of the self-normalized correlation terms. Consequently,

we propose the following optimization problem to compute poisoning stealthy untargeted attacks:

max
∆U−,∆X

∥∥[∆ÃLS ∆B̃LS
]∥∥

2
s.t. gi(D,∆U,∆X) ≤ δi, i = 0, 2, . . . , s+ 3, (9)

with g0 = ∥∆X∥F/∥X∥F, g1 = ∥∆U∥F/∥U∥F, g2 =
∣∣∣1− ∥R̃∥2F/∥R∥2F

∣∣∣, g3 = |1 − ZD̃/ZD| and

g3+τ =
∣∣∣1− ∥C̃τ C̃

−1
0 ∥2F/∥CτC

−1
0 ∥2F

∣∣∣ , τ = 1, . . . , s, for some s < T−1. Intuitively, the constraints
limit the relative change of each quantity.

9
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Figure 4: Stealthy attacks on the system used in example 2. From left to right: distribution over 10
different seeds of the impact on the LS error, ∥R̃t∥2 and T

∑s
τ=1 ∥C̃τ C̃

−1
0 ∥2F.

Numerical results. We applied the attack resulting from (9) on the system used in example 2,
with T = 500, s = 25 and the same value of δ for all constraints. Since n = 4,m = 1, there
are 2504 variables to optimize. The optimization problem is non-convex, therefore a local solution
can be found by means of first-order methods. Results (see fig. 4 and other figures in the appendix)
indicate that the resulting poisoning signals can relevantly impact the LS estimate, while the sta-
tistical indicators (central and right plot in fig. 4) show no evidence of anomaly. Furthermore, the
attack seems to impact have a greater impact on the estimate of ALS than that of BLS (see also the
appendix; for δ = 0.05 we obtain E∥∆ÃLS∥2 ≈ 2 and E∥∆B̃LS∥2 ≈ 0.15). Preliminary results
indicate that this effect may be due to the presence of the constraint g3 on (ZD̃,ZD). Lastly, we
observe that for small values of δ the residuals do not visually change in a sensible way (refer to
the appendix), and an analysis of the outliers, based on the concept of leverage Kannan and Manoj
(2015), shows no statistical difference for any values of δ. These findings suggest that it is possible
to devise potentially undetectable poisoning attacks without making use of any sparsity assumption.

5. Conclusion

In this work, we have analyzed poisoning attacks on the data collected from a linear dynamical
system affected by process noise. We have focused on the problem of poisoning the least-squares
estimate of the underlying dynamical system, which is a quantity used by various data-driven con-
trollers and thus can greatly affect their performance. We have established under which conditions
the set of models compatible with the data includes the true model parameter, and we analyzed the
effect of poisoning on the least-squares error. Based on the analysis of various attack strategies,
we have proposed a new stealthy poisoning attack. Results indicate that this attack can relevantly
impact the least-squares estimate while being stealthy from a statistical perspective. We conclude
that it is possible to craft stealthy attacks that are not necessarily sparse. Possible detection methods
include watermarking and/or encryption of the data. Future venues of research include analysis of
online poisoning attacks; impact and detection of offline poisoning attacks; recovery of the original
system matrices based on the set of compatible models.
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Anne Koch, Julian Berberich, and Frank Allgöwer. Verifying dissipativity properties from noise-
corrupted input-state data. In 2020 59th IEEE Conference on Decision and Control (CDC), pages
616–621. IEEE, 2020.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Lennart Ljung. System identification. In Signal analysis and prediction, pages 163–173. Springer,
1998.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

Lloyd S Nelson. The anderson-darling test for normality. Journal of Quality Technology, 30(3):
298, 1998.

Nam H Nguyen and Trac D Tran. Exact recoverability from dense corrupted observations via ℓ1-
minimization. IEEE transactions on information theory, 59(4):2017–2035, 2013.

12



ANALYSIS AND DETECTABILITY OF OFFLINE DATA POISONING ATTACKS ON LINEAR SYSTEMS

Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish
Rao, Nina Taft, and J Doug Tygar. Antidote: understanding and defending against poisoning of
anomaly detectors. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-
ment, pages 1–14, 2009.

Alessio Russo and Alexandre Proutiere. Poisoning attacks against data-driven control methods. In
2021 American Control Conference (ACC), pages 3234–3241. IEEE, 2021.

Alessio Russo, Marco Molinari, and Alexandre Proutiere. Data-driven control and data-poisoning
attacks in buildings: the kth live-in lab case study. In 2021 29th Mediterranean Conference on
Control and Automation (MED), pages 53–58. IEEE, 2021.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
Advances in neural information processing systems, 31, 2018.

Mehrdad Showkatbakhsh, Paulo Tabuada, and Suhas Diggavi. Secure system identification. In 2016
54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1137–1141. IEEE, 2016.

Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. A comprehensive survey on poisoning attacks and
countermeasures in machine learning. ACM Computing Surveys (CSUR), 2022.

Jan C Willems, Paolo Rapisarda, Ivan Markovsky, and Bart LM De Moor. A note on persistency of
excitation. Systems & Control Letters, 54(4):325–329, 2005.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is
feature selection secure against training data poisoning? In international conference on machine
learning, pages 1689–1698. PMLR, 2015.

Yue Yu, Ruihan Zhao, Sandeep Chinchali, and Ufuk Topcu. Poisoning attacks against data-driven
predictive control, 2022. URL https://arxiv.org/abs/2209.09108.

Xuezhou Zhang, Xiaojin Zhu, and Laurent Lessard. Online data poisoning attacks. In Learning for
Dynamics and Control, pages 201–210. PMLR, 2020.

13

https://arxiv.org/abs/2209.09108

	Introduction
	Related work
	Preliminaries
	Attacks and Detection Strategies
	The set of compatible models under data poisoning
	Attack strategies for the least-squares estimator
	Detection analysis for the LS estimator
	Detection of Attacks on the input signal
	Residual analysis

	Stealthy untargeted attack

	Conclusion

