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Abstract
Transfer operators offer linear representations and global, physically meaningful features of non-
linear dynamical systems. Discovering transfer operators, such as the Koopman operator, require
careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc
and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow
joint learning of the observables and Koopman operator with online data. Our results show we are
able to reconstruct the evolution and represent the global features of complex dynamical systems.
Keywords: Koopman Operators, Learning Nonlinear Dynamics, Nonlinear Identification

1. Introduction

In dynamical systems theory, a fundamental goal is data-driven state prediction and feature repre-
sentation. Given collected sensor measurements over time, we often want to characterize the current
nonlinear system states and predict the future states. Furthermore, for applications such as robotics,
sensing data is collected in real-time and contains noise. In this work, we will focus on online
methods for extracting global dynamics of the underlying system with the Koopman operator.

Many state estimation techniques for systems whose dynamics are governed by differential
equations rely on extracting dynamics from data. A powerful lens for estimating system dynam-
ics and their representations is by characterizing the global dynamics of an ensemble of sensor
observations or measurements (Mezić, 2005; Klus et al., 2020). A useful mathematical tool for
understanding the time evolution of states and their global dynamics is transfer operator theory,
through which we can study the action of a dynamical system on mass densities of initial condi-
tions. The transfer operator is defined on some infinite dimensional linear functional space and
describes a linear time evolution of the transformed densities. This is desirable as the original,
nonlinear dynamics are lifted to a space such that the transformed densities evolve linearly. For
example, the global feature tracking of trajectories in flow-like environments, analyzing pair-wise
relationships in text documents, or observation of conformational changes in metastable walking
may be suitable for study under transfer operator theory (Salam et al., 2022; Klus et al., 2020; Costa
et al., 2021). There are many methods for extracting the Koopman operator, a transfer operator in
which the lifted densities are referred to as observables, from data (Schmid, 2010; Li et al., 2017;
Klus et al., 2020). Many of these data-driven Koopman construction techniques have been used with
real sensing data (Korda and Mezić, 2018; Abraham and Murphey, 2019; Folkestad et al., 2020a;
Bruder et al., 2019; Salam et al., 2022). While these works are promising in their application of
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the Koopman operator to different domains, they are limited in that they derive the operator as a
closed-form, rigid solution and require data across the entire time horizon.

This paper presents two fundamental advances in the estimation of the Koopman operator. First,
we devise a way of jointly learning the observables and the Koopman operator from data collected
by robots in a reproducing kernel Hilbert space using random Fourier features. Second, the joint
learning is formulated such that construction of the observables and Koopman operator can be done
completely online. We test proposed framework on dynamical systems with varying degrees of
complexity, and show that it is desirable for the representation of complex dynamical systems;
future state prediction; and computing physically meaningful eigenfunctions.

2. Related Works

We review the literature related to the construction of the Koopman operator and emphasize some
shortcomings of the existing methods.

Closed-form solutions. One of the most common data-driven methods for estimating the Koop-
man operator relies on Dynamic Mode Decomposition (DMD) (Schmid, 2010). DMD is a spectral
decomposition of the Koopman operator, for which the dynamics are assumed to be linear (Mezić,
2005; Rowley et al., 2009). Extended Dynamic Mode Decomposition (EDMD) is a nonlinear gen-
eralization of DMD, where dynamics are assumed to be described using a nonlinear invertible trans-
formation characterized by a dictionary acting on input data (Williams et al., 2015a). In this work,
instead of the Koopman operator acting directly on observables (in this case, the data from the sys-
tem), the operator is acting on the dictionary applied to observables which results in an expanded
set of observables. In EDMD, the user determines the choice of dictionary, tailored to the dataset.

Recent works have explored the connections between the Koopman operator and reproducing
kernel Hilbert spaces (RKHS) (Williams et al., 2015b; Klus et al., 2020; Kawahara, 2016; Das and
Giannakis, 2018). Representations of the Koopman operator in RKHS allows for the analysis of the
operator in any domain where there is a similarity measure given by a kernel. As the Koopman oper-
ator construction relies on an inner product computation, these methods allows for the computation
of inner products implicitly through the use of a defined kernel function. Another advantage to these
algorithms is that they give an approximation of the Koopman operator with a set of nonlinear basis
functions due to the expressiveness of kernel functions.

Dictionary learning approaches. A more flexible approach formulates a trainable dictionary
represented by an artificial neural network (NN) within the EDMD framework (Li et al., 2017;
Yeung et al., 2019; Mardt et al., 2020). Rather than the user defining a dictionary of observables,
a dictionary can be learned using data from the system of interest. In many applications, it is not
necessary to explicitly construct the Koopman operator but instead construct its eigenfunctions, a
useful decomposition for understanding the stability of the process of interest (Mauroy and Mezić,
2016). There are many techniques focused on data-driven learning of Koopman eigenfunctions
(Korda and Mezić, 2018; Folkestad et al., 2020a,b; Haseli and Cortés, 2021; Kaiser et al., 2021;
Sznaier, 2021; Shi and Karydis, 2021; Leask et al., 2021).

In this work, we leverage insights from dictionary learning to automate the procedure for learn-
ing the transfer operators online. Here, we focus on learning the kernel transfer operators. Instead
of black-box optimization to construct the dictionary of observables, we apply insights from the
kernel methods literature to construct the dictionary. This method provides structure and meaning
to the dictionary, but it is still an automated procedure similar to NN methods.
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Figure 1: The state xi evolves nonlinearly according to a dynamical system function F . Using the map ψ,
the states can be lifted to an alternative space, where the lifted mappings of the states ψ(xi) evolves linearly
according to the Koopman operator K.

3. Preliminaries

Before proposing our strategy for learning the Koopman operator with Fourier features, we intro-
duce the definition of the Koopman operator and connections between kernels and Fourier features.

3.1. Koopman Operator

The basic form of a discrete-time dynamical system in state-space form is

x(t+ 1) = f(x(t)), (1)

where the function f maps the state space in Rd to itself. Given a class of scalar, complex valued
functions F , an observable is any ψ(·) : Rd → C, where ψ maps the state of the system into a
scalar. The value of the observable is determined by the state of the system and its evolution over
time is described by the composition of the observable with the state dynamics f(·) as

ψ(x(t+ 1)) = ψ(f(x(t))). (2)

The Koopman operator, K, is applied to the observable and describe the evolution of observables,
as in Eq. (2), under the state evolution. As such, the evolution of observable ψ can be written as
(Kψ)(x) = ψ(f(x)). The relationship between the dynamical systems representation and transfer
operator can be shown in Fig. 1. The observables can be thought of as a lifting operation that maps
state dynamics into a different space, where observables can be propagated forward in time by K.

3.2. Kernels

Kernel functions k : X × X → R are applied to elements of some space, X , to measure the
similarity between any pairs of elements. Let ϕ be the feature map associated with kernel k defined
on X . Then, define feature matrices as

Φ = [ϕ(x1) . . . ϕ(xn)]. (3)

The similarity metric in the form of a kernel function can be found by computing the inner product
of features ϕ(x) acting on elements of the input space in some high-dimensional, possibly infinite,
feature space in RM . Thus, kernels allow us to compare objects based on their features. Formally,
for inputs x, x′ ∈ X , a feature map ϕ : X → RM , and some valid inner product ⟨·,·⟩V , a kernel
k is defined as k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V , where V is an inner product space. Kernels on features
spaces that are positive definite can be used to define a function f onX . The space of such functions
f , such that the evaluation of f at x can be represented as the inner product ⟨ϕ(x), ϕ(x′)⟩ in feature
space, is referred to as the Reproducing Kernel Hilbert Space (Gretton, 2013).
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Figure 2: Overview of optimization framework for joint learning of dictionary of observables and Koopman
operator. Random Fourier Features ϕ are initialized with weights ω, b and used to create dictionaries of
observables ΦX and ΦY on the training data {X,Y}. The Koopman operator is constructed using ΦX and
ΦY and estimates Φ̂Y. The loss is computed and the weights are updated in the dictionary. Dark blue values
are calculated using the current weights in green, while light blue are the Koopman computed estimates.

3.3. Random Fourier Features

Random Fourier Features (RFFs) are spectral domain representations of kernels (Rahimi and Recht,
2009). These techniques rely on representing the stationary covariance function as the Fourier
transform of a positive finite measure, formalized by Bochner’s Theorem and its corollary stated
below for the sake of completeness.

Theorem 1 (Bochner’s Theorem) (Salomon Bochner, 1932) Every positive definite function µ̂ :
RD → C for all x ∈ RD is the Fourier transform of a non-negative finite Borel measure µ on RD.
That is, for any µ̂(x) there exists a measure µ such that µ̂(x) =

∫
RD e

−ix⊤ωdµ(ω).

Corollary 2 If µ̂(0) = 1 and the measure µ is a probability measure with probability density
function (pdf) fΩ on random variable Ω with realizations ω ∈ RD, then µ̂(x− x′) =: k(x,x′) is a
continuous stationary positive-definite covariance function k(x,x′) =

∫
RD e

−i(x−x′)⊤ωfΩ(ω)dω.

While the dot product can be easily computed as the kernel evaluation, this means that the data
can only be accessed through the evaluation of the kernel function or through a matrix containing all
of the evaluations across all pairs of data points. However, this might be computationally expensive
for large datasets. To alleviate this, Rahimi and Recht (2009) proposed explicitly mapping the data
to a lower-dimensional Euclidean space using a randomized feature map ϕ̂. A known pdf can be
represented using a finite number of Monte Carlo (MC) samples, where {ωm}Mm=1

i.i.d∼ fΩ(ω) lends
to a finite dimensional approximation of the feature map ϕ̂(x) ∈ CM that is

k(x,x′) ≈ 1

M

M∑
m=1

e−i(x−x′)⊤ωm = ⟨ϕ̂(x), ϕ̂(x′)⟩C. (4)

Then, the feature map can be decomposed such that ϕ̂(x) = 1/
√
M [e−ix⊤ω1 , . . . , e−ix⊤ωM ] ∈ C.

Since the kernels we will use are real valued, we can re-write the feature map to be ϕ̂(x) ∈ RM

ϕ̂(x) =

√
2√
M

[cos(x⊤ω1 + b1), . . . , cos(x
⊤ωM + bM )], bi∼Uniform(0, 2π). (5)

4. Methodology

In this section, we present our main algorithmic contributions: the online joint learning of Koop-
man operator and observable dictionary. We first present a construction of the Koopman operator
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using kernels (Klus et al., 2020) and demonstrate how we can bypass the need to explicitly specify
a kernel by leveraging RFFs (Rahimi and Recht, 2009). In doing so, we can jointly learn the un-
derlying Koopman operator and observable dictionary within an RKHS framework. Using RFFs as
the feature map on large datasets is more efficient than existing kernel EDMD methods, since RFFs
involve mapping to a lower-dimensional space, instead of a higher dimension that kernels require.
RFFs also provide the necessary kernel structure, with (d+1) learnable parameters per RFF, and so
our framework should require less training and tuning than an NN. Furthermore, new observations
can sequentially be appended to training data, lending to an online learning schema.

Let us re-write Eq. (1) as yi = f(xi). Suppose we have N pairs of training data (xi,yi)
collected over the system of interest, where x,y ∈ Rd. We herein refer to a data sample as a
particle. Let X = [x1,x2, . . .xN ]⊤ be a matrix of the N particles at a specific time instance and
Y = [y1,y2, . . .yN ]⊤ be the position of the particles after time has elapsed. Y is then the time
shifted version of X. If the positions of the N pairs of training data are tracked over time, we
can index the N particles at time t by X(t) and the time shifted particles as Y(t). The training
data can then be summarized as {(X(t),Y(t))}Tt=1, where these can be thought of as the T -length
trajectories of the particles.

Define feature maps ΦX = [ϕ(x1), ϕ(x2), . . . , ϕ(xN )]⊤ and ΦY = [ϕ(y1), ϕ(y2), . . . , ϕ(yN )]⊤

on the particles using the feature maps in Eq. (3). The feature map ΦY can be thought of as a time
shifted version of ΦX. We can also construct the feature maps ΦX(t) and ΦY(t) using the N parti-
cles from a specific time instance. From (Klus et al., 2020), the Koopman operator associated with
the dynamical system of interest can be estimated using the relationship

K̂ = (ΦXΦ⊤
X)−1(ΦXΦY). (6)

This estimation of the Koopman operator leverages the kernel functional evaluation instead of the
explicit feature map computation (Klus et al., 2020; Williams et al., 2015b). These approaches
assume that the dependence in the training data can be appropriately described by a kernel function,
a computationally efficient operation. In the standard formulation of the RFFs, the distribution
fΩ(ω) is known and corresponds to specific kernel forms. For example, sampling from a Gaussian
distribution corresponds to the RBF kernel.

In this work, instead of assuming a known form of the kernel function k(x,x′), such as the RBF,
we instead approximate the kernel function using the RFFs, as in Eq. 3, described in Section 3.3.
Thus, instead of assuming some known form of the dependence within the data, we jointly the learn
the structure of the feature maps and the corresponding Koopman operator. Let θ be the collection
of weights ωi and bi associated with the RFFs that we would like to learn in order to determine
the structure of the underlying feature maps that best describe the data. Previous work by Li et al.
(2017) and Yeung et al. (2019) show this is achieved through the following minimization scheme

min
K̂,θ

T∑
t=1

∥∥∥ΦY(t) − K̂ΦX(t)

∥∥∥
2
+ λ1

∥∥∥K̂∥∥∥
2
+ λ2 ∥θ∥1 . (7)

We learn the dictionary of observables, where observables are expressed through the feature maps.
This connection between dictionaries of observables and features maps was made when kernel
EDMD was first proposed (Williams et al., 2015b). In the work by Li et al. (2017), the dictio-
nary of observables is unknown and an NN is used to estimate them. We use the kernel expression
of the Koopman operator and leverage RFFs in capturing the dictionary of observables. The learned
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RFF feature maps and kernel Koopman operator are learnt via minimizing Eq. (7) via stochastic
gradient descent and enforcing the kernel Koopman operator structure using Eq. (6). We note that
any optimization scheme can be used. The loss schematic is summarized in Fig. 2.

5. Experimental Results

We describe the details for simulating benchmark prototypical dynamical systems with varying
degrees of complexity used to study transfer operators, our quantitative results evaluating the recon-
struction of trajectories and eigenfunction approximation, and qualitative results depicting physi-
cally meaningful global features within these systems.

(a) (b) (c)

(d) (e) (f )

Figure 3: Prototypical dynamical systems for studying transfer operators. (a) 1000 particles, colored by their
initial x-coordinate to visualize movement, shown in a [−2, 2] × [−2, 2] grid. (d) Positions of particles are
shown at time t = 2.5 under the Duffing oscillator, which describes the dynamics of a point mass in a double
well potential. (b) 20000 particles are initialized in a [0, 2] × [0, 1] grid. (e) Particles’ positions are tracked
in a time-dependent double gyre flow at time t = 12.1. Two dynamically distinct regions form in this flow, a
representative feature of the system. (c) 9900 particles are initialized in a [0, 20]× [−3, 3] grid. (e) Movement
of the particles at t = 10.1 under a Bickley jet model, an idealized model for fluid flows.

5.1. Simulated Dynamical Systems

In this subsection, we describe three prototypical dynamical systems used in the study of transfer
operators, the Duffing oscillator, the double gyre, and Bickley jet. In the subsequent subsections,
we demonstrate the use of the proposed algorithms for the kernel Koopman operator in Section 4.

5.1.1. DUFFING OSCILLATOR

The Duffing oscillator is a nonlinear second order differential equation used to model damped and
driven oscillators. The evolution of the particles whose positions are described by (x, y) is governed
by the ẋ = y and ẏ = −δy − x(β + αx2). We use the parameters δ = 0.5, β = −1, and α = 1.
We simulate 1000 points uniformly sampled on grid [−2, 2]× [0, 1], shown in Fig. 3(a). From time
t ∈ [0, 2.75] with step size 0.25, we use a differential equations solver based on an explicit Runge-
Kutta (4,5) formula on the velocities to solve an initial value problem for the system of ordinary
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differential equations with the sampled points. The visualization of the movement of particles in a
Duffing oscillator is shown in Fig. 3(d).

5.1.2. DOUBLE GYRE MODEL

A simple model of the wind-driven, time-dependent double gyre flow is described by f(x, t) =
ϵ ∗ sin (ωt) ∗ x2 + (1 − 2ϵ sin (ωt)) ∗ x, ∂f

∂x = 2α ∗ sin (ωt) ∗ x + (1 − 2α sin (ωt)), ẋ =

−πA sin (πf(x, t)) cos (πy), ẏ = πA cos (πf(x, t)) sin (πy) ∗ ∂f
∂x .

The parameters are set to ϵ = 0.25, α = 0.25, A = 0.25, and ω = 2π (Forgoston et al., 2011).
We simulate 20000 points, as in Fig. 3(b), uniformly sampled on grid [0, 2] × [0, 1]. From time
t ∈ [0, 20] with step size 0.1, we use a differential equations solver based on an explicit Runge-
Kutta (4,5) formula on the velocities to calculate the trajectories of the points, shown in Fig. 3(e).

5.1.3. BICKLEY JET

The Bickley jet model is a prototypical model in the study of coherence that is a meandering
zonal jet, flanked both above and below by counter rotating vertices. The Bickley jet is used
as an idealized model for the Gulf Stream in the ocean and polar night jets in the atmosphere
(Del-Castillo-Negrete and Morrison, 1992; Beron-Vera et al., 2010). The stream function for the
Bickley jet model is ψ(x, y, t) = ψ0(y) + ψ1(x, y, t), ψ0(y) = −U0L0 tanh

(
y
L0

)
, ψ1(x, y, t) =

U0L0 sech
2
(

y
L0

)
ℜ
(∑3

n=1 fn(t) exp(iknx)
)

, with fn(t) = ϵn exp(−ikncnt). The velocities can
be computed as ẋ = ∂ψ/∂x and ẏ = ∂ψ/∂y. We use scaled parameters U0 = 5.4138, L0 =
1.77, c1 = 0.1446U0, c2 = 0.2053U0, c3 = 0.4561U0, ϵ1 = 0.075, ϵ2 = 0.4, ϵ3 = 0.3, r0 =
6.371, k1 = 2/r0, k2 = 4/r0, k3 = 6/r0 (Hadjighasem et al., 2017). We sample 9900 points uni-
formly on a grid [0, 20] × [−3, 3], seen in Fig. 3(c). From time t ∈ [0, 40] with step size 0.1,
we calculate the trajectories of the points using a variable-step, variable-order Adams-Bashforth-
Moulton solver of orders 1 to 13 on the velocity [ẋ, ẏ], as shown in Fig. 3(f ).

5.2. Evaluation Metrics

In this section, we discuss two evaluation metrics used to compare the kernel Koopman operator
with RFFs against EDMD algorithms with dictionaries selected based on the known properties of
the simulated environments. We first evaluate the reconstruction error associated with the known
trajectory xi of a particle i over multiple time steps. We reconstruct trajectories of the system using
the Koopman mode decomposition formula. This is described in the presentation of the EDMD
algorithm and other works related to dictionary learning (Williams et al., 2015a; Li et al., 2017).
We summarize the procedure here for completeness.

First, we solve for a matrix B ∈ RM×N such that x = (ΦXB)⊤. Let V be the matrix containing
the set of right eigenvectors, W∗ be the matrix contained the set of left eigenvectors associated with
K, and µ be the vector of eigenvalues. Each of the i left eigenvectors of should be scaled such
that w∗

i vi = 1. The approximate eigenfunction corresponding to the eigenvalue µj of K is then
ψj = v⊤

j Φ. Then, the full state can be reconstructed as x̂ = (W∗B)⊤(ΦXV)⊤. To estimate the
evolution of the trajectory after a time t has elapsed from the positions of the particles at x(0), we
leverage the linear representation of the Koopman decomposition to construct the trajectory as

x̂(t) = µt(W∗B)⊤(ΦX0V)⊤. (8)
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Table 1: Comparison of Error Reconstruction with Different Dictionaries for Various Environments

System Duffing Oscillator Double Gyre Bickley Jet
Prediction Horizon NT LT NT LT NT LT

D
ic

t. Learned 0.5929 0.3713 0.2307 0.7125 2.7584 13.856
Gaussian 0.4668 0.3427 0.3610 1.0896 9.2036 20.441

Monomial 0.5466 0.3523 0.3277 0.8891 5.2428 13.524

(a)

(b)

(c)

Figure 4: Reconstruction of trajectories in the (a) Duffing oscillator, (b) double gyre, and (c) Bickley jet using
the Koopman operator constructed from learned features and known dictionaries.

Finally, we compute the error between predicted trajectories from Eq. (8) and true trajectories as

ep =

√√√√ 1

T

T∑
t=1

∥x(t)− x̂(t)∥2F . (9)

For all examples, we analyze near-term and long-term prediction errors in the reconstruction.
For the learned features, we set up the optimization framework using Eq. (7). To compare against
our framework, we construct the approximation of the Koopman operator through the EDMD al-
gorithm (Williams et al., 2015a). Specifically, we use the insights from previously studied EDMD
algorithms on the Duffing oscillator, double gyre, and Bickley jet to construct dictionaries (Li et al.,
2017; Kaiser et al., 2021; Salam et al., 2022). For the Duffing oscillator, we compare our 100 RFFs
against dictionaries created using the Gaussian basis function (GBF) on a 50× 50 discretization of
the system with σ = 1e−4 and monomial basis functions of degree 3. For the double gyre, we use
100 RFFs, and the baseline has GBFs on a 10× 5 discretization with σ = 0.1 and monomial basis
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(a) (b) (c)

Figure 5: Eigenfunction error approximation for Koopman operator constructed with learned features and
known dictionaries. Errors were computing using randomly samples points in the (a) Duffing oscillator, (b)
double gyre, and (c) Bickley jet environments and averaging their corresponding eigenfunction error.

functions of degree 5. For the Bickley jet, we use 200 RFFs, while the dictionaries are GBFs with
σ = 1.1 on a 10 × 10 discretization and monomial basis function of degree 2. While the learned
features are computed online over the entire available dataset, the EDMD algorithm is computed
against each snapshot pair of data X(t) and X(t + 1). The estimated near-term (NT) trajectory is
found using Eq. (8) for 10 time steps into the future, as in we reconstruct [X̂(t+2), . . . X̂(t+11)].
For the long-term (LT) estimation, we compute 40 time steps into the future. Finally, the error is
computing using the Eq. (9) for trajectory prediction errors.

The results of the error reconstructions are shown in Table 1. The errors shown in the table
represent the difference between the true trajectory and trajectories from the Koopman operator
constructed from dictionaries with the learned features, the Gaussian basis functions, and the mono-
mial basis functions. We see for simpler systems, such as the Duffing oscillator, the learned features
perform comparably, if not slightly worse, than models from handcrafted dictionaries. However, for
more complicated systems, such as the double gyre and Bickley jet, reconstruction in the long-term
regime using the learned features outperforms the methods using the handcrafted dictionaries. This
is exemplified most clearly in Fig. 4 for trajectories of randomly sampled particles. For short-term
predictions, the trajectories of the particles estimated using the learned features versus the Gaussian
or monomial basis functions are similar. However, as more time elapses between the initial posi-
tion of the particle and the estimate, the learned features are able to more closely match the true
trajectory. The trajectories estimated using the Gaussian basis functions diverge after several time
steps. While other basis functions capture some notion of coherence, the learned features are able
to capture both the notion of coherence and the movement of individual particles within the space.

We next evaluate the accuracy of the eigenfunction approximation (Li et al., 2017). Let the
approximate eigenfunction corresponding to the eigenvalue µj of K be ψj = v⊤

j Φ. Then, the
accuracy of the eigenfunction approximation is

efj =

√√√√1

I

I∑
i=1

|ψj(f(x(i))− µjψj(x(i))|2. (10)

We show the eigenfunction approximation for the Duffing oscillator and double gyre compar-
isons for various features and dictionaries in Fig. 5. The value of ej as in Eq. (10) are selected
for the first few eigenvalues in all examples. We select 100 randomly sampled points for each dy-
namical system and calculate the eigenfunction approximation error for the eigenfunctions from the
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(a) (b) (c) (d)

Figure 6: Eigenfunction comparison for kernel EDMD algorithm versus EDMD with learned features for
time-dependent double gyre and Bickley jet. Dominant eigenfunction (a) from the Koopman operator con-
structed using kernel EDMD and (b) using learned features for double gyre. Dominant eigenfunction (c) from
the Koopman operator constructed using kernel EDMD and (d) using learned features for Bickley jet.

learned model, the Gaussian basis functions, and the monomial basis functions. We can see the
learned features perform comparably to the monomial basis functions, which also provided good
reconstruction. The learned features also outperform the Gaussian basis functions. Note, that the
low error in approximation is an indicator of the invariance of the eigenfunctions, as it shows that
the application of eigenfunctions do not cause high divergence.

5.3. Quantitative features

Next, we quantitatively compare eigenfunction values derived from the EDMD using the learned
RFFs with the kernel EDMD algorithm (Williams et al., 2015b). For the double gyre and Bickley
jet, we know that the coherent sets, an important property of global dynamics, can be estimated using
an RBF kernel with σ = 0.75 and σ = 1.0, respectively (Salam et al., 2022). We plot the eigenfunc-
tions of the Koopman operator associated with the dominant eigenvalues of the decomposition. The
eigenfunctions of the Koopman operator corresponding to the kernel EDMD formulation elucidate
two distinct regions for the double gyre and waves for the Bickley jet, as seen in Fig. 6(a) and 6(c)
respectively. The eigenfunctions of the Koopman operator learned using the proposed algorithm in
Fig. 6(b) and 6(d) agree closely with verified notions of coherence within these systems.

6. Conclusion

In this paper, we develop an automated, online procedure for constructing operators to describe
global representations of dynamical systems. This work can be generalized through the use of non-
stationary kernels and extended to applications in controls. Non-stationary kernels capture input-
dependent correlations. While non-stationary kernel learning gained attention in recent years (Samo
and Roberts, 2015; Remes et al., 2017), the problem of automated non-stationary kernel is still an
active area of research. While transfer operators are well-studied in controls, there are practical
considerations in applying these learned models to control theory. The dictionary of observables
may fail to satisfy the invariance property for observables and the derived evolution of the observable
may leave the lifted space (Bruder et al., 2019). While several works focus on finding functions that
are the basis of Koopman invariant subspaces (Kaiser et al., 2021; Kawahara, 2016), there are no
mathematical guarantees for the identified functions to be Koopman eigenfunctions (Haseli and
Cortés, 2021). Notably, many open questions surround the representation and evolution of control
inputs in transfer operator methods (Proctor et al., 2018; Otto and Rowley, 2021).
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