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Abstract
Trajectory prediction is an integral component of modern autonomous systems as it allows for

envisioning future intentions of nearby moving agents. Due to the lack of other agents’ dynamics
and control policies, deep neural network (DNN) models are often employed for trajectory forecast-
ing tasks. Although there exists an extensive literature on improving the accuracy of these models,
there is a very limited number of works studying their robustness against adversarially crafted input
trajectories. To bridge this gap, in this paper, we propose a targeted adversarial attack against DNN
models for trajectory forecasting tasks. We call the proposed attack TA4TP for Targeted adversarial
Attack for Trajectory Prediction. Our approach generates adversarial input trajectories that are ca-
pable of fooling DNN models into predicting user-specified target/desired trajectories. Our attack
relies on solving a nonlinear constrained optimization problem where the objective function cap-
tures the deviation of the predicted trajectory from a target one while the constraints model physical
requirements that the adversarial input should satisfy. The latter ensures that the inputs look natural
and they are safe to execute (e.g., they are close to nominal inputs and away from obstacles). We
demonstrate the effectiveness of TA4TP on two state-of-the-art DNN models and two datasets. To
the best of our knowledge, we propose the first targeted adversarial attack against DNN models
used for trajectory forecasting.
Keywords: Trajectory Prediction, Adversarial Attacks, Adversarial Robustness

1. Introduction
Trajectory prediction algorithms play a pivotal role in enabling autonomous systems to make safe
and efficient control decisions in highly dynamic environments as they can forecast future behav-
iors of nearby moving agents Hewing et al. (2020); Peddi et al. (2020); Fridovich-Keil et al. (2020);
Omainska et al. (2021); Hosseinzadeh et al. (2021); Zhu et al. (2021); Schumann et al. (2022);
Kalluraya et al. (2022); Lindemann et al. (2022); Nakamura and Bansal (2022); Fang et al. (2022);
Espinoza et al. (2022); Toyungyernsub et al. (2022). To address the lack of knowledge of other
agents’ intentions and control policies, deep neural network (DNN) models are often employed
to address behavior forecasting tasks as e.g., in Nikhil and Tran Morris (2018); Li et al. (2019b);
Salzmann et al. (2020); Cheng et al. (2022). These works typically assess the performance of the
proposed DNN models by measuring the deviation of the predicted trajectories from the ground
truth ones. However, they neglect to evaluate their robustness against adversarially crafted input tra-
jectories. In fact, lack of adversarial robustness can significantly compromise safety of autonomous
systems; see e.g., the autonomous driving and pursuit-evasion scenarios shown in Fig. 1.
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Figure 1: A graphical demonstration of the proposed targeted adversarial attack in an autonomous driving
(left) and pursuit evasion scenario (right). In the left figure, the adversary (car A) designs a trajectory so that
the DNN model of car C predicts that car A will accelerate and move between cars B and C. The latter may
cause the nearby moving cars make unsafe decisions (e.g., accelerate or even exit their road lanes). In the
right figure, the red marked drone plans to move towards a restricted area to take pictures of factory facilities.
The green marked drone collects past trajectories of nearby moving agents and, using a DNN model, predicts
their future paths. If the predicted trajectories lead towards the restricted area, an alarm is raised, and the
green drone is tasked with pursuing the intruders. One of the strategies that the red drone applies to remain
stealthy is to follow adversarially crafted trajectories that will make the green drone specifically predict that
the red drone is heading away from the restricted area.

A first step towards evaluating robustness of trajectory prediction models is to provide auto-
mated methods that compute adversarial inputs (i.e., corner cases in the input space) where these
models fail. To this end, in this paper, we propose a new white box targeted adversarial attack
against DNN models used for trajectory forecasting tasks. We call the proposed attack TA4TP for
Targeted adversarial Attack for Trajectory Prediction. The goal of TA4TP is to perturb any nominal
input trajectory so that the DNN prediction is as close as possible to a user-specified target/desired
trajectory. Throughout the paper, trajectories are defined as finite sequences of system states (e.g.,
positions of a car). We formulate the attack design process as a constrained non-linear optimiza-
tion problem where the objective function captures the deviation of the predicted trajectory from
the desired one and the constraints capture physical requirements that the perturbed input should
satisfy. Specifically, to define the objective function, we first assign weights to each state in the
target trajectory; the higher the weight is, the more important the corresponding desired state is.
This allows an adversary to assign priorities to the desired states. For instance, in certain applica-
tions it may be significant for an adversary to make other agents wrongly predict that its final state
is within a certain region while the predicted trajectory towards that region may be of secondary
importance; this is the case e.g., in the autonomous driving example shown in Fig. 1 and in the
experiments provided in Section 4. Then, the objective function is defined as the weighted average
ℓ2 distance between the predicted and the desired states. The constraints require the adversarially
perturbed trajectory to satisfy certain physical constraints. For instance, in Fig. 1, in the autonomous
driving scenario, the perturbed trajectory should stay within the lane and close enough to the nom-
inal trajectory. Similarly, in the pursuit-evasion scenario shown in Fig. 1, the perturbed trajectory
should be obstacle-free. Assuming that the structure of the target DNN model is fully known, we
solve this optimization problem by leveraging gradient-based methods, such as the Adam optimizer
Kingma and Ba (2014). Our experiments on state-of-the-art datasets and DNN models show that the
proposed attack can successfully force given (and known to the attacker) DNN models to predict
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desired trajectories. We believe that the proposed attack will enable users to evaluate as well as
enhance the adversarial robustness of DNN-based trajectory forecasters.

Related Works: DNNs have seen renewed interest in the last decade due to the vast amount of
available data and recent advances in computing. In autonomous systems, DNNs are typically used
either as feedback controllers and planners Gao et al. (2019); Bansal et al. (2020); Pfrommer et al.
(2022); Djeumou and Topcu (2022), perception modules Redmon et al. (2016); Minaee et al. (2021),
or for trajectory prediction Cheng et al. (2022); Li et al. (2019b); Salzmann et al. (2020) that is also
the case in this paper. Despite the impressive experimental performance of DNNs, their brittleness
has resulted in unreliable system behaviors and public failures preventing their wide adoption in
safety critical applications. This is also demonstrated by several adversarial attack algorithms that
have been proposed recently. These attacks, similar to the proposed one, aim to minimally manipu-
late inputs to DNN models, so that they can cause incorrect outputs that would benefit an adversary.
The large majority of existing adversarial attacks against DNN models are focused on perceptual
tasks such as image classification or object detection as e.g., in Goodfellow et al. (2014); Carlini
and Wagner (2017); Papernot et al. (2016); Moosavi-Dezfooli et al. (2016); Eykholt et al. (2018);
Li et al. (2019a); Boloor et al. (2020); Choi et al. (2022). Recently, adversarial attacks against
DNNs used for planning and control have been proposed in Huang et al. (2017); Ilahi et al. (2021);
Sarkar et al. (2022). However, there is a very limited number of studies evaluating robustness of
DNN models for trajectory prediction against adversarial attacks. We believe that the closest works
to ours are the recent ones presented in Zhang et al. (2022); Cao et al. (2022). Common in these
works is that they design untargeted attacks, i.e., they aim to maximize the prediction error or, in
other words, the difference between predicted and ground truth trajectories. To the contrary, in this
work we design targeted adversarial attacks to make DNN predictions be as close as possible to any
user-specified desired trajectories. We argue that the proposed targeted attack is more expressive
than un-targeted ones as the latter do not allow the adversary to freely pick any desired predicted
trajectory and, therefore, cause desired unsafe situations. For instance, using untargeted attacks, in
the autonomous driving setup in Fig. 1, an adversarially crafted trajectory for car A that maximizes
the prediction error may point to the left or right lane which may not necessarily compromise safety
of other cars. To the contrary, the proposed attack allows the adversary to select target trajectories,
as shown in Fig. 1, that may force other cars make unsafe decisions. To the best of our knowledge,
we propose the first targeted adversarial attack against trajectory forecasting DNN models.

2. Problem Formulation
In this section, we first describe the trajectory prediction task (Section 2.1) and then we formally de-
fine the targeted adversarial attack design problem as a nonlinear constrained optimization problem
(Section 2.2).

2.1. Trajectory Prediction via Deep Neural Networks
We consider trajectory prediction tasks accomplished by DNNs. The goal in these tasks is to forecast
the future trajectory of an agent given its past trajectories. Particularly, a DNN model takes as an
input a sequence of P past observed states of a moving agent (e.g., locations of a pedestrian) every
T time units, and outputs a sequence of predicted future states of this agent; see Fig. 2. We denote
the input sequence to the DNN model by Xt−P :t = [Xt−P , ...,Xt−1,Xt], where Xn is the state of
the agent at the past time step n ∈ [t−P, . . . , t]. We also denote the ground truth future path of this
agent in the next F future steps as Gt+1:t+F = [Gt+1,Gt+2, ...,Gt+F ], where Gn stands for the
ground truth state at the future time n ∈ [t + 1, . . . , t + F ]. Similarly, we denote the prediction of
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the DNN model for next F steps by Pt+1:t+F = [Pt+1,Pt+2, ...,Pt+F ]. Denoting the DNN model
by f , we have that Pt+1:t+F = f(Xt−P :t).

Figure 2: Graphical illustration of the problem formulation for P = F = 4. Our goal is to design an
adversarial input trajectory (red solid line) that looks natural (i.e., close to nominal inputs - blue solid line)
and fools the DNN model into predicting a trajectory (red dashed line) that is as close as possible to a
desired/target trajectory (cyan dashed line).

2.2. Targeted Adversarial Attack Formulation
Consider a DNN trajectory prediction model f and any nominal trajectory Xt−P :t that the system
has designed to follow in the time interval [t − P, t]. We note that Xt−P :t can be designed using
any existing planning algorithm such as Karaman and Frazzoli (2011); Janson et al. (2015); Kan-
taros and Zavlanos (2020). Our goal is to design a perturbation ∆t−P :t = [∆t−P , . . . ,∆t−1,∆t],
yielding a perturbed/adversarial trajectory X̃t−P :t = [X̃t−P , . . . , X̃t−1, X̃t], defined as X̃t−P :t =
Xt−P :t + ∆t−P :t = [Xt−P + ∆t−P , ...,Xt−1 + ∆t−1,Xt + ∆t], so that (i) if the adversarial
agent follows the trajectory X̃t−P :t, then the corresponding trajectory predicted by f , denoted by
P̃t+1:t+F = f(X̃t−P :t), will be the desired/target trajectory denoted by Yt+1:t+F = [Yt+1Yt+2, ...Yt+F ]
(that may be completely different from the ground truth one), i.e., P̃t+1:t+F = Yt+1:t+F and (ii)
X̃t−P :t satisfies certain physical constraints; see Fig. 2. To design this attack (i.e., X̃t−P :t), we as-
sume that the attacker has full knowledge of the DNN model f . Formally, we formulate the targeted
adversarial attack design problem as a nonlinear optimization problem defined as follows:

min
∆t−P :t

J(∆t−P :t) =

t+F∑
m=t+1

wm∥P̃m −Ym∥2 (1a)

X̃n ∈ Cn,∀n ∈ [t− P, . . . , t] (1b)

where, P̃t+1:t+F = f(X̃t−P :t) = f(Xt−P :t +∆t−P :t). The objective function in (1a) captures the
weighted average distance, using the ℓ2 norm, between the predicted trajectory (i.e., P̃t+1:t+F ) and
the desired trajectory (i.e., Yt+1:t+F ). Also, in (1a), wm is a weight modeling the importance of the
m-th state (i.e., Ym) in the desired trajectory Yt+1:t+F ; the higher the wm is, the more important is
for P̃m to be close to Ym. The weights are selected so that wm ∈ [0, 1] and

∑t+F
m=t+1wm = 1. The
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constraint X̃n ∈ Cn, for all n ∈ [t−P, . . . , t], requires each state X̃n to belong to a set Cn collecting
all permissible values. For instance, in an autonomous driving scenario, if Xn captures the agent
position, then X̃n ∈ Cn may require the adversarially crafted trajectory to be fully within the lane
(to ensure safety of the adversary). Note that, in general, the sets Cn can be defined differently
across the states of the trajectories while their design is scenario-specific. We assume that all states
in the nominal trajectory satisfy the corresponding constraints and, therefore, (1) is feasible; e.g.,
zero perturbation is a feasible solution. In summary, in this paper we address the following problem:
Problem 1 Given (i) a fully known trajectory prediction DNN model f ; (ii) a nominal trajectory
Xt−P :t that the system will follow in the time interval [t−P : t]; (iii) a desired predicted trajectory
Yt+1:t+F ; (iv) weights wm for all m ∈ [t+ 1, . . . , t+ F ] and a set of permissible states Cn for all
n ∈ [t−P, . . . , t], compute the perturbation ∆t−P :t that once applied to Xt−P :t it will minimize the
average weighted deviation between the DNN prediction (i.e., P̃t+1:t+F = f(Xt−P :t + ∆t−P :t))
and the desired trajectory (i.e., Yt+1:t+F ), as captured by (1).

3. Proposed Targeted Adversarial Attack for Trajectory Prediction
In this section, we present our approach to address Problem 1. In the rest of this section, for sim-
plicity of notation, when it is clear from the context, we drop the dependence of trajectories on time.
For instance, we simply denote the nominal trajectory by X instead of Xt−P :t. This extends to all
sequences of states and perturbation (e.g., ∆, X̃, P, Y).

The proposed adversarial attack, called TA4TP, leverages iterative gradient-based algorithms;
see Algorithm 1. We denote by ∆k the perturbation generated by Algorithm 1 at iteration k. First,
we randomly initialize the perturbation, denoted by ∆0. Then, at every iteration k of the algorithm
we update ∆k by moving along a descent direction that minimizes the loss function J(∆). This
can be achieved by simply applying a gradient descent step i.e.,

∆k+1 = ∆k − ϵk∇J(∆k), (2)

where ϵk is a step-size. We note that any other optimization algorithm can be used to compute ∆k

so that J(∆k+1) ≤ J(∆k), such as the Adam optimizer; see Section 4. Then, we compute the
corresponding perturbed trajectory as X̃k+1 = X+∆k+1.

Next, we check if all states in X̃k+1 satisfy the constraints captured in (1b), i.e., if X̃k+1
n ∈ Cn,

for all n. If so, then the iteration index k is updated, i.e., k = k + 1 and we repeat the above
process. Otherwise, we project X̃k+1 into the feasible space captured by the sets Cn. Note that Cn
may be high-dimensional and non-convex sets making the projection process challenging. Inspired
by Zhang et al. (2022), to address this issue, we apply a simple line search algorithm. Particularly,
first, we introduce parameters θn ∈ [0, 1], associated with each state X̃k+1

n . Then, we aim to find the
maximum values of θn, so that X̃k+1

n = Xn + θn∆
k+1
n belongs to the set Cn. In math, to perform

this projection, we solve the following optimization problem:

max
θt−P ,...,θt

t∑
n=t−P

θn (3a)

Xn + θn∆
k+1
n ∈ Cn, ∀n ∈ {t− P, . . . , t}, (3b)

θn ∈ [0, 1],∀n ∈ {t− P, . . . , t}. (3c)

We solve (3) by simply applying a line search algorithm. Observe that since the nominal trajectory
X satisfies the constraint (1b), we have that (3) is always feasible (i.e., θn = 0 is always a feasible
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Algorithm 1 TA4TP: Targeted adversarial Attack for Trajectory Prediction

Input: {Nominal trajectory X, DNN f , Target trajectory Y, Physical Constraints Cn}
Output: {Perturbed Trajectory X̃}
Initialize ϵ0 and ∆0, and set k = 0
while (k <= Kmax) OR (J(∆k) ≤ τ) do

Update ∆k+1 = ∆k − ϵk∇J(∆k)
if X+∆k+1 does not satisfy the constraints Cn then

Compute θ as per (3) (Projection)
Compute ∆k+1 = θ ◦ (∆k − ϵk∇J(∆k))

end if
Current perturbed trajectory X̃k+1 = X+∆k+1

k = k + 1
Update ϵk

end while
Output: X̃ = X̃k+1

solution). We note that the above projection process may be sub-optimal if the sets Cn are non-
convex in the sense that there may be other points on the boundary of Cn that are closer to Xn +
∆k+1

n than the ones generated by solving (3). Once θ = [θt−P , . . . , θt−1, θt] is computed, we
update the perturbation as

∆k+1 = θ ◦ (∆k − ϵk∇J(∆k)), (4)

where ◦ denotes the Hadamard product (i.e., the element wise product between two vectors). Next,
the iteration index k is updated, i.e., k = k + 1, and the above iteration is repeated. The algorithm
terminates either after a user-specified maximum number Kmax of iterations has been reached or
when the loss function J(∆) is below a desired threshold τ .

4. Experiments
In this section, we evaluate the efficiency of proposed attack. In particular, in Section 4.1, we
present the considered datasets and DNN models. In Section 4.2, we evaluate the performance of
the designed attack under various settings.

4.1. Experimental Setup
Models: We consider two state-of-the-art and open-source trajectory prediction models. The first
one is Grip++, proposed in Li et al. (2019b), which achieves good performance over several datasets.
Grip++ uses a graph to represent the interactions of close objects and uses an encoder-decoder
long short-term memory (LSTM) model to make predictions. The second model is Trajectron++
Salzmann et al. (2020), a modular, graph-structured model that predicts the trajectories of diverse
agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). The
latter predicts multiple trajectories with probabilities and we select the trajectory with the highest
probability as the final result.

Datasets: In our implementation, we considered two datasets: Nuscenes Caesar et al. (2020) and
Apolloscape Huang et al. (2018). They both collect trajectories from autonomous driving scenarios
in urban areas. Particularly, Nuscenes includes past trajectories with four states (i.e., P = 4 in
Section 2.1), future trajectories with twelve states (i.e., F = 12 in Section 2.1), and semantic maps.
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J̄nom
acc (m) J̄G−Y (m) J̄ (m) [Adam] T (secs) [grad] T (secs) [Adam]

Grip apolloscape 0.013 2.363 0.140 33.342 19.366
Grip nuscenes 0.246 1.527 0.111 44.173 12.553

Trajectron apolloscape 0.152 2.698 0.284 429.333 161.728
Trajectron nuscenes 0.450 0.937 0.031 582.667 144.648

Table 1: Summary of results for TA4TP with Kmax = 100 and τ = 0.02m. The second, third, and fourth
column show the nominal accuracy of the DNN models, the average deviation between the target and the
ground truth trajectories, and the average deviation between the predicted and the target trajectories, respec-
tively. The last two columns show the average runtime to design a single adversarial trajectory.

Apolloscape includes past trajectories that have six states (i.e., P = 6) and future trajectories that
also have six states (i.e., F = 6). To provide a fair comparison across datasets and models, we
neglect the semantic maps in the Nuscenes dataset.

Physical Constraints: We require the adversarially crafted input trajectory X̃ to satisfy a set of
physical constraints. Specifically, recall that each state X̃n in X̃ must belong to a set Cn. Given the
autonomous driving nature of the conducted experiments, we design the sets Cn so that they impose
constraints on the position, velocity, and acceleration (all these features are included in X̃n) of the
adversarial vehicle, as in Zhang et al. (2022). Specifically, first we require the perturbed positions
in X̃n to be within 1m from the corresponding nominal/normal positions in Xn for all n. Given that
the urban lane width is 3.7m and the average width of cars is about 1.7m, this constraint requires
a car not shifting to another lane if it is normally driving in the center of the lane. Additionally,
we traverse all trajectories in the testing dataset to calculate the mean µ and standard deviation σ
of (1) scalar velocity, (2) longitudinal/lateral acceleration, and (3) derivative of longitudinal/lateral
acceleration. For each µ and σ, we also require the respective values of the perturbed trajectories not
exceeding µ±3σ. These physical constraints essentially preclude careless driving of the adversarial
agent and, as a result, they have the potential to preserve stealthiness of the attack. Finally, we
specify the target trajectory Y by determining the desired positions for the adversarial vehicle. The
remaining features in the target states in Y (e.g., velocity and acceleration) can be computed using
the desired target positions.

Weight Assignment: As mentioned in (1a), weights wm need to be assigned to each state Ym

in the target trajectory capturing how important is the predicted states to match with the target ones.
In our setup, we define the weights so that 0 < wm < wm+1 for all m ∈ {t+ 1, . . . , t+ F − 1} to
give more importance to the final states in the desired trajectory. Specifically, we define the weights
so that the loss function in (1a) captures the exponential moving average deviation between the
predicted and the desired states. We emphasize that any other definition of weights is possible.

4.2. Evaluation of TA4TP
In what follows, we evaluate the performance of TA4TP on the previously described datasets and
models. We randomly sample 100 scenarios as test cases from each dataset. These trajectories are
called, hereafter, test trajectories.

DNN Nominal Accuracy: First, we report the performance of the DNN models in the nom-
inal setting (i.e., without any attacks) by computing the average deviation of the predicted trajec-
tory from the ground truth one, for every test trajectory. Specifically, we compute Jnom

acc (G,P) =∑t+F
m=t+1

∥Pm−Gm∥2
F for each input test trajectory X, where recall that P is the DNN prediction

given the input X. Then, we compute the average of Jnom
acc (G,Y) across the test trajectories, de-
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Figure 3: Graphical illustration of TA4TP in three different scenarios. Observe that in all cases the perturbed
input (red solid line) is very close to the nominal trajectory (blue solid line) while the predicted trajectory
(red dashed) almost overlaps with the target one (cyan dashed).

noted by J̄nom
acc . These results are reported in the second column of Table 1. Note that J̄nom

acc is
measured in meters (m) since for its computation only the positions of the car are considered (i.e.,
the remaining features such as velocity and acceleration are neglected as they can be uniquely com-
puted by the positions). The same applies to all metrics discussed in the rest of this section.

Target Trajectory: Second, we specify the target trajectories Y. The third column in Table 1
quantifies how different the target trajectories are from the ground truth one. Formally, we compute
the JG−Y (G,Y) =

∑t+F
m=t+1

∥Gm−Ym∥2
F , for each trajectory in the test set, using, again, only the

car positions. Then, we compute the average of JG−Y (G,Y) across the test trajectories, denoted
by J̄G−Y . These results are reported in the third column of Table 1. The larger the JG−Y (G,Y) is,
the more the desired trajectory deviates from the ground truth.

Figure 4: Performance of TA4TP given an aggressive
target trajectory. The target trajectory requires the car
to move along the cyan direction with a velocity that
is significantly higher than the one associated with the
input path. This difference in the velocity is illustrated
by the large distance between the waypoints in the target
trajectory.

Evaluation of Attack Success: In the fourth
column of Table 1, we report the performance of
TA4TP as captured by the objective function J in
(1a). Specifically, we compute (1a) for each test tra-
jectory as an input and then we report the average
across all trajectories, denoted by J̄ . The lower the
J̄ is, the more successful the attack is. In this setup,
we terminate the optimization algorithm when ei-
ther the loss function J is less than 0.02 m or the
maximum number of iterations Kmax = 100 has
been reached. Also, we used the Adam optimizer
to compute ∆k+1 (as opposed to gradient descent
mentioned in Alg. 1) due to its fast convergence
properties. Observe that good prediction accuracy
on normal trajectories does not necessarily lead to
good adversarial robustness. For instance, Grip++
has a better nominal accuracy in the Apolloscape
dataset than Trajectron++ does (see the second col-
umn). However, performance of Grip++ on this
dataset seems to be more vulnerable than Trajec-
tron++ to adversarial perturbations (see the fourth
column). Also, observe in the fourth column that J̄ is quite small implying that the predicted trajec-
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J̄ (m) [Adam] T (secs) [Adam] J̄ (m) [grad] T (secs) [grad]
Grip apolloscape 0.331 4.699 0.635 4.089

Grip nuscenes 0.132 3.749 0.196 4.313
Trajectron apolloscape 0.364 35.790 0.495 35.978

Trajectron nuscenes 0.077 39.093 0.199 46.777

Table 2: Summary of results for TA4TP with Kmax = 10 and τ = 0.02m.

tories are sufficiently close to the target ones; see e.g., Figure 3. We note that this may not always be
the case depending on the physical constraints and the target trajectory. For example, if the physical
constraints are very tight and the target trajectory is rather aggressive (i.e., too far from the nomi-
nal prediction), then the optimal perturbed trajectory, as per (1), may not achieve a low loss as per
(1a). This is demonstrated in Fig. 4; fooling the DNN model into predicting such target trajectories
requires relaxing the physical constraints.

Attack Design Runtime: The last two columns in Table 1 show the average time required
to generate an adversarial trajectory using gradient descent (as in (2)) and Adam optimizer. As
expected, the Adam optimizer is significantly faster than the standard gradient descent method.
Particularly, Adam reduces the computational time by at least 42%. Also, notice that based on
the runtimes shown in Table 1, execution of the proposed attack in real time may be prohibitive.
To mitigate this, a smaller maximum number of iterations Kmax can be selected in Alg. 1 which,
however, may compromise the accuracy of the attack (as measured by (1a)). For instance, in Table
2, we run the same set of experiments as before but with Kmax = 10. Observe that the runtimes are
at least 10 times smaller than the ones reported in Table 1 (where Kmax = 100). Also, observe in
the second column of Table 2, that the accuracy of TA4TP has decreased (compared to the one in
Table 1), but it still achieves a satisfactory performance. In the fourth column of Table 2, we also
report the corresponding deviation error J̄ for the standard gradient descent approach. As expected,
the Adam optimizer is faster and achieves a better performance within a fixed number of iterations.
We also note that potentially an adversary can design adversarial trajectories offline, store them in a
library, and select them online when needed.

DNN Robustness to Random Noise on Clean Inputs: Next, we investigate how/if small ran-
dom (i.e., non-adversarial) noise affects the performance of the considered DNNs in nominal set-
tings. Particularly, we examine the performance of the DNN models when random noise is embed-
ded in clean (i.e., non-adversarial) inputs. To generate a small amount of random noise, we apply
the following process. Given a clean trajectory c, we compute the average distance between con-
secutive waypoints denoted δ̄c. Then for each waypoint in c, we sample a new waypoint within a
ball centered at the original waypoint with radius 0.02δ̄c. These new waypoints constitute the ‘noisy
clean’ inputs that are close enough to the original ones. Then, given these noisy inputs, we compute
the average nominal accuracy J̄nom

acc and the average deviation J̄ from the target paths, as defined

J̄nom
acc (m) J̄(m) [Adam]

Grip apolloscape 0.413 2.260
Grip nuscenes 1.365 1.219

Trajectron apolloscape 0.742 2.153
Trajectron nuscenes 3.710 1.040

Table 3: DNN robustness analysis against random noise on clean inputs.
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before; hereafter, we assume Kmax = 100 and τ = 0.02 and we consider the same target paths as
the ones considered before. The results are reported in Table 3 and they should be compared against
the ones in the second and fourth column of Table 1. Observe that the nominal accuracy J̄nom

acc of
both models has dropped due to the random noise demonstrating their sensitivity; Grip++ seems
to be more robust to random noise than Trajectron++ is. Notice also that J̄ is significantly high
for both models meaning that simply applying random noise cannot fool them into predicting the
desired trajectories.

DNN Robustness to Random Noise on Adversarial Inputs: We repeat the same process as
above but in adversarial settings. In other words, we examine how the DNN models perform in
the vicinity of adversarially crafted trajectories. Specifically, we compute J̄ after adding a small
amount of noise (exactly as discussed above) into the adversarial inputs generated for Table 1. This
metric for Grip++ on the Apolloscape and Nuscenes dataset is 0.203 m and 0.253 m, respectively.
Similarly, for Trajectron++, we get that the deviation error J̄ on the Apolloscape and Nuscenes
datasets is 0.507 m and 0.099 m, respectively. This error is close to the corresponding one reported
for the ‘noiseless’ adversarial inputs on the fourth column of Table 1. This also implies robustness
of TA4TP against random noise that may occur naturally e.g., due to slippery roads or wind gusts.
Additionally, by comparing these values with the respective ones for the ‘noisy clean’ inputs (see
the last column in Table 3), we see that the DNN models seem to be more robust in the vicinity
of adversarial inputs than in the vicinity of clean inputs. We believe that this observation may also
be useful to detect adversarial inputs. Similar observations have been used to detect adversarial
inputs to image classifiers Meng and Chen (2017); Kantaros et al. (2021); Nesti et al. (2021); Kaur
et al. (2022). Specifically, to detect whether an input image is benign or not, these works investigate
how the DNN output changes under transformations (e.g., compression, rotation, or adding noise)
applied to the inputs.

Effect of traffic density: Trajectory prediction models model the interaction among objects as a
graph structure to enhance prediction performance. To study the factor of traffic density, we perform
the following experiment. First we randomly sample 20 test trajectories from the Apolloscape
dataset and we compute the average deviation J̄ , defined earlier, when (i) all agents in the scene
are considered versus (ii) all other agents besides the adversary and a randomly selected agent are
dropped from the scene. We denote by J̄all and J̄2 the average deviation J̄ in the settings (i) and (ii),
respectively. As for Grip++, we get that J̄all = 0.215 m and J̄2 = 0.331m while for Trajectron++,
we get that J̄all = 0.034 m and J̄2 = 0.102 m. Observe that the attack remains successful in both
settings in the sense that the deviation from the target trajectory is quite low. It is also worth noting
that J̄all < J̄2, i.e., it seems to be ‘easier’ to fool the DNN models in high traffic density scenarios.
Nevertheless, this result may be specific to this experimental setup.

5. Conclusion
In this paper, we proposed TA4TP, the first targeted adversarial attack for DNN models used for tra-
jectory forecasting tasks. We demonstrated experimentally that TA4TP can design input trajectories
that look natural and are capable of fooling DNN models into predicting desired outputs. We believe
that the proposed method will allow users to evaluate as well as enhance robustness of trajectory
prediction DNN models. Our future work will focus on (i) designing dynamically feasible adver-
sarial trajectories and (ii) designing target trajectories that may cause nearby agents make desired,
and possibly, unsafe decisions.
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