Proceedings of Machine Learning Research vol 211:1-15, 2023 Sth Annual Conference on Learning for Dynamics and Control

End-to-End Learning to Warm-Start
for Real-Time Quadratic Optimization

Rajiv Sambharya RAJIVS @PRINCETON.EDU
Operations Research and Financial Engineering, Princeton University, Princeton, NJ, USA

Georgina Hall GEORGINA.HALL @ INSEAD.EDU
Decision Sciences, INSEAD, Fontainebleau, France

Brandon Amos BDA @FB.COM
Meta AI, New York City, NY, USA

Bartolomeo Stellato BSTELLATO @ PRINCETON.EDU
Operations Research and Financial Engineering, Princeton University, Princeton, NJ, USA

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract

First-order methods are widely used to solve convex quadratic programs (QPs) in real-time appli-
cations because of their low per-iteration cost. However, they can suffer from slow convergence to
accurate solutions. In this paper, we present a framework which learns an effective warm-start for
a popular first-order method in real-time applications, Douglas-Rachford (DR) splitting, across a
family of parametric QPs. This framework consists of two modules: a feedforward neural network
block, which takes as input the parameters of the QP and outputs a warm-start, and a block which
performs a fixed number of iterations of DR splitting from this warm-start and outputs a candidate
solution. A key feature of our framework is its ability to do end-to-end learning as we differentiate
through the DR iterations. To illustrate the effectiveness of our method, we provide generalization
bounds (based on Rademacher complexity) that improve with the number of training problems and
the number of iterations simultaneously. We further apply our method to three real-time applica-
tions and observe that, by learning good warm-starts, we are able to significantly reduce the number
of iterations required to obtain high-quality solutions.

Keywords: Machine learning, real-time optimization, quadratic optimization, warm-start, general-
ization bounds.

1. Introduction

We consider the problem of solving convex quadratic programs (QPs) within strict real-time com-
putational constraints using first-order methods. QPs arise in various real-time applications in
robotics (Kuindersma et al., 2014), control (Borrelli et al., 2017), and finance (Boyd et al., 2017).
In the past decade, first-order methods have gained wide popularity in real-time quadratic optimiza-
tion (Boyd et al., 2011; Beck, 2017; Ryu and Yin, 2022) due to their low cost per iteration and their
warm-starting capabilities. However, they still suffer from slow convergence to the optimal solu-
tions, especially for badly-scaled problems (Beck, 2017). As a workaround to this issue, one can
make use of the oftentimes parametric nature of the QPs which feature in real-time applications.
For example, one can use the solution to a previously solved QP as a warm-start to a new prob-
lem (Ferreau et al., 2014; Stellato et al., 2020). Although this approach is popular, it only makes use

© 2023 R. Sambharya, G. Hall, B. Amos & B. Stellato.

END-TO-END LEARNING TO WARM-START QPS

DR splitting with a learned warm-start

Standard DR splitting

NN with 5

29— _ — 2 (0)—]

kDR | ..k a_{welghtsw I | T

9 —| iterations =0 iterations 2 (0)— Lo (2w (0))

No learning

Learn with V¢ through the DR iterates

Figure 1: Left: standard DR splitting which maps parameter 6 and initialization 2 to an approximate solution
2¥(#). Right: Proposed learning framework consisting of two modules. The first module is the NN block
which maps the parameter 6 to a warm-start 2y, (6). The weights of the NN, denoted by w, are the only
variables we optimize over. The second module runs k iterations of DR splitting (which also depend on 6)
starting with the warm-start 2y(0) and returning a candidate solution z3),(¢). We backpropagate from the
loss £ (2%,(0)) through the DR iterates to learn the optimal weights W.

of the data from the previous problem, neglecting the vast majority of data available. More recent
approaches in machine learning have sought to exploit data by solving many different parametric
problems offline to learn a direct mapping from the parameters to the optimal solutions. The learned
solution is then used as a warm-start (Chen et al., 2022; Baker, 2019). These approaches fail to con-
sider the specific characteristics of the algorithm that will run on this warm-start downstream, and
they require solving many optimization problems to optimality, which can be expensive. Further-
more, such learning schemes often do not provide generalization guarantees (Amos, 2022) on the
algorithmic performance on unseen data. Such guarantees are crucial for real-time and safety critical
applications where the algorithms must return high-quality solutions within strict time limits.

Contributions. In this work, we exploit data to learn a mapping from the parameters of the QP
to a warm-start of a popular first-order method, Douglas-Rachford (DR) splitting. The goal is to
decrease the number of real-time iterations of DR splitting that are required to obtain a good-quality
solution in real-time. Our contributions are the following:

* We propose a principled framework to learn high quality warm-starts from data. This frame-
work consists of two modules as indicated in Figure 1. The first module is a feedforward
neural network (NN) that predicts a warm-start from the problem parameters. The second
module consists of £ DR splitting iterations that output the candidate solution. We differenti-
ate the loss function with respect to the neural network weights by backpropagating through
the DR iterates, which makes our framework an end-to-end warm-start learning scheme. Fur-
thermore, our approach does not require us to solve optimization problems offline.

* We combine operator theory and Rademacher complexity theory to obtain novel general-
ization bounds that guarantee good performance for parametric QPs with unseen data. The
bounds improve with the number of training problems and the number of DR iterations si-
multaneously, thereby allowing great flexibility in our learning task.

* We benchmark our approach on real-time quadratic optimization examples, showing that our
method can produce an excellent warm-start that reduces the number of DR iterations required
to reach a desired accuracy by at least 30% and as much as 90%.

END-TO-END LEARNING TO WARM-START QPS

2. Related work

Learning warm-starts. A common approach to reduce the number of iterations of iterative algo-
rithms is to learn a mapping from problem parameters to high-quality initializations. Baker (2019)
trains a random forest to predict a warm-start for the optimal power flow problem. In the model pre-
dictive control (MPC) (Borrelli et al., 2017) paradigm, Chen et al. (2022) use a neural network to
accelerate the optimal control law computation by warm-starting an active set method. Other works
in MPC use machine learning to predict an approximate optimal solution and, instead of using it
to warm-start an algorithm, directly ensure feasibility and optimality. Chen et al. (2018) and Karg
and Lucia (2020) use a constrained neural network architecture that guarantees feasibility by pro-
jecting its output onto the QP feasible region. Zhang et al. (2019) uses a neural network to predict
the solution while also certifying suboptimality of the output. In these works, the machine learning
models do not consider that additional algorithmic steps will be performed after warm-starting. Our
work differs in that the training of the NN is designed to minimize the loss after many steps of DR
splitting. Additionally, our work is more general in scope since we consider general parametric

QPs.

Learning algorithm steps. There has been a wide array of works to speedup machine learn-
ing tasks by tuning algorithmic steps of stochastic gradient descent methods (Li and Malik, 2016;
Andrychowicz et al., 2016; Metz et al., 2022; Chen et al., 2021; Amos, 2022). Similarly, Gregor
and LeCun (2010) and Liu et al. (2019) accelerate the solution of sparse encoding problems by
learning the steps of the iterative soft thresholding algorithm. Operator splitting algorithms (Ryu
and Yin, 2022) can also be sped up by learning acceleration steps (Venkataraman and Amos, 2021)
or the closest contractive fixed-point iteration to achieve fast convergence (Bastianello et al., 2021).
Reinforcement learning has gained popularity as a versatile technique to accelerate the solution of
parametric QPs by learning a policy to tune the step size of first-order methods (Ichnowski et al.,
2021; Jung et al., 2022). A common tactic in these works is to differentiate through the steps of an
algorithm to minimize a performance loss using gradient-based methods. This known as loop un-
rolling which has been used in other areas such as meta-learning (Finn et al., 2017) and variational
autoencoders (Kim et al., 2018). While we also unroll the algorithm iterations, our work differs in
that we learn a high-quality warm-start rather than the algorithm steps. This allows us to guarantee
convergence and also provide generalization bounds over the number of iterations.

Learning surrogates. Instead of solving the original parametric problem, several works aim to
learn a surrogate model that can be solved quickly in real-time applications. For example, by pre-
dicting which constraints are active (Misra et al., 2022) and the value of the optimal integer solu-
tions (Bertsimas and Stellato, 2021, 2019) we can significantly accelerate the real-time solution of
mixed-integer convex programs by solving a surrogate low-dimensional convex problem instead.
Other approaches learn a mapping to reduce the dimensionality of the decision variables in the
surrogate problem (Wang et al., 2020). This is achieved by embedding the surrogate problem as
an implicit layer of a neural network and differentiating its KKT optimality conditions (Amos and
Kolter, 2017; Amos et al., 2018; Agrawal et al., 2019). In contrast, our method does not approxi-
mate any problem and, instead, we predict a warm-start of the algorithmic procedure with a focus
on real-time computations. This allows us to clearly quantify the suboptimality achieved within a
fixed number of real-time iterations.

END-TO-END LEARNING TO WARM-START QPS

3. End-to-end learning framework

Problem formulation. We consider the following parametric (convex) QP:

minimize (1/2)2” Pz + 'z
subjectto Az +s=10 with parameter 6 = (vec(P),vec(A),¢,b) € RY, (1)
s >0,

and decision variables z € R" and s € R™. We denote S" and S}, to be the set of positive
semidefinite and positive definite matrices respectively of size n. Here, P belongs to S}, the matrix
A is in R™*™, and b and c are vectors in R™ and R" respectively. For a matrix Y, vec(Y) is
the vector obtained by stacking the columns of Y. The dimension d of 6 is upper bounded by
mn + n? + m + n, but is smaller when only some of the data changes across the problems. The
parameters of the QP, 6, in problem (1) are randomly drawn from a distribution D with compact
support set ©. We assume that all problems admit an optimal solution for any § € ©. Our goal is to
quickly solve these parametric QPs.

Optimality conditions. The KKT optimality conditions of problem (1), that is, primal feasibility,
dual feasibility, and complementary slackness, are given by

Az +s=b, ATy+Pr4+c¢=0, s>0, y>0, sly=0,

where y € R™ is the dual variable to problem (1). We can compactly write these conditions
as a linear complementarity problem (O’Donoghue, 2021, Sec. 3), i.e., the problem of finding a
u = (z,y) € R™"" such that

P AT
—A

Coul Mu+qeC*, where M = e R(m+n)x(m+n)

)

and ¢ = (c,b) € R™™™. Here, C = R" x R} and C* = {0}" x R is the dual cone to C, i.e.,
C* = {w | wTu > 0, u € C}. This problem is equivalent to finding u € R™"™ that satisfies the
following inclusion (Bauschke and Combettes, 2011, Ex. 26.22)

0 € Mu+ q+ Ne(u),)

where N¢(u) is the normal cone for cone C defined as N¢(z) = {z | (y — u)Tz < 0,Vy € C} if
u € C and () otherwise. Since P = 0, C is a convex polyhedron, and problem (1) always admits an
optimal solution, Mu + ¢ + N¢(u) is maximal monotone (Ryu and Yin, 2022, Thm. 7, Thm. 11).
Maximal monotonicity (see (Ryu and Yin, 2022, Sec. 2.2) for a definition) ensures convergence of
Douglas-Rachford splitting, which we introduce next.

Douglas-Rachford splitting. We apply Douglas-Rachford (DR) splitting (Lions and Mercier,
1979; Douglas and Rachford, 1956) to solve problem (2). DR splitting consists of evaluating the
resolvent of operators Mu + g and N¢, which for an operator F is defined as (I + F)~! (Ryu
and Yin, 2022, pp 40). By noting that the resolvent of Mu + q is (M + I)~!(z — ¢) and the
resolvent of N¢(u) is Il¢(2), i.e., the projection onto C (Ryu and Yin, 2022, Eq. 2.8, pp 42), we
obtain Algorithm 1.

END-TO-END LEARNING TO WARM-START QPS

Algorithm 1 The DR Splitting algorithm for k iterations to solve problem (2).

Inputs: initial point 2%, problem data (M, q), k number of iterations
Output: approximate solution z*
fori:=0,...,k—1do
@t = (M + 1) (2 —q)
ui+1 — HC (2&i+1 _ zz)
S i il i
end

The linear system in the first step is always solvable since M + I has full rank (O’Donoghue,
2021), but it varies from problem to problem. The projection onto C, however, is the same for all
problems and simply clips negative values to zero and leaves non-negative values unchanged. For
compactness, in the remainder of the paper, we write Algorithm 1 as

FH =1 (zz) where Ty(z) = z + ¢ (2(M + N™Yz—q)— z) — (M + N7z —q).

We make the dependence of 7" on 6 explicit here as M and g are parametrized by 6. DR splitting is
guaranteed to converge to a fixed point z* € fix Ty such that Tp(2*) = z*. Here, fix Ty is defined
as the set of fixed points of Ty which is non-empty by the assumption that all problems have an
optimal solution. Algorithm 1 returns an approximate solution z*, from which we can recover an
approximate primal-dual solution to (1) by computing (z*,3*) = u* = (M + I)7'(2* — ¢) and
sk =b— Azk.

Our end-to-end learning architecture. Our architecture consists of two modules as depicted in
Figure 1. The first module is a NN with weights W: it predicts a good-quality initial point (or
warm-start), 2y (6), to Algorithm 1 from the parameter 6 of the QP in problem (1). The NN has L
layers with ReLU activation functions (Ramachandran et al., 2017). We then write the warm-start
prediction as follows:

2w(0) = hw(0) = hy (hp—1...h1(0)),

where hy(y1) = Wiy +b) forl = 1,...,L — 1 and hp(yr) = (Wryr +br). The weight
matrices are {W;}_,, and the bias terms are {b;} ;. Here, hyy(-) is a mapping from R to R™™
corresponding to the prediction. We denote the set of all such mappings by H. We emphasize the
dependency of h on the weights and bias terms via the subscript W = (Wq,b1,..., Wy, br). The
second module corresponds to k iterations of DR splitting from the initial point Zyy(6). It outputs
an approximate solution z%,,(6) = T (2),(6)), from which we can recover an approximate solution
to problem (1) as explained above. To obtain the solution to a QP given parameter 6, we perform a
forward pass of the architecture, i.e., compute 7/ (hyy(6)), with k chosen as needed.

Learning task. We define the loss function as the fixed-point residual of operator Ty, i.e.,
ly(z) = [To(2) — 2|2

This loss measures the distance to convergence of Algorithm 1. The goal is to minimize the expected
loss, which we define as the risk,

RF(hw) = Egup [56 (Tek(hw(e)))] ,

5

END-TO-END LEARNING TO WARM-START QPS

with respect to the weights JV of the NN. In general, we cannot evaluate R¥(hyy) exactly and,
instead, we minimize the empirical risk,

N
R¥ () = }VZEQ (T (w6)

Here, N is the number of training problems. We use gradient methods on mini-batch or stochastic
approximations of the empirical risk during the training process (Sra et al., 2011).

Differentiability of our architecture. To see that we can differentiate ¢y with respect to W,
note that the second module consists of repeated linear system solves and projections onto C (see
Algorithm 1). Since the linear systems always have unique solutions, %'+ is linear in 2% and the
linear system solves are differentiable. Furthermore, as the projection step involves clipping non-
negative values to zero, it is differentiable everywhere except at zero. In the first module, the
NN consists entirely of differentiable functions except for the ReLU activation function, which is

likewise differentiable everywhere except at zero.

4. Generalization bounds

In this section, we provide an upper bound on the expected loss R*(hyy) of our framework for
any hyy € H if the operator, T}, is contractive. This bound involves the empirical expected loss
RF (hw), the Rademacher complexity of the NN appearing in the first module only and a term which
decreases with both the number of iterations of DR splitting, k, and the number of training samples,
N. To obtain this bound, we rely on the key property of contractive operators,

|To(2) — Ty(w)l|2 < Bollz — w2,

where [y € (0,1) is the contractive factor of operator Ty. In the next theorem we use the notion
of multivariate empirical Rademacher complexity as defined, e.g., in (Bertsimas and Kallus, 2014,
Def. 3), of the NN. We denote this complexity measure as erad(H).

Theorem 1 Assume that each Ty is Sy-contractive and let 3 = maxgce By € (0,1). Let H be the
set of L-layer ReLU neural networks such that for any hyy € H and 6 € ©, distgx 1, (hw(8)) < B
for some B > 0. Then, with probability at least 1 — § over the draw of i.i.d samples,

RE(hyy) < R¥(hyy) + 26" <2\/§erad(7-[) + 3Bk)g2(]2v/5)> Vhyw € H,

where k is the number of DR iterations and N is the number of training samples.

When the Rademacher complexity of H can be upper bounded, such as in the case of 1 or 2-layer
NNs with bounded norms on the weights, the generalization error and its dependence on k and NV
can be made even more explicit (Golowich et al., 2018; Neyshabur et al., 2019).

Corollary 2 Let H be the set of linear functions with bounded norm, i.e., H = {h | h(0) = W}
where § € R%, W € RO"*4 gpd (1/2)||W||% < D for some D > 0. Then, with probability at
least 1 — & over the draw of i.i.d samples,

R (hyy) < B (hyy) + 28 <4p2(9)D1 Tk ; "4 3Blog2(jzv/5)> Vhyy € H,

6

END-TO-END LEARNING TO WARM-START QPS

oscillating masses vehicle markowitz

—
(=}
o

—
<

—
o
|

o~

test fixed point residuals
—
S

—
o
|

=

0 200 400 0 200 400 0 200 400
evaluation iterations evaluation iterations evaluation iterations

M cold-start M nearest-neighbor warm-start learned warm-start & ={ll 5 M 15 W 50}

Figure 2: We plot the test fixed point residuals for different warm-starts of DR splitting. We train our ar-
chitecture with £ = 5,15, and 50 DR iterations with loss function (3). We compare our results against a
cold-start (black) and the nearest-neighbor warm-start (magenta). Left: oscillating masses example. Middle:
vehicle dynamics example. Right: portfolio optimization example.

where k, B, and N are defined as in Thm. 1, and p2(0) = maxgce ||0||2 (El Balghiti et al., 2019,
Thm. 6).

5. Numerical experiments

We now illustrate our method with examples of quadratic optimization problems deployed and
repeatedly solved in control and portfolio optimization settings where rapid solutions are impor-
tant for real-time execution and backtesting. Our architecture was implemented in the JAX li-
brary (Bradbury et al., 2018) with the Adam (Kingma and Ba, 2015) training optimizer. All
computations were run on the Princeton HPC Della Cluster, and all examples could be trained
in under 2 hours. We use 10000 training problems and evaluate on 2000 test problems. In our
examples we use a NN with three hidden layers of size 500 each. We compare our learned warm-
start against two other initialization approaches. The first initializes DR-splitting with a random
point which we call a cold-start. The other is a nearest-neighbor warm-start which initializes the
test problem with the optimal solution of the nearest training problem measured by distance in
terms of its parameter . The problems are sufficiently distant from each other that warm-starting
with the nearest-neighbor approach does not yield satisfactory results. Our code is available at
https://github.com/stellatogrp/l2ws.

5.1. Oscillating masses

We consider the problem of controlling a physical system that involves connected springs and
masses (Wang and Boyd, 2010; Chen et al., 2022, System 4),

minimize =5 Qrar + 31, *F Qi + ul Ruy

subjectto x411 = Az + Buy t=0,...,T—1
Umin < Ut < Umpax t=0,..., T —1
Tmin LTt < Tmax t=1,...,T

Lo = Tinit,

https://github.com/stellatogrp/l2ws

END-TO-END LEARNING TO WARM-START QPS

Table 1: Oscillating masses problem. We compare the number of iterations of DR splitting required to reach
different levels of accuracy with different warm-starts (learned warm-start with & = 5, 15, 50, cold-start, and
a nearest-neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the cold-
start iterations.

cold-start nearest-neighbor train k = 5 train k = 15 train k = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 381 353 0.07 279 027 176 0.54 127 0.67
0.001 651 616 0.05 555 0.15 438 0.33 338 048
0.0001 1019 973 0.05 932 0.09 816 0.20 663 0.35

where the states z; € R and the inputs u; € R™* are subject to lower and upper bounds. Matrices
A € R™*" and B € R"™*™ define the system dynamics where n, and n, are the number of
states and controls. The horizon length is 7" and the parameter 6 is the initial state, zj,j;. Matrices
Q € 8" and R € S'}*,_ define the state and input costs at each stage, and Q7 € S'}” the final stage
cost.

Numerical example. The problem takes values n, = 36, n, = 9, and T = 50. Matrices A and
B are obtained by discretizing the state dynamics with time step 0.5 (Chen et al., 2022, System 4).
We set Umin = —Umax = 1/2 and Tpin = —Tmax = 2. We set Q; = I and Ry = [for all . We
sample 6 = ;¢ uniformly in [—2,2]3¢. Figure 2 and Table 1 show the convergence behavior of
our method.

5.2. Vehicle dynamics control problem

We consider problem of controlling a vehicle, modeled as a parameter-varying linear dynamical
system (Takano et al., 2003), to track a reference trajectory (Zhang et al., 2019). We formulate it as
the following QP:

minimize (yr — ¥ Qyr — v + 205 (e — v T Qr (v — yi) + uf Ruy
subject to a1 = A(v)z + B(v)uy + E(v)d; t=0,...,T—1

w| <a, |Ju—w-1|<Au, t=0,...,7—-1

y=Cx; t=0,...,T—1

Lo = Linit,

where z; € R* is the state and u; € R is the input, and J; € R is the driver steering input, which
is linear over time. We aim to minimize the distance between the output, 7, € R? and the reference
trajectory 5" € R® over time. Matrices @ € S'}* and Q7 € S'}* define the state costs, R € S7*, the
input cost, and C' € R34 the output g;. The term v € R is the longitudinal velocity of the vehicle
that parametrizes A € R?*4 B ¢ R¥3, and E € R%. Vectors % and Au bound the magnitude of
the inputs and change in inputs respectively. The parameters 6 for the problem are the initial state
Tinit, the initial velocity v, the previous control input u_1, the reference signals {y}fef}tT:O, and the
steering inputs {6;}7 .

Numerical example. The time horizon is T' = 30. Matrices A, B, F result from discretizing the
dynamics (Takano et al., 2003). We sample all parameters uniformly from their bounds: the velocity

END-TO-END LEARNING TO WARM-START QPS

Table 2: Vehicle problem. We compare the number of iterations of DR splitting required to reach different
levels of accuracy with different warm-starts (learned warm-start with £ = 5,15, 50, no warm-start, and a
nearest-neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the cold-start
iterations.

cold-start nearest-neighbor train k = 5 train k = 15 train k = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 639 520 0.19 203 0.68 48 0.92 48 0.92
0.001 1348 1163 0.14 895 0.34 351 0.74 299 0.78
0.0001 2126 1948 0.08 1653 0.22 1006 0.53 882 0.59

Table 3: Markowitz problem. We compare the number of iterations of DR splitting required to reach different
levels of accuracy with different warm-starts (learned warm-start with £ = 5,15, 50, no warm-start, and a
nearest-neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the cold-start
iterations.

cold-start nearest-neighbor traink =5 train k = 15 train k = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 14 7 0.5 7 0.5 9 0.36 11 0.21
0.001 54 24 0.56 22 0.59 16 0.7 19 0.65
0.0001 186 148 0.2 147 0.21 72 0.61 61 0.67

v € [2,35], the output y; € [—7y,y] where § = (25,40, 30) in degrees, and the previous control
u_1 € [—u,u] where & = 103(1, 20, 30). We sample the initial steering angle from [—45, 45] and
its linear increments from [—30, 30]. Figure 2 and Table 2 show the performance of our method.

5.3. Portfolio optimization

We consider the portfolio optimization problem where we want to allocate assets to maximize the
risk-adjusted return (Markowitz, 1952; Boyd et al., 2017),

maximize pplx — 27Xz
subjectto 1Tz =1, x>0,

where © € R" represents the portfolio, 1 € R" the expected returns, 1/p > 0 the risk-aversion
parameter, and X € S’} the return covariance. For this problem, 6 = .

Numerical example. We use real-world stock return data from 3000 popular assets from 2015-
2019 (Nasdaq, 2022). We use an [-factor model for the risk and set > = FXpF T + D where
F € R" is the factor-loading matrix, X € SlJr estimates the factor returns, and D € S’}r Lisa
diagonal matrix accounting for additional variance for each asset also called the idiosyncratic risk.
We compute the factor model with 15 factors by using the same approach as in (Boyd et al., 2017).
The return parameters are p = «(fis + €;) where /iy is the realized return at time ¢, e; ~ N (0, 0.1),
and o = 0.24 is selected to minimize the mean squared error E|[z; — ji]|3 (Boyd et al., 2017). We
iterate and repeatedly cycle over the five year period to sample a u vector for each of our problems.
Figure 2 and Table 3 show the performance of our method.

END-TO-END LEARNING TO WARM-START QPS

Appendix A. Proof of the generalization bound
A.1. Proof of Theorem 1

Assume that the loss is bounded by C, i.e., {o(TF(hw(0))) < C Vhy € H,0 € ©. Then, for
any 6 > 0, with probability at least 1 — § over the draw of an i.i.d. sample of size IV, the following
holds (Bartlett and Mendelson, 2002; Mohri et al., 2012, Thm. 3.3):

N
R¥(hny) < R (o) + B Lsupﬂzamai (T5, (hw(6:))) | +3C/10g(2/8)/(2N), (4)
WER =1

where the o;’s are i.i.d. Rademacher random variables. We need to bound the worst-case loss C' and
the expectation term in equation (4). We first prove that £o(T}(-)) is 28*-Lipschitz:
k k
[6o(TF (2)) = Lo(TH (w))| = [|1T3H () = Ty (2) |2 — 1Ty (w) = Ty (w)]|2]
<N Tyt(2) = Ty (w) + Ty (w) = T4 (2)]l2
< | Tyt (2) = Ty (w) |2 + | T5 (w) — TF(2)|2
§ QBkHZ — UJHQ.

~— ~—

The first and second inequalities follow from the reverse triangle inequality and triangle property
respectively. In the last line, we use the contractive property of Tp. Using this Lipschitz-property,
we can provide a worst-case bound of 26% B as follows:

Co(Th (hw(0))) = [€o(Ty (hw(0))) — £o(Ty (2*(6)))]
< 28%distgy 7, (R (0))
< 28*B.

In the first line, we denote the fixed point of the problem parametrized by 6 as z*(#). Since the

operators are contractive, there is only one such fixed point. The equality follows from the non-

negativity of the the loss function and the fact that z*(0) is a fixed point. In the second line, we use

the Lipschitz property proven before. The last line follows from the assumption of the theorem.
Next, we bound the expectation term in (4) as follows:

N N
B supty, e 2% 00 (T (o (8)| < 2V2 B supn, cn S T3 560
= 2v/28Ferad(H).
In the first line, o; j are doubly-indexed i.i.d. Rademacher random variables. The inequality comes
from using the Lipschitz factor of 23* and the vector concentration inequality from (Maurer, 2016,

Cor. 4). The second line comes from the definition of the multivariate empirical Rademacher com-
plexity of the function class H completing the proof.

10

END-TO-END LEARNING TO WARM-START QPS

Acknowledgments

The author(s) are pleased to acknowledge that the work reported on in this paper was substan-
tially performed using the Princeton Research Computing resources at Princeton University which
is consortium of groups led by the Princeton Institute for Computational Science and Engineering
(PICSciE) and Office of Information Technology’s Research Computing.

References

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa Moursi. Differentiating
through a cone program. Journal of Applied and Numerical Optimization, 1(2):107-115, 2019.

Brandon Amos. Tutorial on amortized optimization for learning to optimize over continuous do-
mains, 2022. URL https://arxiv.org/abs/2202.00665.

Brandon Amos and Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 136—
145, International Convention Centre, Sydney, Australia, 06—11 Aug 2017. PMLR. URL http:
//proceedings.mlr.press/v70/amosl7a.html.

Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J Zico Kolter. Dif-
ferentiable mpc for end-to-end planning and control. arXiv preprint arXiv:1810.13400, 2018.

Marcin Andrychowicz, Misha Denil, Sergio Gémez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient
descent by gradient descent. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’ 16, page 3988-3996, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 9781510838819.

Kyri Baker. Learning warm-start points for ac optimal power flow. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1-6, 2019. doi: 10.1109/
MLSP.2019.8918690.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. J. Mach. Learn. Res., 3:463—482,2002. URL http://dblp.uni-trier.
de/db/journals/Jjmlr/Jmlr3.html#BartlettMO02.

Nicola Bastianello, Andrea Simonetto, and Emiliano Dall’ Anese. Opreg-boost: Learning to accel-
erate online algorithms with operator regression, 2021. URL https://arxiv.org/abs/
2105.13271.

Heinz. H. Bauschke and Patrick. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer, 1st edition, 2011.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997. URL https://epubs.siam.
org/doi/abs/10.1137/1.9781611974997.

11

https://arxiv.org/abs/2202.00665
http://proceedings.mlr.press/v70/amos17a.html
http://proceedings.mlr.press/v70/amos17a.html
http://dblp.uni-trier.de/db/journals/jmlr/jmlr3.html#BartlettM02
http://dblp.uni-trier.de/db/journals/jmlr/jmlr3.html#BartlettM02
https://arxiv.org/abs/2105.13271
https://arxiv.org/abs/2105.13271
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997

END-TO-END LEARNING TO WARM-START QPS

Dimitriis Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds.
arXiv e-prints, July 2019. URL https://arxiv.org/abs/1907.02206.

Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Manag. Sci., 66:
1025-1044, 2014.

Dimitris Bertsimas and Bartolomeo Stellato. The voice of optimization. Machine Learning, 110:
249-277, Feb 2021. URL https://doi.org/10.1007/s10994-020-05893-5.

Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for Linear and
Hybrid Systems. Cambridge University Press, 2017. doi: 10.1017/9781139061759.

Stephen Boyd, Enzo Busseti, Steven Diamond, Ronald N. Kahn, Kwangmoo Koh, Peter Nystrup,
and Jan Speth. Multi-period trading via convex optimization, 2017. URL https://arxiv.
org/abs/1705.001009.

Stephen P. Boyd, Neal Parikh, Eric King wah Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn., 3:1-122, 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/ jax.

Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D. Lee, Vijay Kumar, George J. Pappas,
and Manfred Morari. Approximating explicit model predictive control using constrained neural
networks. In 2018 Annual American Control Conference (ACC), pages 1520-1527, 2018. doi:
10.23919/ACC.2018.8431275.

Steven W. Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2021.109947. URL https:
//www.sciencedirect.com/science/article/pii/S0005109821004738.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark, 2021. URL https://arxiv.
org/abs/2103.12828.

Jim Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Transactions of the American Mathematical Society, 82(2):421-439,
1956. ISSN 00029947. URL http://www. jstor.org/stable/1993056.

Othman El Balghiti, Adam N. Elmachtoub, Paul Grigas, and Ambuj Tewari. Generaliza-
tion bounds in the predict-then-optimize framework. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper_files/paper/2019/file/
a70145bf8b173e4496b554ceb57969%9e24-Paper.pdf.

12

https://arxiv.org/abs/1907.02206
https://doi.org/10.1007/s10994-020-05893-5
https://arxiv.org/abs/1705.00109
https://arxiv.org/abs/1705.00109
http://github.com/google/jax
http://github.com/google/jax
https://www.sciencedirect.com/science/article/pii/S0005109821004738
https://www.sciencedirect.com/science/article/pii/S0005109821004738
https://arxiv.org/abs/2103.12828
https://arxiv.org/abs/2103.12828
http://www.jstor.org/stable/1993056
https://proceedings.neurips.cc/paper_files/paper/2019/file/a70145bf8b173e4496b554ce57969e24-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/a70145bf8b173e4496b554ce57969e24-Paper.pdf

END-TO-END LEARNING TO WARM-START QPS

Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz Diehl.
gpoases: a parametric active-set algorithm for quadratic programming. Mathematical Program-
ming Computation, 6:327-363, 2014.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126-1135. PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.
press/v70/finnl7a.html.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Proceed-
ings of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning
Research, pages 297-299. PMLR, 06-09 Jul 2018.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th International Conference on International Conference on Machine Learning, ICML’ 10,
page 399-406, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph. E Gonzales, Ian Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. In Advances in Neural Information Processing Systems 35, 12 2021.
URL https://arxiv.org/pdf/2107.10847.pdf.

Haewon Jung, Junyoung Park, and Jinkyoo Park. Learning context-aware adaptive solvers to accel-
erate quadratic programming, 2022. URL https://arxiv.org/abs/2211.12443.

Benjamin Karg and Sergio Lucia. Efficient representation and approximation of model predictive
control laws via deep learning. [IEEE Transactions on Cybernetics, PP:1-13, 06 2020. doi:
10.1109/TCYB.2020.2999556.

Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-amortized
variational autoencoders. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2678-2687. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.
press/v80/kiml8e.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Scott Kuindersma, Frank Permenter, and Russ Tedrake. An efficiently solvable quadratic program
for stabilizing dynamic locomotion. 06 2014. doi: 10.1109/ICRA.2014.6907230.

Ke Li and Jitendra Malik. Learning to optimize, 2016. URL https://arxiv.org/abs/
1606.01885.

13

https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/pdf/2107.10847.pdf
https://arxiv.org/abs/2211.12443
https://proceedings.mlr.press/v80/kim18e.html
https://proceedings.mlr.press/v80/kim18e.html
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885

END-TO-END LEARNING TO WARM-START QPS

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964-979, 1979. doi: 10.1137/0716071. URL https:
//doi.org/10.1137/0716071.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: Analytic weights are as
good as learned weights in LISTA. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=Bllnzn0OctQ.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91, 1952. ISSN 00221082,
15406261. URL http://www. jstor.org/stable/2975974.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Ronald Ortner,
Hans Ulrich Simon, and Sandra Zilles, editors, Algorithmic Learning Theory, pages 3—17, Cham,
2016. Springer International Publishing. ISBN 978-3-319-46379-7.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-Dickstein. Velo:
Training versatile learned optimizers by scaling up, 2022. URL https://arxiv.org/abs/
2211.09760.

Sidhant Misra, Line Roald, and Yeesian Ng. Learning for constrained optimization: Identifying
optimal active constraint sets. INFORMS J. on Computing, 34(1):463-480, jan 2022. ISSN 1526-
5528. doi: 10.1287/ijoc.2020.1037. URL https://doi.org/10.1287/1joc.2020.
1037.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet S. Talwalkar. Foundations of machine learning.
In Adaptive computation and machine learning, 2012.

Nasdaq. End-of-day us stock prices. https://data.nasdaqg.com/databases/EOD/
documentation, 2022. This data was obtained and used solely by Princeton University.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of
over-parametrization in generalization of neural networks. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=BygfghAcYX.

Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the linear comple-
mentarity problem. SIAM Journal on Optimization, 31(3):1999-2023, 2021. doi: 10.1137/
20M1366307. URL https://doi.org/10.1137/20M1366307.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Swish: a self-gated activation function. arXiv:
Neural and Evolutionary Computing, 2017.

Ernest K. Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithms amp; Analyses via
Monotone Operators. Cambridge University Press, 2022.

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Machine Learning. The
MIT Press, 2011. ISBN 026201646X.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Boyd Stephen. OSQP:
An Operator Splitting Solver for Quadratic Programs. Mathematical Programming Computation,
12(4):637-672, 10 2020. URL https://doi.org/10.1007/s12532-020-00179-2.

14

https://doi.org/10.1137/0716071
https://doi.org/10.1137/0716071
https://openreview.net/forum?id=B1lnzn0ctQ
http://www.jstor.org/stable/2975974
https://arxiv.org/abs/2211.09760
https://arxiv.org/abs/2211.09760
https://doi.org/10.1287/ijoc.2020.1037
https://doi.org/10.1287/ijoc.2020.1037
https://data.nasdaq.com/databases/EOD/documentation
https://data.nasdaq.com/databases/EOD/documentation
https://openreview.net/forum?id=BygfghAcYX
https://doi.org/10.1137/20M1366307
https://doi.org/10.1007/s12532-020-00179-2

END-TO-END LEARNING TO WARM-START QPS

Shuichi Takano, Masao Nagai, Tetsuo Taniguchi, and Tadashi Hatano. Study on a vehicle dynamics
model for improving roll stability. JSAE Review, 24(2):149-156, 2003. ISSN 0389-4304. doi:
https://doi.org/10.1016/S0389-4304(03)00012-2. URL https://www.sciencedirect.
com/science/article/pii/S0389430403000122.

Shobha Venkataraman and Brandon Amos. Neural fixed-point acceleration for convex optimization.
CoRR, abs/2107.10254, 2021. URL https://arxiv.org/abs/2107.10254.

Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Automatically learning compact
quality-aware surrogates for optimization problems. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS 20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Yang Wang and Stephen Boyd. Fast model predictive control using online optimization. /EEE
Transactions on Control Systems Technology, 18(2):267-278, 2010. doi: 10.1109/TCST.2009.
2017934.

Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. Safe and near-optimal policy learn-
ing for model predictive control using primal-dual neural networks. In 2019 American Control
Conference (ACC), pages 354-359, 2019. doi: 10.23919/ACC.2019.8814335.

15

https://www.sciencedirect.com/science/article/pii/S0389430403000122
https://www.sciencedirect.com/science/article/pii/S0389430403000122
https://arxiv.org/abs/2107.10254

	Introduction
	Related work
	End-to-end learning framework
	Generalization bounds
	Numerical experiments
	Oscillating masses
	Vehicle dynamics control problem
	Portfolio optimization

	Proof of the generalization bound
	Proof of Theorem

