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Abstract
In this work, we address the problem of computation time for trajectory generation in quadrotors.
Most trajectory generation methods for waypoint navigation of quadrotors, for example minimum
snap/jerk and minimum-time, are structured as bi-level optimizations. The first level involves al-
locating time across all input waypoints and the second step is to minimize the snap/jerk of the
trajectory under that time allocation. Such an optimization can be computationally expensive to
solve. In our approach we treat trajectory generation as a supervised learning problem between
a sequential set of inputs and outputs. We adapt a transformer model to learn the optimal time
allocations for a given set of input waypoints, thus making it into a single step optimization. We
demonstrate the performance of the transformer model by training it to predict the time allocations
for a minimum snap trajectory generator. The trained transformer model is able to predict accurate
time allocations with fewer data samples and smaller model size, compared to a feedforward net-
work (FFN), demonstrating that it is able to model the sequential nature of the waypoint navigation
problem.
Keywords: Trajectory optimization, Minimum snap, Transformers

1. Introduction

A quadrotor is an extremely agile aerial system that has found widespread use in commercial ac-
tivities such as inspections, package delivery, cinematography, etc. Multi-waypoint trajectory gen-
eration is essential for autonomous systems navigation and is typically done using a local planner.
Local planners for quadrotor navigation typically minimize smooth polynomial trajectories based
on aggregate snap/jerk. The most widely used formulation in minimum snap/jerk planners is a bi-
level optimization where the time allocations across waypoints is computed in the first level and
a constrained optimization of polynomial coefficients over different waypoints forms the second
level [9, 11]. This strategy of optimizing piecewise time allocations and then optimizing piecewise
polynomials between waypoints is also used in minimum-time trajectory generation for drones [20,
5].

For minimum snap trajectory generation, recent works [3, 18] have cleverly reformulated both
steps of the bi-level optimizations that are solvable in linear time. In this work, we propose to in-
stead learn the optimal waypoint time allocations using deep learning models. By eliminating the
bi-level structure of the optimization problem, we can accelerate the trajectory generation process.
This would require the learning-based model to be capable of giving highly accurate predictions of
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optimal time allocations for any given sequence of waypoints. In our approach we use sequence
models, specifically transformers[16], to learn the optimal time allocations for minimum snap tra-
jectory generation. While the approach here is used to learn parameters in the two level minimum
snap optimization, this approach can be extended to learn parameters for other trajectory generation
problems such as minimum-time trajectories.

This work has three main contributions: (1) we use transformers to learn optimization parame-
ters that removes the bi-level structure and turns it into a single-level optimization problem making
it faster (2) we evaluate the trained transformer model performance, sample efficiency and also show
its effectiveness across different settings, including input sizes greater than those of samples in the
training data (3) we study the learnt attention patterns to understand the input output relation learnt
by the model and the insight it provides about the nature of the time allocation optimization. Over-
all, this seq2seq modeling approach can be used to learn parameters from offline trajectory data, and
can provide good approximations to the time allocations thus speeding up trajectory optimization.

2. Related Work

The differential flatness property of quadrotor dynamics is well known in the literature ([9]) and
it allows the user to plan trajectories in the flattened output space of the quadrotor, i.e. position,
velocity, acceleration and yaw. Notable approaches for trajectory generation in quadrotors use se-
quential convex optimization [6] and sampling based kinodynamic planning [7] among others. The
most widely used trajectory generation methods for waypoint navigation, however, use polynomial
functions as basis/primitives for generating their trajectories[9, 11].

The bi-level optimization structure is also used in minimum-time trajectory generation in the
non-linear quadrotor state space [20, 14, 15]. Heuristic functions have been used [5] to speed up
time allocation computation, but lead to suboptimal solutions.

Thus in many applications, quadrotor trajectory planning is typically formulated as a bi-level
optimization problem with the first level involving time allocations across desired waypoints. For
minimum jerk/snap optimizations, the time allocation problem can be solved using a backtracking
gradient descent (BGD) until convergence to a local minimum [9, 8]. These methods typically use
a starting guess for the time allocation such as a trapezoidal velocity profile (TVP) [8]. This time
allocation optimization step has been computationally expensive, until recently where Burke et al
[3] and Wang et al [18] have solved it in linear time.

An alternative approach that has gained traction for speeding up optimization computation is
the use of data driven methods [12, 2]. While supervised learning models like MLPs (multi-layer
perceptron) can be trained to predict the waypoint time allocations [2], they cannot handle variable
number of input waypoints and hence are not usable beyond a certain input size. In Ryou et al[12],
the authors train an attention based Seq2seq model to predict time allocation. However, it only uses
cross attention and doesn’t exploit the self-attention mechanism used in Transformers.

Traditional RNNs have be used for trajectory generation [19]. We use transformers [16] as they
consider all inputs simultaneously when generating the time allocations and have provided state of
the art performance in seq2seq tasks[16]. Their attention function implementations have also been
optimized [17, 4] to make them computationally fast. Hence they are suitable for learning the time
allocations over the given input waypoints.
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3. Approach

In minimum snap planning, we optimize the aggregate snap over the entire trajectory. We denote the
3D trajectory of the UAV as r(t) = [x(t), y(t), z(t)]. The minimum-snap trajectory optimization is
solved separately along each Cartesian axis (x,y,z), described in [9], and it is formulated as:

min
r,t

J(r, t)

s.t. r(0) = w0; v(0) = v(T ) = 0 (1)

rk(
i∑

j=1

tj) = wi; Σti = T ; ∀i = 1, 2, ...,m

where, J(r, t) =

∫ T

0

∥∥∥∥d4rdt4

∥∥∥∥2
2

dt; r ∈ RT (2)

t = [t1, t2, ..., tm], is the allocations of total time T over the desired waypoints W = [w0, w1, w2,
w3, ..., wm], wi ∈ R3. RT is the set of all feasible trajectories passing through W that can be
tracked in time T . In [9], they also include second derivative of yaw in the cost J(r, t), but in many
applications the yaw is planned separately or set to a constant. Hence we do not include yaw as an
optimization parameter.

To solve for the minimum snap trajectory optimization, we first reduce the aggregate trajectory
snap along each axis for a given t. The solution is of the form of m polynomials of order n (7 in
this case) as shown in eq (3).

rk(t) =


∑n

j=0 aj,1t
j , t0 ≤ t ≤ t1

...∑n
j=0 aj,mtj , tm−1 ≤ t ≤ tm

(3)

Given a time allocation t, the minimum snap trajectory under t is a quadratic program given by
Optimization 1, refer [9]:

Optimization 1

min
a

aTQa

s.t. Aeqa = beq (4)

Aineqa ≤ bineq

where Q ∈ Rnm×nm is a block diagonal matrix containing powers of t, Aeq is constructed from Q
and the equality constraint enforces the condition of passing through waypoints and continuity of
velocities and accelerations. The Aineq and bineq are typically used to enforce corridor constraints.
To solve for t∗, we iteratively refine our initial guess for the time allocation. The refinement of t is
also an optimization, shown in Optimization 2:
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Optimization 2

min
tϵRm

J(p(t,W ), T )

s.t.
m∑
i=1

ti = T (5)

where, p(t,W ) is the optimal trajectory across the waypoints wi ∈ W obtained by solving Opti-
mization 1 using time allocation t. This optimization is typically done by a gradient descent on t
(see [9]).

Learning the optimal time allocations, t∗, can greatly accelerate the trajectory generation process
as it is the most computationally intensive step in many scenarios[9, 20].

We assume that the total flight time T is known. If the total time needs to be minimized,
then we scale T → ηT, η > 0, along with the optimal allocation t∗ → ηt∗, until no feasible
trajectory p(ηt∗,W ) exists (exceeds max velocity or max acceleration constraints for example).
This is typically done using a quick line search.

3.1. Modeling methodology

We use the standard transformer model, Vaswani et al. [16], for learning waypoint time allocations.
We consider 2D trajectories from the SIGN [1] and ILGDB [10] hand drawing datasets here, but
this approach can easily be extended to learn 3D trajectories. We modify the inputs and position
function to suit the trajectory generation problem. We normalize the input data to make them in-
variant to homogeneous transforms (rotation and scaling). This is reasonable as the optimal time
allocation (t∗) scales linearly with total time T and is also independent of the distance scale between
waypoints, [2]. Normalizing the inputs reduces the training data needed as the model does not have
to explicitly learn that time allocations are invariant to homogeneous transforms, total time.

3.2. Data Preparation

In 2D, a rotation and distance scale invariant representation of the waypoints, W , can be obtained
using the range-angle parametrization. The range and angle vectors d, θ are given by:

d = [l1, l2, ..., lM−1]; θ = [0, θ2, θ3, ..., θM−1] (6)

where di is the euclidean distance between two consecutive waypoints, i.e. di = ||wi+1 − wi||.
While θi is the angle between consecutive waypoints, i.e. θi = ∠(Vi−1, Vi), where the vector
Vi = wi − wi−1. It should be noted that −π < θi ≤ π. We further non-dimensionalize the range
vector d, by scaling all components by a common factor.

d′ =
1

s
· d,

where, s > 0,and 0 < d′i ≤ 1. This reparametrization gives a representation of the input waypoints
that is invariant to homogeneous transformations and is valid as the output t∗ is unchanged by these
transformations. We scale down the optimal time fractions (t∗, Σt∗i = T ) by the total time T to
obtain the optimal time allocations of the trajectory. During inference, we scale back the model
output t∗ to match the desired total time T .
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To obtain a sample trajectory with a desired number of waypoints (N ), we use gestures/curves
taken from the handwriting curves dataset (SIGN, ILGDB). For a sample gesture/curve, we preserve
the start and end points and arbitrarily collocate the rest of the curve. This provides a sample set of
waypoints with the desired length, N . Sample sets of waypoints from the training and test dataset
along with their minimum-snap trajectories are shown in Fig 1

Figure 1: Sample curves collocated to 30 points from the ILGDB dataset ((a) to (c)) and SIGN
dataset ((d) to (f))

3.3. Transformer Model

The encoder and decoder of the standard transformer [16] are adapted to learn the time allocation t
given the input waypoints. The encoder and decoder consist of multi-head self-attention blocks and
a position-wise feedforward network (FFN) block.

INPUT ENCODING AND POSITIONAL ENCODING

We use a linear layer to encode sample inputs (W (i)) and outputs T (i) into the desired embedding
space.

W (i) = [[l1, 0], [l2, θ2], [l3, θ3], ..., [lM−1, θM−1]] where W (i) is a single sample set of waypoints
taken from training dataset. We then solve for the optimal time allocation vector based on minimum
snap, using [18], to get T (i) = [t1, ..., tM−1]. We use the standard positional encoding function
from [16]. The position encoding simply reflects the order in which the waypoints are visited.

MULTI-HEAD ATTENTION FUNCTION

The queries and keys used for our case are the encodings learnt by the input embedding layers. We
use a linear layer that takes the range-angle parameters of the desired waypoints and calculates an
embedding of desired size that can be used as the querys, keys and values.

Similarly, the decoder uses a linear layer that converts the time allocations (0, t1, t2, ..., tN−1)
to an appropriate output embedding of the desired size. The time allocation is padded with a zero in
the beginning to serve as a starting point for the decoding process. Since we need only N − 1 time
allocations, the decoder is run for that many steps to get the predicted time allocation vector tpred.
We use the same attention masks for the inputs and outputs as done in [16].

FEEDFORWARD NETWORK

The output head of the transformer is a fully connected Linear layer with a 1 dimensional output
(time allocation ti). We use a cumulative L1 loss between the time allocations predicted by the
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decoder tpred and the true time allocation t∗. The softmax labels layer from the standard transformer
is not used as this is not a classification task, i.e. it is a regression problem. Again for convenience,
we normalize the predicted time steps from the decoder tpred to sum to 1. Hence the final output is
given by eq (7)

tout =
tpred

||tpred||1
(7)

Optimization 1 is a hard non-linear optimization problem compared to Optimization 2 (Quadratic
program). The gradient descent process for Optimization 1 may converge to time allocations that
are local minimas. However, using an L1 loss provided good results for most trajectories (mean
error of 15.7% in test set), as shown in section 4. Training with other loss functions, like in [12] for
example, may provide better predictions but are not explored in this work.

The modifications made to the standard transformer for learning time allocations are shown in
Fig 2.

Figure 2: Modified inputs and outputs to standard transformer [16] (shown in red) for trajectory
generation

4. Results and Analysis

We trained a transformer model using gestures generated from SIGN dataset as described in Section
3.2. We use an embedding dimension of 32 for the inputs and outputs along with 16 attention heads.
We use a total of 3 encoder and 3 decoder layers with a feedforward network hidden dimension
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of 256 in the transformer model. This results in a total of 139, 329 trainable hyperparameters. To
generate the training dataset we collocated every gesture in the SIGN dataset to various resolutions,
from 3 to 30 waypoints. This resulted in a total of 493, 668 sets of waypoints. We split the dataset in
the ratio of 5:1 for training and validation respectively. For producing the test dataset we collocated
every curve in the ILGDB dataset down to 30 waypoints. Gestures that contained less than 30 points
were not considered. This resulted in 6289 sets of waypoints.

For every set s of 30 waypoints in the ILGDB dataset, we calculated the minimum snap trajec-
tories using the BGD (backtracking gradient descent) algorithm, implemented using [18], to obtain
the locally optimal cost JBGD(s). The TVP method from [8] predicts a time allocation for a given
set of waypoints, s, by using a trapezoidal velocity profile and we use this method to initialize the
time allocations for our BGD algorithm. For the TVP method we use a maximum velocity of 5m/s
and a maximum acceleration of 2.5m/s2. In our method, for any given set of points s we obtain
the predicted time allocations t from our trained transformer model. We then solve Optimization
problem 1 using the time allocations predicted by the transformer to obtain a trajectory with cost
JT (s).

We compare our trained transformer model with prior work in literature, namely Almeida et al
[2] and the TVP [8] method used for initialization. In [2] they use an MLP (multi-layer percep-
tron) that can only be trained for a fixed input-output size. Hence, they train multiple MLPs for
different input sizes (3 to 30) to learn the time allocations. The combined models with all 28 MLPs
contain ∼ 438, 800 trainable hyper-parameters. The cost/snap of the trajectories generated using
the time allocations predicted from the MLP is given by JMLP . For fair comparison, all the costs
JBGD, JT , JMLP and JTV P are calculated using the same final time

∑
ti = T obtained using the

TVP method.
We evaluate the optimality of the predicted time allocations from the transformer model based

on the total trajectory cost, i.e. total snap. Since the trajectory is a 7th order polynomial (see [9]
for further discussion on polynomial order), the total snap of a given trajectory scales with the 7th
order of total time T , i.e. f(αt) ∼ α7f(t) ∀ α > 0 where f(t) is the snap of the trajectory with
time allocations t. Due to this we normalize the costs by their 7th root, i.e.:

J ′
BGD(s) = J

1/7
BGD(s); J

′
T (s) = J

1/7
T (s); J ′

MLP (s) = J
1/7
MLP (s); J

′
TV P (s) = J

1/7
TV P (s) (8)

We use the cost/snap of the trajectory generated from BGD method as our baseline. We compare
the relative error (E(s)) between trajectories generated from other methods and the BGD method
to evaluate their optimality. For a given set of waypoints, s, we define the relative errors for the
different methods, i.e. our method (transformers), MLP method [2] and TVP [8] as shown in (9)

ET (s) =
(J ′

T (s)− J ′
BGD(s))

J ′
BGD(s))

· 100; EMLP (s) =
(J ′

MLP (s)− J ′
BGD(s))

J ′
BGD(s)

· 100;

ETV P (s) =
(J ′

TV P (s)− J ′
BGD(s))

J ′
BGD(s)

· 100
(9)

Fig 3 shows the histogram of the relative errors, E(s) of the different methods over all sets
of waypoints in the ILGDB test dataset. On average, the cost error in the transformer model is
Eavg

T = 15.7% with standard deviation of 14.6% over the BGD baseline. The MLP method [2] has
a mean error in cost of Eavg

MLP = 21.4% with standard deviation of 13.7%. The TVP initialization
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had a mean cost error of Eavg
TV P = 50.7%. The figure shows that the time allocations predicted

by the transformer model are better than the time allocations predicted by the MLP method. This
is because the transformer model is able to use data over all input sizes and model the sequential
relation across the input waypoints. We observe that the transformer model is able to guess better
time allocations than the baseline BGD method itself. This is represented by the region of the
histogram (Fig 3) with ET < 0 and corresponds to ∼ 10.7% of test dataset. The model is able to
predict better because the BGD method can get stuck at local minimas leading to sub-optimal time
allocations. This was also observed in the MLP model which was able to make better predictions
than the baseline (EMLP < 0) and corresponds to ∼ 3.1% of the test dataset.

Figure 3: Histograms of error in cost Ecost between using transformer and a MLP

To demonstrate the ability of our approach to model the sequential nature of the problem, we
test the transformer model on input sizes outside its training dataset. The gestures in the training
dataset were collocated to sizes within [3, 30]. So we generate a test set by collocating all gestures
in the ILGDB dataset to 40 waypoints. Fig 4 shows the error distribution between the predictions
of the trained model and their BGD baselines for trajectories with 40 waypoints. This result shows
that transformer models can generalize to input sizes larger than the training dataset. As seen in
Fig 4, the transformer predictions are close to the costs obtained by using the BGD method. The
average cost error in model predictions for 40 waypoints is Eavg

T = 42.7% over the BGD baseline.
All the above trajectory computations had an average computation time in the order of 10−3s

(Intel-9750H processor and NVIDIA RTX 3060 graphics processor). For real time inference over
large inputs (> 102), we must reduce the context window size of the transformer and modify self-
attention functions such as [17, 4]. Additionally, the attention computation across all context win-
dows can be parallelized to make it faster. These introduce more model parameters that require
careful selection. These selection methods have been studied extensively in the literature, such
as in speech recognition [13] where thousands of audio packets are processed per second. These
modifications are not performed in our work and we only evaluate the performance on the standard
transformer.
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Figure 4: Error histogram in cost Ecost from transformer predictions on trajectories with 40 way-
points (out of distribution)

4.1. Attention patterns

The mean of the attention maps(across all heads) in layer 1 and layer 2 of the encoder-decoder at-
tention block during inference is shown in Fig 5. The encoder-decoder attention maps have learnt
to attend to the neighbouring prior and future input waypoints. The block diagonal structure indi-
cates that there is a “horizon” over which input waypoints influence the time allocation of a given
segment. Learning the influence of adjacent waypoints, including the future waypoints helps the
transformer make better predictions on the optimal time allocation. Given the block diagonal nature
of the attention maps, we can choose a smaller size for the context window. However, we have not
used context windows to limit the attention span in this work.

(a) (b)

Figure 5: Averaged attention maps across all heads of encoder-decoder attention block (a) average
attention across all heads in layer 1 (b) average attention in layer 2 of encoder-decoder
block
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4.2. Sample efficiency

We study the sensitivity of the model performance with the size of the training dataset. We select
random subsets of the training data and measure the performance of the corresponding trained model
(Emean

T ) on the test data (ILGDB). In Fig 6 we see that the transformer model is able to perform
just as well well as the MLP model using only 10% of the training data (Emean

T = 22.6%). This
means that the model can provide good predictions using fewer training samples for a given input
size, demonstrating its sample efficiency.

Figure 6: Average cost error over test data vs amount of training data used

5. Conclusion

The experiments shown here demonstrate that a Transformer can successfully predict near optimal
time allocations and even provide good starting guesses for input sizes greater than the training data.
The transformer model is able to accomplish this with fewer model hyperparameters (< 1/3rd) and
training data samples (1/10th) compared to using an MLP. The learnt attention patterns between
input and output embeddings indicate a “horizon” of waypoints (before and after) which influence
the time allocation at a given waypoint.

By learning the optimal time allocations for any given sequence of waypoints, our method re-
moves the bi-level structure of the optimization problem. This training approach can be extended
to other bi-level optimization problems (minimum jerk and minimum time [20] for example). The
major bottleneck for running the above standard transformer model is computing the self-attention
functions in real-time for large inputs. This requires several modifications to the transformer model
that are discussed in section 4 and is a direction for future work.
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