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Abstract
We study the task of learning state representations from potentially high-dimensional observations,
with the goal of controlling an unknown partially observable system. We pursue a direct latent
model learning approach, where a dynamic model in some latent state space is learned by pre-
dicting quantities directly related to planning (e.g., costs) without reconstructing the observations.
In particular, we focus on an intuitive cost-driven state representation learning method for solving
Linear Quadratic Gaussian (LQG) control, one of the most fundamental partially observable con-
trol problems. As our main results, we establish finite-sample guarantees of finding a near-optimal
state representation function and a near-optimal controller using the directly learned latent model.
To the best of our knowledge, despite various empirical successes, prior to this work it was unclear
if such a cost-driven latent model learner enjoys finite-sample guarantees. Our work underscores
the value of predicting multi-step costs, an idea that is key to our theory, and notably also an idea
that is known to be empirically valuable for learning state representations.
Keywords: Latent model learning, state representation learning for control, linear quadratic Gaus-
sian (LQG)

1. Introduction

We consider state representation learning for control in partially observable systems, inspired by
the recent successes of control from pixels (Hafner et al., 2019b,a). Control from pixels is an ev-
eryday task for human beings, but it remains challenging for learning agents. Methods to achieve
it generally fall into two main categories: model-free and model-based ones. Model-free methods
directly learn a visuomotor policy, also known as direct reinforcement learning (RL) (Sutton and
Barto, 2018). On the other hand, model-based methods, also known as indirect RL (Sutton and
Barto, 2018), attempt to learn a latent model that is a compact representation of the system, and
to synthesize a policy in the latent model. Compared with model-free methods, model-based ones
facilitate generalization across tasks and enable efficient planning (Hafner et al., 2020), and are
sometimes more sample efficient (Tu and Recht, 2019; Sun et al., 2019; Zhang et al., 2019).

This manuscript is a shorter version of the technical report. Please refer to its appendix for the missing details.

c© 2023 Y. Tian, K. Zhang, R. Tedrake & S. Sra.

https://arxiv.org/pdf/2212.14511.pdf


CAN DIRECT LATENT MODEL LEARNING SOLVE LQG?

In latent model-based control, the state of the latent model is also referred to as a state represen-
tation in the deep RL literature, and the mapping from an observed history to a latent state is referred
to as the (state) representation function. Reconstructing the observation often serves as a supervi-
sion for representation learning for control in the empirical RL literature (Hafner et al., 2019b,a,
2020; Fu et al., 2021; Wang et al., 2022). This is in sharp contrast to model-free methods, where the
policy improvement step is completely cost-driven. Reconstructing observations provides a power-
ful supervision signal for learning a task-agnostic world model, but they are high-dimensional and
noisy, so the reconstruction requires an expressive reconstruction function; latent states learned by
reconstruction contain irrelevant information for control, which can distract RL algorithms (Zhang
et al., 2020; Fu et al., 2021; Wang et al., 2022). This is especially the case for practical visuomo-
tor control tasks, e.g., robotic manipulation and self-driving cars, where the visual images contain
predominately task-irrelevant objects and backgrounds.

Various empirical attempts (Schrittwieser et al., 2020; Zhang et al., 2020; Okada and Taniguchi,
2021; Deng et al., 2021; Yang et al., 2022) have been made to bypass observation reconstruction.
Apart from observation, the interaction involves two other variables: actions (control inputs) and
costs. Inverse model methods (Lamb et al., 2022) reconstruct actions; while other methods rely
on costs. We argue that since neither the reconstruction function nor the inverse model is used for
policy learning, cost-driven state representation learning is the most direct one. In this paper, we
aim to examine the soundness of this methodology in linear quadratic Gaussian (LQG) control, one
of the most fundamental partially observable control models.

Parallel to the empirical advances of learning for control from pixels, partially observable linear
systems has been extensively studied in the context of learning for dynamic control (Oymak and
Ozay, 2019; Simchowitz et al., 2020; Lale et al., 2020, 2021; Zheng et al., 2021; Minasyan et al.,
2021; Umenberger et al., 2022). In this context, the representation function is more formally re-
ferred to as a filter, the optimal one being the Kalman filter. Most existing model-based learning
approaches for LQG control focus on the linear time-invariant (LTI) case, and are based on the idea
of learning Markov parameters (Ljung, 1998), the mapping from control inputs to observations.
Hence, they need to reconstruct observations by definition. Motivated by the empirical successes
in control from pixels, we take a different, cost-driven route, in hope of avoiding reconstructing
observations or control inputs, which we refer to as direct latent model learning.

We focus on finite-horizon time-varying LQG control and address the following question:

Can direct latent model learning provably solve LQG control?

This work answers the question in the affirmative. Below is an overview of the main results. Addi-
tional discussion of related work is deferred to Appendix A in the technical report.

1.1. Overview of main results

Motivated by empirical works on state representation learning for control (Schrittwieser et al., 2020;
Zhang et al., 2020) and approximate information states (Subramanian et al., 2020; Yang et al., 2022),
we propose a direct model learning method (Algorithm 1), without reconstructing observations or
using an inverse model (Mhammedi et al., 2020; Frandsen et al., 2022; Lamb et al., 2022), that has
the guarantee informally stated in Theorem 1. In Theorem 1 below, the dependence on dimensions
and other system parameters are polynomial.

Theorem 1 (Informal) Given an unknown time-varying LQG control problem with horizon T , un-
der standard assumptions including stability, controllability (within in ` steps) and cost observabil-
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ity, there exists a direct latent model learning algorithm that returns, from n collected trajectories,
a state representation function and a controller such that for the LQG control problem
• at the first ` steps, the state representation function is O(`1/2n−1/4)-optimal and the con-

troller is O(O(1)``n−1/4)-optimal;
• at the next T − ` steps, the state representation function is O(T 3/2n−1/2)-optimal and the

controller is O(T 4n−1)-optimal.

Our method parameterizes the state representation function and the latent system (transition
and cost functions) separately. Usually, in empirical works, the state representation and transition
functions are jointly learned, and they are, in fact, composed in transition prediction. An interesting
finding is that in LQG, the scalar cost is sufficiently informative such that using cumulative cost
supervision alone can recover the state representation function. Hence, the representation function
and the latent system can be learned sequentially: our method first learns the representation function
by predicting cumulative scalar cost (Algorithm 2), and then fits the transition and cost functions
by minimizing the transition and cost prediction errors in the latent space. The learned latent model
then enables planning that leads to a near-optimal controller.

Challenges & our techniques. Overall, to establish finite-sample guarantees, a major technical
challenge is to deal with the quadratic regression problem in cost prediction, arising from the inher-
ent quadratic form of the cost function in LQG. Directly solving the problem for the representation
function involves quartic optimization; instead, we propose to solve a quadratic regression problem,
followed by low-rank approximate factorization. The quadratic regression problem also appears in
identifying the cost matrices, which involves concentration for random variables that are fourth
powers of Gaussians. We believe these techniques might be of independent interest.

Moreover, the first `-step latent states may not be adequately excited (having full-rank covari-
ance), which invalidates the use of most system identification techniques. We instead identify only
relevant directions of the system parameters, and prove that this is sufficient for learning a near-
optimal controller by analyzing state covariance mismatch. This fact is reflected in the separation in
the statement of Theorem 1; developing finite-sample analysis in this case is technically challenging.

Implications. For practitioners, one takeaway from our work is the benefit of predicting multi-
step cumulative costs in direct latent model learning. Whereas cost at a single time step may not be
revealing enough of the latent state, cumulative cost across multiple steps can be. This idea has been
previously used by MuZero (Schrittwieser et al., 2020) in state representation learning for control,
and our work can be viewed as a formal understanding of it in the LQG setting.

Notation. Random vectors are denoted by lowercase letters; sometimes they also denote their
realized values. Uppercase letters denote matrices, some of which can be random. 0 can de-
note the scalar zero, zero vector or zero matrix; 1 denotes either the scalar one or a vector con-
sisting of all ones; I denotes an identity matrix. The dimension, when emphasized, is speci-
fied in subscripts, e.g., 0dx×dx , 1dx , Idx . Let a ∧ b denote the minimum between scalars a and
b. Given vector v ∈ Rd, ‖v‖ denotes its `2-norm. For P < 0, ‖v‖P := (v>Pv)1/2. Semi-
colon “;” denotes stacking vectors or matrices vertically. For a collection of d-dimensional vec-
tors (vt)

j
t=i, let vi:j := [vi; vi+1; . . . ; vj ] ∈ Rd(j−i+1) denote the concatenation along the col-

umn. For random variable η, let ‖η‖ψβ denote its β-sub-Weibull norm, a special case of Orlicz
norms (Zhang and Wei, 2022), with β = 1, 2 corresponding to subexponential and sub-Gaussian
norms. σi(A), σmin(A), σ+min(A), σmax(A) denote its ith largest, minimum, minimum positive,
maximum singular values, respectively. ‖A‖2, ‖A‖F , ‖A‖∗ denote the operator, Frobenius, nuclear
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norms of matrix A, respectively. 〈·, ·〉F denotes the Frobenius inner product between matrices.
vec(·) and svec(·) denote flattening a matrix and a symmetric matrix by stacking their columns;
svec(·) does not repeat the off-diagonal elements, but scales them by

√
2 (Schacke, 2004).

2. Problem setup

We study partially observable linear time-varying (LTV) dynamical system

xt+1 = A∗txt +B∗t ut + wt, yt = C∗t xt + vt, t = 0, 1, . . . , T − 1, (2.1)

and yT = C∗TxT + vT . For all t ≥ 0, we have the notation of state xt ∈ Rdx , observation yt ∈ Rdy ,
and control ut ∈ Rdu . (wt)

T−1
t=0 are i.i.d. process noises, sampled from N (0,Σwt), (vt)

T
t=0 are i.i.d.

observation noises, sampled from N (0,Σvt). Let initial state x0 be sampled from N (0,Σ0).
Let Φt,t0 = A∗t−1A

∗
t−2 · · ·A∗t0 for t > t0 and Φt,t = I . Then xt = Φt,t0xt0 +

∑t−1
τ=t0

Φt,τ+1wτ
under zero control input. To ensure the state and the cumulative noise do not grow with time, we
make the following uniform exponential stability assumption.

Assumption 1 (Uniform exponential stability) The system is uniformly exponentially stable. That
is, there exists α > 0, ρ ∈ (0, 1) such that for any 0 ≤ t0 < t ≤ T , ‖Φt,t0‖2 ≤ αρt−t0 .

Assumption 1 is standard in controlling LTV systems (Zhou and Zhao, 2017; Minasyan et al., 2021),
satisfied by a stable LTI system. It essentially says that zero control is a stabilizing policy, and
can be relaxed to a given stabilizing policy. Potentially, it can even be relaxed to uniform expo-
nential stabilizability, by using our method for one more step at a time and finding a stabilizing
policy incrementally.

Define the `-step controllability matrix

Φc
t,` := [B∗t , A

∗
tB
∗
t−1, . . . , A

∗
tA
∗
t−1 · · ·A∗t−`+2B

∗
t−`+1] ∈ Rdx×`du

for `− 1 ≤ t ≤ T − 1, which reduces to the standard controllability matrix [B, . . . , A`−1B] in the
LTI setting. We make the following controllability assumption.

Assumption 2 (Controllability) For all `−1 ≤ t ≤ T−1, rank(Φc
t,`) = dx, σmin(Φc

t,`) ≥ ν > 0.

Under zero noise, xt+` = Φt+`,txt + Φc
t+`−1,`[ut+`−1; . . . ;ut], so Assumption 2 ensures that from

any state x, there exist control inputs that drive the state to 0 in ` steps, and ν ensures that the
equation leading to them is well conditioned. We do not assume controllability for 0 ≤ t < ` − 1,
since we do not want to impose the constraint that du > dx. This turns out to present a significant
challenge for latent model learning, as seen from the separation of the results before and after the
`-steps in Theorem 1.

The quadratic cost functions are given by

ct(x, u) = ‖x‖2Q∗t + ‖u‖2R∗t , 0 ≤ t ≤ T − 1, cT (x) = ‖x‖2Q∗T ,

for positive semidefinite matrices (Q∗t )
T
t=0 and positive definite matrices (R∗t )

T−1
t=0 . Sometimes the

cost is defined as a function on observation y. Since the quadratic form y>Q∗t y = x>(C∗t )>Q∗tC
∗
t x,

our analysis still applies if the assumptions on (Q∗t )
T
t=0 hold for ((C∗t )>Q∗tC

∗
t )Tt=0 instead.
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(A,C) and (A,Q1/2) observabilities are standard assumptions in controlling LTI systems. To
differentiate from the former, we call the latter cost observability, since it implies the states are
observable through costs. Whereas Markov parameter based approaches need to assume (A,C)
observability to identify the system, our cost driven approach does not. Robust control sometimes
assumes (A,Q1/2) observability with vector cost Q1/2x. Here we deal with the more difficult prob-
lem of having only the scalar cost. Nevertheless, the notion of cost observability is still important
for our approach, formally defined as follows.

Assumption 3 (Cost observability) For all 0 ≤ t ≤ ` − 1, Q∗t < µ2I . For all ` ≤ t ≤ T , there
exists m > 0 such that the cost observability Gramian (Kailath, 1980)∑t+k−1

τ=t
Φ>τ,tQ

∗
τΦτ,t = Q∗t + (A∗t )

>Q∗t+1A
∗
t + . . .+ (A∗t+k−2 · · ·A∗t )>Q∗t+k−1A∗t+k−2 · · ·A∗t < µ2I,

where k = m ∧ (T − t+ 1).

This assumption ensures that without noises, if we start with a nonzero state, the cumulative cost
becomes positive in m steps. The special requirement for 0 ≤ t ≤ `− 1 results from the difficulty
in lacking controllability. The following is a regularity assumption.

Assumption 4 (σmin(Σvt))
T
t=0 are uniformly lower bounded by σv > 0. The operator norms of all

matrices in the problem definition are uniformly upper bounded, including (A∗t , B
∗
t , R

∗
t ,Σwt)

T−1
t=0 ,

(C∗t , Q
∗
t ,Σvt)

T
t=0. In other words, they are all O(1).

Let ht := [y0:t;u0:(t−1)] ∈ R(t+1)dy+tdu denote the available history before deciding control ut.
A policy π = (πt : ht 7→ ut)

T−1
t=0 determines at time t a control input ut based on history ht. With

a slight abuse of notation, let ct := ct(xt, ut) for 0 ≤ t ≤ T − 1 and cT := cT (xT ) denote the cost
at each time step. Then, Jπ := Eπ[

∑T
t=0 ct] is the expected cumulative cost under policy π, where

the expectation is taken over the randomness in the process noises, observation noises and controls.
The objective of LQG control is to find a policy π such that Jπ is minimized.

If the system parameters ((A∗t , B
∗
t , R

∗
t )
T−1
t=0 , (C

∗
t , Q

∗
t )
T
t=0) are known, the optimal control is

obtained by combining the Kalman filter

z∗0 = L∗0y0, z∗t+1 = A∗t z
∗
t +B∗t ut + L∗t+1(yt+1 − C∗t+1(A

∗
t z
∗
t +B∗t ut)), 0 ≤ t ≤ T − 1,

with the optimal feedback control gains of the linear quadratic regulator (LQR) (K∗t )T−1t=0 , where
(L∗t )

T
t=0 are the Kalman gains; this is known as the separation principle. The Kalman gains and

optimal feedback control gains are given by

L∗t = S∗t (C∗t )>(C∗t S
∗
t (C∗t )> + Σvt)

−1, K∗t = −((B∗t )>P ∗t+1B
∗
t +Rt)

−1(B∗t )>P ∗t+1A
∗
t ,

where S∗t and P ∗t are determined by their corresponding Riccati difference equations (RDEs):

S∗t+1 = A∗t (S
∗
t − S∗t (C∗t )>(C∗t S

∗
t (C∗t )> + Σvt)

−1C∗t S
∗
t )(A∗t )

> + Σwt , S∗0 = Σ0, (2.2)

P ∗t = (A∗t )
>(P ∗t+1 − P ∗t+1B

∗
t ((B∗t )>P ∗t+1B

∗
t +R∗t )

−1(B∗t )>P ∗t+1)A
∗
t +Q∗t , P ∗T = Q∗T . (2.3)

We consider data-driven control in an unknown LQG control problem with unknown cost matri-
ces (Q∗t )

T
t=0. For simplicity, we assume (R∗t )

T
t=0 are known, though our approaches can be readily

generalized to the case without knowing them; it suffices to identify them in (3.3).
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2.1. Latent model of LQG

Under the Kalman filter, the observation prediction error it+1 := yt+1−C∗t+1(A
∗
t z
∗
t +B∗t ut) is called

an innovation. It is known that it is independent of history ht and (it)
T
t=0 are independent (Bert-

sekas, 2012). Now we are ready to present the following proposition that represents the system in
terms of the state estimates by the Kalman filter, which we shall refer to as the latent model.

Proposition 2 Let (z∗t )Tt=0 be state estimates given by the Kalman filter. Then,

z∗t+1 = A∗t z
∗
t +B∗t ut + L∗t+1it+1,

where L∗t+1it+1 is independent of z∗t and ut, i.e., the state estimates follow the same linear dynamics
with noises L∗t+1it+1. The cost at step t can be reformulated as functions of the state estimates by

ct = ‖z∗t ‖2Q∗t + ‖ut‖2R∗t + bt + γt + ηt,

where bt > 0 is a constant, and γt = ‖z∗t − xt‖2Q∗t − bt, ηt =
〈
z∗t , xt − z∗t

〉
Q∗t

are both zero-mean
subexponential random variables.

Proposition 2 states that 1) the dynamics of the state estimates produced by the Kalman filter re-
mains the same as the original system up to noises, determined by (A∗t , B

∗
t )T−1t=0 ; 2) the costs are still

determined by (Q∗t )
T
t=0 and (R∗t )

T−1
t=0 , up to constants and noises. Hence, a latent model can be pa-

rameterized by ((At, Bt)
T−1
t=0 , (Qt)

T
t=0) (recall that we assume (R∗t )

T
t=0 is known for convenience).

Note that observation matrices (C∗t )Tt=0 are not involved.
Now let us take a closer look at the state representation function. The Kalman filter can be

written as z∗t+1 = A
∗
t z
∗
t + B

∗
tut + L∗t+1yt+1, where A∗t = (I − L∗t+1C

∗
t+1)A

∗
t and B∗t = (I −

L∗t+1C
∗
t+1)B

∗
t . For 0 ≤ t ≤ T , unrolling the recursion gives

z∗t = A
∗
t−1z

∗
t−1 +B

∗
t−1ut−1 + L∗t yt

= [A
∗
t−1A

∗
t−2 · · ·A

∗
0L
∗
0, . . . , L

∗
t ][y0; . . . ; yt] + [A

∗
t−1A

∗
t−2 · · ·A

∗
1B
∗
0, . . . , B

∗
t−1][u0; . . . ;ut−1]

=: M∗t [y0:t;u0:(t−1)],

where M∗t ∈ Rdx×((t+1)dy+tdu). This means the optimal state representation function is linear in
the history of observations and controls. A state representation function can then be parameterized
by matrices (Mt)

T
t=0, and the latent state at step t is given by zt = Mtht.

Overall, a policy π is a combination of state representation function (Mt)
T−1
t=0 (MT is not

needed) and feedback gain (Kt)
T−1
t=0 in the latent model; in this case, we write π = (Mt,Kt)

T−1
t=0 .

This contrasts with the disturbance-based parameterization (Youla et al., 1976; Wang et al., 2019;
Sadraddini and Tedrake, 2020; Simchowitz et al., 2020; Lale et al., 2020).

3. Methodology: direct latent model learning
State representation learning involves history data that contain samples of three variables: observation,
control input, and cost. Each of these can potentially be used as a supervision signal, and defines a
type of state representation learning algorithms. We summarize our categorization as follows.

• Predicting observations defines the class of observation-reconstruction based methods, in-
cluding methods based on Markov parameters (mapping from controls to observations) in
linear systems (Lale et al., 2021; Zheng et al., 2021) and methods that learn a mapping from
states to observations in more complex systems (Ha and Schmidhuber, 2018; Hafner et al.,
2019b,a). This type of method tends to recover all state components.
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Algorithm 1 Direct latent model learning for LQG control

1: Input: sample size n, input noise magnitude σu, singular value threshold θ = Θ(n−1/4)
2: Collect n trajectories using ut ∼ N (0, σ2uI), for 0 ≤ t ≤ T − 1, to obtain data in the form of

Draw = (y
(i)
0 , u

(i)
0 , c

(i)
0 , . . . , y

(i)
T−1, u

(i)
T−1, c

(i)
T−1, y

(i)
T , c

(i)
T )ni=1

3: Run COREL(Draw, θ) (Algorithm 2) to obtain state representation function estimate (M̂t)
T
t=0

and latent state estimates (z
(i)
t )T,nt=0,i=1, so that the data are converted to

Dstate = (z
(i)
0 , u

(i)
0 , c

(i)
0 , . . . , z

(i)
T−1, u

(i)
T−1, c

(i)
T−1, z

(i)
T , c

(i)
T )ni=1

4: Run SYSID(Dstate) to obtain system parameter estimates ((Ât, B̂t)
T−1
t=0 , (Q̂t)

T
t=0)

5: Find feedback gains (K̂t)
T−1
t=0 from ((Ât, B̂t, R

∗
t )
T−1
t=0 , (Q̂t)

T
t=0) by RDE (2.3)

6: Return: policy π̂ = (M̂t, K̂t)
T−1
t=0

• Predicting controls defines the class of inverse model methods, where the control is predicted
from states across different time steps (Mhammedi et al., 2020; Frandsen et al., 2022; Lamb
et al., 2022). This type of method tends to recover the controllable state components.

• Predicting (cumulative) costs defines the class of cost-driven latent model learning meth-
ods (Zhang et al., 2020; Schrittwieser et al., 2020; Yang et al., 2022). This type of method
tends to recover the state components relevant to the cost.

Our method falls into the cost-driven category, which is more direct than the other two types, in
the sense that the cost is directly relevant to planning with a dynamic model. Another reason why
we call our method direct latent model learning is that compared with Markov parameter-based
approaches for linear systems, our approach directly parameterizes the state representation func-
tion, without exploiting the structure of the Kalman filter, making our approach closer to empirical
practice that was designed for general RL settings.

(Subramanian et al., 2020) proposes to optimize a simple combination of cost and transition
prediction errors to learn a latent model. That is, we parameterize a state representation function by
matrices (Mt)

T
t=0 and a latent model by matrices ((At, Bt)

T−1
t=0 , (Qt)

T
t=0) and then solve

min(Mt,Qt,bt)Tt=0,(At,Bt)
T−1
t=0

∑T

t=0

∑n

i=1
l
(i)
t , (3.1)

where (bt)
T
t=0 are additional scalar parameters to account for noises, and the loss at step t for trajec-

tory i is defined by

l
(i)
t =

(
‖Mth

(i)
t ‖2Qt + ‖u(i)t ‖2R∗t + bt − c(i)t

)2
+
(
Mt+1h

(i)
t+1 −AtMth

(i)
t −Btu

(i)
t

)2
, (3.2)

for 0 ≤ t ≤ T − 1 and l(i)T =
(
‖MTh

(i)
T ‖2QT + bT − c(i)T

)2. The optimization problem (3.1) is
nonconvex; even if we find the global minimum solution, it is unclear how to establish finite-sample
guarantees for it. A main finding of this work is that for LQG, we can solve the cost and transition
loss optimization problems sequentially, with the caveat of using cumulative costs.

Our method is summarized in Algorithm 1. It has three steps: cost-driven state representation
function learning (COREL, Algorithm 2), latent system identification (SYSID), and planning by
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Algorithm 2 COREL: cost driven state representation learning

1: Input: raw data Draw, singular value threshold θ = Θ((`(dy + du))1/2d
3/4
x n−1/4)

2: Estimate the state representation function and cost constants by solving

(N̂t, b̂t)
T
t=0 ∈ argmin

(Nt=N>t ,bt)
T
t=0

T∑
t=0

n∑
i=1

(
∥∥[y

(i)
0:t;u

(i)
0:(t−1)]

∥∥2
Nt

+
t+k−1∑
τ=t

‖u(i)τ ‖2R∗τ + bt − c(i)t )2,

(3.3)

where k = 1 for 0 ≤ t ≤ l − 1 and k = m ∧ (T − t+ 1) for ` ≤ t ≤ T
3: Find M̃t ∈ Rdx×((t+1)dy+tdu) such that M̃>t M̃t is an approximation of N̂t

4: For all 0 ≤ t ≤ `− 1, set M̂t = TRUNCSV(M̃t, θ); for all ` ≤ t ≤ T , set M̂t = M̃t

5: Compute ẑ(i)t = M̂t[y
(i)
0:t;u

(i)
0:t] for all t = 0, . . . , T and i = 1, . . . , n

6: Return: state representation estimate (M̂t)
T
t=0 and latent state estimates (ẑ

(i)
t )T,nt=0,i=1

RDE (2.3). This three-step approach is very similar to World Models (Ha and Schmidhuber, 2018)
used in empirical RL, except that in the first step, instead of using an autoencoder to learn the
state representation function, we use cost values to supervise the representation learning. Most
empirical state representation learning methods (Hafner et al., 2019b,a; Schrittwieser et al., 2020)
use cost supervision as one loss term; the special structure of LQG allows us to use it alone and
have theoretical guarantees.

COREL (Algorithm 2) is the core of our algorithm. Once the state representation function
(M̂t)

T
t=0 is obtained, SYSID identifies the latent system using ordinary linear and quadratic regres-

sion, followed by planning using RDE (2.3) to obtain controller (K̂t)
T−1
t=0 from ((Ât, B̂t, R

∗
t )
T−1
t=0 ,

(Q̂t)
T
t=0). SYSID consists of the standard regression procedures; the full algorithmic detail is de-

ferred to Appendix E in the technical report. Below we explain the cost-driven state representation
learning algorithm (COREL, Algorithm 2) in detail.

3.1. Learning the state representation function
The state representation function is learned via COREL (Algorithm 2). Given the raw data con-
sisting of n trajectories, COREL first solves the regression problem (3.3) to recover the symmetric
matrix N̂t. The target ct of regression (3.3) is defined by

ct := ct + ct+1 + . . .+ ct+k−1,

where k = 1 for 0 ≤ t ≤ ` − 1 and k = m ∧ (T − t + 1) for ` ≤ t ≤ T . The superscript in c(i)t
denotes the observed ct in the ith trajectory. The quadratic regression has a closed-form solution,
by converting it to linear regression using ‖v‖2P =

〈
vv>, P

〉
F

=
〈
svec(vv>), svec(P )

〉
.

Why cumulative cost? The state representation function is parameterized by (Mt)
T
t=0 and the

latent state at step t is given by zt = Mtht. The single-step cost prediction (neglecting con-
trol cost ‖ut‖2R∗t and constant bt) is given by ‖zt‖2Qt = h>t M

>
t QtMtht. The regression recovers

(M∗t )>Q∗tM
∗
t as a whole, from which we can recover (Q∗t )

1/2M∗t up to an orthonormal trans-
form. If Q∗t is positive definite and known, then we can further recover M∗t from it. How-
ever, if Q∗t does not have full rank, information about M∗t is partially lost, and there is no way
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to fully recover M∗t even if Q∗t is known. To see why multi-step cumulative cost helps, define
Q
∗
t :=

∑t+k−1
τ=t Φ>τ,tQ

∗
τΦτ,t for the same k above. Under zero control and zero noise, starting from

xt at step t, the k-step cumulative cost is precisely ‖xt‖2Q∗t . Under the cost observability assumption

(Assumption 3), (Q
∗
t )
T
t=0 are positive definite.

The normalized parameterization. Still, sinceQ∗t is unknown, even if we recover (M∗t )>Q
∗
tM
∗
t

as a whole, it is not viable to extract M∗t and Q
∗
t . Such ambiguity is unavoidable; in fact, for

every Q∗t we choose, there is an equivalent parameterization of the system such that the system
response is exactly the same. In partially observable LTI systems, it is well known that the system
parameters can only be recovered up to a similarity transform (Oymak and Ozay, 2019). Since
every parameterization is correct, we simply choose Q∗t = I , which we refer to as the normalized
parameterization. Concretely, let us define x′t = (Q

∗
t )

1/2xt. Then, the new parameterization is
given by

x′t+1 = A∗′t x
′
t +B∗′t ut + w′t, yt = C∗′t x

′
t + vt, c′t(x

′, u) = ‖x′‖2Q∗′t + ‖u‖2R∗t ,

and c′T (x′) = ‖x′‖2(Q∗T )′ , where for all t ≥ 0,

A∗′t = (Q
∗
t+1)

1/2A∗t (Q
∗
t )
−1/2, B∗′t = (Q

∗
t+1)

1/2B∗t , C∗′t = C∗t (Q
∗
t )
−1/2,

w′t = (Q
∗
t+1)

1/2wt, (Q∗t )
′ = (Q

∗
t )
−1/2Q∗t (Q

∗
t )
−1/2.

It is easy to verify that under the normalized parameterization the system satisfies Assumptions 1, 2, 3,
and 4, up to a change of some constants in the bounds. Without loss of generality, we assume
system (2.1) is in the normalized parameterization; otherwise the recovered state representation
function and latent system are with respect to the normalized parameterization.
Low-rank approximate factorization. Regression (3.3) has a closed-form solution; solving it
gives (N̂t, b̂t)

T
t=0. Constants (̂bt)

T
t=0 account for the state estimation error, and are not part of the

state representation function; dh×dh symmetric matrices (N̂t)
T
t=0 are estimates of (M∗t )>M∗t under

the normalized parameterization, where dh = (t+ 1)dy + tdu. M∗t can only be recovered up to an
orthonormal transform, since for any orthogonal S ∈ Rdx×dx , (SM∗t )>SM∗t = (M∗t )>M∗t .

We want to recover M̃t from N̂t such that N̂t = M̃>t M̃t. Let UΛU> = N̂t be its eigen-
value decomposition. Let Σ := max(Λ, 0) be the positive semidefinite diagonal matrix contain-
ing nonnegative eigenvalues, where “max” applies elementwise. If dh ≤ dx, we can construct
M̃t = [Σ1/2U>; 0(dx−dh)×dh ] by padding zeros. If dh > dx, however, rank(N̂t) may exceed
dx. Assume that the diagonal elements of Σ are in descending order. Let Σdx be the left-top
dx × dx block of Σ and Udx be the left dx columns of U . By the Eckart-Young-Mirsky theorem,
M̃t = Σ

1/2
dx
U>dx is the best approximation among dx × dh matrices in term of the Frobenius norm.

Why singular value truncation in the first ` steps? The latent states are used to identify the la-
tent system dynamics, so whether they are sufficiently excited, namely having full-rank covariance,
makes a big difference: if not, the system matrices can only be identified partially. Proposition 3
below confirms that the optimal latent state z∗t = M∗t ht indeed have full-rank covariance for t ≥ `.
Proposition 3 If system (2.1) satisfies Assumptions 2 (controllability) and 4 (regularity), then
under control (ut)

T−1
t=0 , where ut ∼ N (0, σ2uI), σmin(Cov(z∗t )) = Ω(ν2), M∗t has rank dx and

σmin(M∗t ) = Ω(νt−1/2) for all ` ≤ t ≤ T .

Proposition 3 implies that for all ` ≤ t ≤ T , N∗t has rank dx, so if dx is not provided, this gives
a way to discover it. For ` ≤ t ≤ T , Proposition 3 guarantees that as long as M̃t is close enough

9



CAN DIRECT LATENT MODEL LEARNING SOLVE LQG?

to M∗t , it also has full rank, and so does Cov(M̃tht). Hence, we simply take the final estimate
M̂t = M̃t. Without further assumptions, however, there is no such guarantee for (Cov(z∗t ))`−1t=0 and
(M∗t )`−1t=0 . We make the following minimal assumption to ensure that the minimum positive singular
value (σ+min(Cov(z∗t )))`−1t=0 are uniformly lower bounded.
Assumption 5 For 0 ≤ t ≤ `− 1, σ+min(M∗t ) ≥ β > 0.

Still, for 0 ≤ t ≤ ` − 1, Assumption 5 does not guarantee the rank of Cov(M̃tht), not even its
minimum positive singular value; that is why we introduce TRUNCSV that truncates the singular
values of M̃t by a threshold θ > 0. Concretely, we take M̂t = (I[θ,+∞)(Σ

1/2
dx

) � Σ
1/2
dx

)U>dx , where

the indicator function I applies elementwise and � denotes the Hadamard product. Then, M̂t has
the same singular values as M̃t except that those below θ are zeroed. We take θ = Θ((`(dy +

du))1/2d
3/4
x n−1/4) to ensure a sufficient lower bound on the minimum positive singular value of

M̂t while not increasing the statistical errors.

4. Theoretical guarantees
Theorem 4 below offers finite-sample guarantees for our approach. Overall, it confirms direct latent
model learning (Algorithm 1) as a viable path to solving LQG control.

Theorem 4 Given an unknown LQG control problem, under Assumptions 1, 2, 3, 4 and 5, if we
run Algorithm 1 with n ≥ poly(T, dx, dy, du, log(1/p)), then with probability at least 1 − p,
state representation function (M̂t)

T
t=0 is poly(`, dx, dy, du)n−1/4 optimal in the first ` steps, and

poly(ν−1, T, dx, dy, du)n−1/2 optimal in the next (T − `) steps. Also, the learned controller
(K̂t)

T−1
t=0 is poly(`, β−1,m, dx, dy, du)c`n−1/4 optimal for some dimension-free constant c > 0

depending on system parameters in the first ` steps, and poly(T, ν−1,m, dx, dy, du, log(1/p))n−1

optimal in the last (T − `) steps.

From Theorem 4, we observe a separation of the convergence rates before and after time step
`, resulting from the loss of the full-rankness of (Cov(z∗t ))`−1t=0 and (M∗t )`−1t=0 . In more detail, the
proof sketch goes as follows. Quadratic regression guarantees that N̂t converges to N∗t at a rate
of n−1/2 for all 0 ≤ t ≤ T . Before step `, M̂t suffers a square root decay of the rate to n−1/4

because M∗t may not have rank dx. Since (ẑt)
`−1
t=0 may not have full-rank covariances, (A∗t )

`−1
t=0

are only recovered partially. As a result, (K̂t)
`−1
t=0 may not stabilize (A∗t , B

∗
t )`−1t=0 , causing the ex-

ponential dependence on `. This means if n is not big enough, this controller may be inferior to
zero control, since the system (A∗t , B

∗
t )`−1t=0 is uniformly exponential stable (Assumption 1) and zero

control has suboptimality gap linear in `. After step `, M̂t retains the n−1/2 convergence rate, and
so do (Ât, B̂t); the certainty equivalent controller then has an order of n−1 suboptimality gap for
LQ control (Mania et al., 2019). A full proof is deferred to Appendix E in the technical report.

Theorem 4 states the guarantees for the state representation function (M̂t)
T
t=0 and the controller

(K̂t)
T−1
t=0 separately. One may wonder the suboptimality gap of π̂ = (M̂t, K̂t)

T−1
t=0 in combination;

after all, this is the output policy. The new challenge is that a suboptimal controller is applied to
a suboptimal state estimation. An exact analysis requires more effort, but a reasonable conjecture
is that (M̂t, K̂t)

T−1
t=0 has the same order of suboptimality gap as (K̂t)

T−1
t=0 : before step `, the extra

suboptimality gap resulted from (M̂t)
`−1
t=0 can be analyzed by considering perturbation K̂t(M̂t −

M∗t )ht on controls; after step `, similar to the analysis of the LQG suboptimality gap in (Mania
et al., 2019), the overall suboptimality gap can be analyzed by a Taylor expansion of the value
function at (M∗t ,K

∗
t )T−1t=` , with (K̂tM̂t −K∗tM∗t )T−1t=` being perturbations.
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