
Proceedings of Machine Learning Research vol 211:1–49, 2023 5th Annual Conference on Learning for Dynamics and Control

Multi-Agent Reinforcement Learning with Reward Delays

Yuyang Zhang YUYANGZHANG@G.HARVARD.EDU
Runyu Zhang RUNYUZHANG@FAS.HARVARD.EDU
Harvard University, School of Engineering and Applied Science

Yuantao Gu GYT@TSINGHUA.EDU.CN
Tsinghua University, Department of Electronic Engineering

Na Li NALI@SEAS.HARVARD.EDU

Harvard University, School of Engineering and Applied Science

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
This paper considers multi-agent reinforcement learning (MARL) where the rewards are received
after delays and the delay time varies across agents and across time steps. Based on the V-
learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays.
When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate
Õ(H

3√STK

K + H3
√
SA√
K

) where K is the number of episodes, H is the planning horizon, S is the
size of the state space, A is the size of the largest action space, and TK is the measure of total delay
formally defined in the paper. Moreover, our algorithm is extended to cases with infinite delays
through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.
Keywords: Reward Delays, Markov Games, Multi-Agent Reinforcement Learning

1. Introduction

Multi-agent reinforcement learning (MARL) finds extensive applications such as recommendation
systems (Zhao et al., 2020), medical treatments (Li et al., 2022; Martinho et al., 2021), multi-agent
robotics systems (Brambilla et al., 2013; Malus et al., 2020; Choi and Ahn, 2010), autonomous
driving (Kiran et al., 2021), etc. In these multi-agent problems, individuals aim to learn to interact
with the environment under the influence of other agents.

Motivated by the empirical success of MARL, there is a recent surge of studies on MARL algo-
rithms with theoretical convergence guarantees such as V-learning, V-learning OMD, SPoCMAR,
etc (Jin et al., 2021; Song et al., 2021; Daskalakis et al., 2022; Mao and Başar, 2022). In these
algorithms, agents rely heavily on real-time observations of reward values to update their policies
or value functions. However, in real-life MARL applications, rewards generally come with delays.
One example is the medical treatment process (Li et al., 2022), where the effectiveness of a treatment
strategy cannot be observed immediately. It generally takes a long time for a patient to respond and
recover. Similar reward delays also widely exist in recommendation systems (Aldhahri et al., 2015),
autonomous driving (Chen et al., 2019), neuroscience (Kobayashi and Schultz, 2008), etc. Another
example is the reward delays due to communication latency in all kinds of distributed systems (Duan
et al., 2022; Joulani et al., 2013; Liu, 2007) where even infinite delays are common due to packet
loss and network failure. Reward delays in these applications are typically time-varying, depending
on factors including the patient’s physiological state, the status of communication channels, etc. All
the examples suggest that it is crucial to understand how reward delays affect the learning process
and how to design MARL algorithms that could accommodate the delays efficiently.

© 2023 Y. Zhang, R. Zhang, Y. Gu & N. Li.

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

In existing empirical work on MARL with reward delays, different approaches are proposed to
handle delays, including but not restricted to learning temporal structures (Hauwere et al., 2011),
predicting strategic interactions (Tang et al., 2018), evaluating curiosity (Shao et al., 2019), and
predicting the environment (Firoiu et al., 2018) with neural networks. However, from the theoret-
ical perspective, few results are known for MARL. We acknowledge the lines of work studying
state or action delays in MARL (Agarwal and Aggarwal, 2021; Bouteiller et al., 2020b; Chen et al.,
2020), but the settings are different and out of the scope of this paper. Other related settings include
single-agent reinforcement learning (SARL) and multi-arm bandit (MAB). For SARL, recent work
(Lancewicki et al., 2022; Jin et al., 2022) studies adversarial reward delays. Unfortunately, their
methods suffer from the curse of dimensionality when directly extended to MARL. Other work
(Walsh et al., 2009; Katsikopoulos and Engelbrecht, 2003) only focuses on constant reward delays.
For MAB, Gyorgy and Joulani (2021); Zimmert and Seldin (2020); Gael et al. (2020) tackle adver-
sarial reward delays while Cesa-Bianchi et al. (2016); Neu et al. (2010) focus on constant delays.

Our Contributions. In this paper, we focus on a specific MARL model, the general-sum Markov
games (Shapley, 1953; Littman et al., 2001). We propose the delay-adaptive multi-agent V-learning
(DA-MAVL) to learn coarse-correlated equilibria (CCEs) under time-varying reward delays, where
the learning of the agents can be finished in a fully decentralized manner. Namely, every agent
runs its own learning algorithm without communicating with others. Note that this is nontrivial
because different agents may receive the same reward at different episodes due to the heterogeneous
delays among them. Without careful design, fully distributed learning might lead to misalignment
and divergent behavior. Our DA-MAVL algorithm circumvents this problem by carefully selecting
proper reward information for learning and therefore aligning the behaviour of the agents.

For finite delays, our algorithm achieves the CCE-gap as small as Õ(H
3
√
STK

K + H3
√
SA√
K

) with
samples from K episodes (Theorem 1). Here H is the planning horizon, S is the size of the state
space, A = maxm |Am| is the largest size of one agent’s action space, and TK can be seen as a
measure of the total delay. In the worst case,

√
TK is the order of O(

√
Kdmax), where dmax is

the largest possible delay. This implies that the CCE-gap is as small as Õ(1√
K
). This dependence

of K matches the original result of V-learning (Jin et al., 2021; Song et al., 2021), indicating that
DA-MAVL successfully aligns the behaviour of the agents. Moreover, both terms are independent
of the number of agents, meaning that DA-MAVL scales nicely with the system size. Our pro-
posed DA-MAVL algorithm can be extended to settings with infinite delays. With a novel skipping
metric inspired by Zimmert and Seldin (2020), our algorithm can skip the infinite delays without
prior knowledge of the delay sequence and achieve the CCE-gap similarly to the finite delay case
(Theorem 2). To the best of our knowledge, our results give the first convergence rate guarantee for
general-sum MGs under time-varying reward delays.

Due to the space limit, we defer related work, some of the algorithms, proofs, and simulation
settings to the appendix of our full paper (Zhang et al., 2022).

2. Problem Setup & Preliminary

2.1. Markov Games with Reward Delays

We study general-sum Markov games (MGs, also called stochastic games in Shapley (1953)) with
reward delays. In its episodic and tabular form, an MG can be defined by the following tuple:

MG
(
H,S,{Am}m∈[M], {Ph}h∈[H], {rm,h}m∈[M],h∈[H], {dnm,h(s)}m∈[M],h∈[H],s∈S,n∈[K]

)
. (1)

2

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Here we use [i] to denote set {1, . . . , i} for any integer i. In the subscripts, m ∈ [M] stands for
the agents, k ∈ [K] stands for the episode, h ∈ [H] stands for the time step over the finite horizon.
S is a global state space with cardinality S = |S|. Am is the action space of agent m. Define
A = maxm∈[M] |Am|. The joint action space is given by A = A1× · · · ×AM , and the joint action
is given as a = (a1, . . . , aM). Ph(s

′|s,a) with s, s′ ∈ S,a ∈ A is the transition function for step h.
rm,h(s,a) is a deterministic reward for agent m at step h when the current state and joint action are
s and a respectively. The sequence {dnm,h(s)}m∈[M],h∈[H],s∈S,n∈N represents reward delays which
will be detailed in later paragraphs. Without loss of generality, we assume every episode k starts
from a fixed initial state s1.1 At every step h, every agent observes the current state skh, takes action
akm,h. The environment transits to the next state skh+1 according to Ph until step H + 1 is reached.

Visits & happening order: When the agents visit state s at step h for the n-th time, we say that the
n-th visit of (h, s) happens, and n is the happening order of this visit.

Reward delays: We allow the reward delays to be heterogeneous among different agents m, dif-
ferent visits (h, s) and different happening orders n. In specific, for the n-th visit of (h, s) which
happens at episode k, agent m will receive its reward rm,h(s,a) by the end of episode k+ dnm,h(s).
When dnm,h(s) = 0 for all m ∈ [M], h ∈ [H], s ∈ S, n ∈ N, our setting reduces to a classic MG.

(Un)received visits: When the reward of a visit has been received, we call the visit a received visit;
otherwise, we call it an unreceived visit. It is worth mentioning that visits that happen early are not
necessarily received early.
(Un)usable visits: We denote the episode when the n-th visit of (h, s) happens as knh(s). At the
beginning of episode knh(s),

2 for agent m, some of the first n−1 visits of (h, s) may not be received
because of the reward delays. In this case, we define index enm,h(s) as the earliest unreceived visit:

enm,h(s) := min
{
j : djm,h(s) + kjh(s) > knh(s)− 1, j ∈ [n− 1]

}
. (2)

If all of the first n− 1 visits have been received, we define

enm,h(s) := n. (3)

It means that all the visits of (h, s) that happen earlier than the enm,h(s)-th visit have been received at
the beginning of episode knh(s); but the enm,h(s)-th visit has not been received yet. We call a received
visit as usable if all visits happening earlier have all been received. The rest of the received visits
are called unusable. At the beginning of episode knh(s), the usable visits of (h, s) have happening
orders 1, 2, . . . , enm,h(s) − 1. The unusable visit of (h, s), if enm,h(s) < n, have happening orders
enm,h(s), . . . , n− 1.

In our algorithms, to ensure that the agents are aligned, we only use the usable visits. Conse-
quently, the performance of our algorithms strongly relates to the number of unusable and unre-
ceived visits, for which we define a counting sequence {T n

m,h(s)}m∈[M],h∈[H],s∈S,n∈[K]:

T n
m,h(s) :=

n∑
i=1

(
i− eim,h(s)

)
=

n∑
i=1

(
i−min

{
j : djm,h(s) + kjh(s) > kih(s)− 1

})
. (4)

T n
m,h(s) counts the accumulated number of unusable and unreceived visits of (h, s) till the n-th

visit. Note that in the classic MG setting without reward delays, we have T n
m,h(s) = 0 for all

m ∈ [M], h ∈ [H], s ∈ S, n ∈ N.

1. For any MG with initial distribution µ, one can always add a step with only one state as the first time step and let the
transition function be µ for all actions. This leads to an equivalent MG with a fixed initial state.

2. Without causing any confusion, we will use “at the beginning of episode k” and “by the end of episode k − 1”
interchangeably.

3

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

2.2. Learning Objective - Coarse Correlated Equilibrium

Agent m’s policy is denoted as πm = {πm,h}h∈[H]. The policy at step h is πm,h : Ω × (S ×
A)h−1 × S → ∆Am , where πm,h maps a random sample ωh from probability space Ω and a
trajectory (s1,a1, . . . , sh) to a point in probability simplex ∆Am . An important subclass of policy
is the independent Markov policy, with πm,h : S → ∆Am maps the current state to a point in
probability simplex ∆Am .

A joint policy π is a set of policies {πm}m∈[M] of all agents. If the random samples {ωh ∈
Ω}h∈[H] are shared among all agents, policies of all agents are correlated. In this case, we denote
the joint policy π as π = π1⊙π2⊙ . . .⊙πM , and call π as a correlated policy. We also use
π−m = π1⊙. . .πm−1 ⊙πm+1 . . .⊙πM to denote the policy excluding agent m. If the randomness
of πm is independent of other policies π−m, i.e., the random samples {ωh ∈ Ω}h∈[H] are shared
among agents except agent m, we denote the joint policy as π = πm × π−m.

For a joint policy π, we define its value function for agent m as:

V π
m,h(sh) := Eπ

[H∑
h′=h

rm,h′(sh′ ,ah′)|sh
]
, ∀m ∈ [M]. (5)

Given policy π−m, the best response for agent m is defined as the best policy that maximizes the
value function for agent m, i.e., π†

m = argmaxπm
V

πm×π−m

m,1 . For notation simplicity, we denote

the value function of the best response as V †,π−m

m,h = V
π†
m,π−m

m,h . Our objective is to find a joint policy
π that is an ϵ-coarse correlated equilibrium (CCE) defined as follows:

Definition 1 (Coarse Correlated Equilibrium (CCE (Young, 2004))) We define the CCE-gap of
a joint policy π as:

CCE-gap(π) := max
m∈[M]

(V
†,π−m

m,1 − V π
m,1)(s1). (6)

A joint policy π is a CCE if the CCE-gap is zero:
CCE-gap(π) = 0. (7)

A joint policy π is an ϵ-CCE if the CCE-gap satisfies:
CCE-gap(π) ≤ ϵ. (8)

When the agents reach a CCE, they have no incentive to deviate to any independent policy.

3. Delay-Adaptive Multi-Agent V-Learning

In this section, we present our main algorithm: Delay-Adaptive Multi-Agent V-Learning (DA-
MAVL). Similar to V-learning in Jin et al. (2021); Song et al. (2021), DA-MAVL contains two con-
secutive algorithms - i) the training algorithm (Algorithm 1), where the agents learn and store a set
of independent Markov policies {π̂k

m,h}m∈[M],h∈[H],k∈[K], and ii) the output algorithm (Algorithm
2) that constructs the final output policies (which can be correlated and non-Markov) {πm}m∈[M]

from the set of independent Markov policies {π̂k
m,h}m∈[M],h∈[H],k∈[K].

The training algorithm is fully decentralized, i.e., the agents update their own policies with their
own delayed reward information without communication with each other. The algorithm framework
resembles the V-learning algorithm but comes with a mechanism that carefully chooses usable visits
for learning. This mechanism enables agents to align their behaviour under the influence of hetero-
geneous reward delays and leads the algorithm toward convergence (see more discussions at the end
of next subsection).

4

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Recall that knh(s) is the episode when the agents visit (h, s) for the n-th time. For agent m,
we also define nk

m,h(s) as the count of happened visits of (h, s) and define nk
m,h(s) as the count of

usable visits of (h, s) at the beginning of episode k.

3.1. The Training Algorithm

We now present the training algorithm of DA-MAVL for agent m (Algorithm 1). The algorithm
contains three major processes, which we name as ‘Preparation’, ‘Learning’ and ‘Sampling’. At
each episode k, for every time step h, the three processes are carried out iteratively:

• In the ‘Preparation’ process, we keep track of three important sets, namely the set of visits to be
used Fm,h(s) (including all usable visits that have not been used previously), the set of unusable
visitsM+

m,h(s) and the set of unreceived visitsM−
m,h(s). Usable Visits in Fm,h(s) will be fed

into later processes and will no longer be used again in future episodes. Unusable and unreceived
visits inMm,h(s) =M

+
m,h(s) ∪M

−
m,h(s) are stored in memory until they become usable.

For set M = Mm,h(s) (or M = M−
m,h(s)), whose entries are tuples (i, a, π̂, V

′
, V ′, r) (or

(i, a, π̂, V
′
, V ′)) indexed by the first element i, we define arg{M} := {i} as the set of indices.

• In the ‘Learning’ process, visits in Fm,h(s) are fed into subroutines ‘VALUE UPDATE’ and
‘POLICY OPT’ (Algorithm 3 and Algorithm 4 in Appendix C.1 in Zhang et al. (2022)) consec-
utively in their happening orders. Subroutine ‘VALUE UPDATE’ updates an “optimistic” value
estimate V m,h(s) by using all visits in Fm,h(s) with parameters {αi}i and {βi

m,h(s)}i, where αi

can be viewed as the learning rate and β
i
m,h(s) is a bonus term. Subroutine ‘POLICY OPT’ runs

an adversarial-bandit-type algorithm (similar to the algorithm in Zimmert and Seldin (2020)) to
update the policy, where the bandit loss is calculated using the optimistic value estimates V m,h(s).

Note that in Algorithm 1 and Subroutine ‘VALUE UPDATE’, we also introduce a pessimistic
value estimate V m,h(s). This pessimistic estimate is an auxiliary variable that is not needed for
running the algorithm but is used in the proof.

• In the ‘Sampling’ process, every agent chooses its action based on the updated policy, and the
next state is sampled. Finally, every agent stores related information, receives delayed rewards
and moves on to the next step h+ 1.

Discussions - The role of usable visits. As previously mentioned, one key challenge for the de-
centralized learning algorithm is to avoid misalignment due to heterogeneous reward delays among
different agents. Our algorithm addresses this challenge by only using usable visits for learning in
subroutines ‘VALUE UPDATE’ and ‘POLICY OPT’. The main intuition is to ensure that the hap-
pening order of the visits is also the order in which they are used in the subroutines. Consequently,
although rewards of the visits might be received and used in different episodes for different agents,
the order in which they are used remains the same among agents. This design leads to cooperative
policies among the agents without any communication in the training algorithm.

To better understand the role of usable visits, we also compare our algorithm numerically with
the naive algorithm, where visits are immediately fed into subroutines once they are received (see
Appendix C.2 in Zhang et al. (2022) for details). In the naive algorithm, the reward of the same visit
may be used in different orders among agents, which causes extra misalignment among the agents.
The numerical results are discussed in Section 6, where we indeed observe that with the notion of
usable visits, our algorithm outperforms the naive algorithm. However, it remains an open question
to prove or to disapprove whether the naive method would converge to a CCE.

5

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

We also note that the notion of usable visits alone is not sufficient to fully align all agents,
nor does it reduce the problem to MARL without reward delays. This is because different agents
still have different amount of information in the episodes. This information mismatch is further
addressed by a critical modification in Algorithm 2 in the following subsection.

Algorithm 1: DA-MAVL Training for Agent m
Init: ∀(h, s), n0

m,h(s)← 0, n0
m,h(s)← 0, T 0

m,h(s)← 0, Fm,h(s)← ∅,Mm,h(s)← ∅;
1 for Episode k = 1, . . . ,K do
2 Receive initial state sk1;
3 for Step h = 1, . . . ,H do
4 // Preparation
5 s← skh;
6 for (i, a, π̂, V

′
, V ′, r) ∈M+

m,h(s) do
7 if ∀j < i, j /∈ arg{M−

m,h(s)} then
8 Save (i, a, π̂, V

′
, V ′, r) to Fm,h(s); Remove (i, a, π̂, V

′
, V ′, r) fromM+

m,h(s);
9 n ← nk

m,h(s) = nk−1
m,h(s) + 1; n ← nk

m,h(s) = nk−1
m,h(s) + |Fm,h(s)|;

10 T n
m,h(s)← T

n−1
m,h (s) + |Mm,h(s)|;

11 // Learning

12 V
k
m,h(s), V

k
m,h(s)← VALUE UPDATEm,h,s

(
Fm,h(s), n

)
;

13 π̂k
m,h(·|s)← POLICY OPTm,h,s

(
Fm,h(s), n

)
;

14 // Sampling
15 Take action akm,h ∼ π̂k

m,h(·|s); Observe next state skh+1;
16 for s′ ∈ S\s do
17 nk

m,h(s
′)← nk−1

m,h(s
′); nk

m,h(s
′)← nk−1

m,h(s
′);

18 V
k
m,h(s

′)← V
k−1
m,h(s

′); V k
m,h(s

′)← V k−1
m,h(s

′); π̂k
m,h(·|s′)← π̂k−1

m,h (·|s
′);

19 for Step h = 1, . . . ,H do
20 Save

(
nk
m,h(s

k
h), a

k
m,h, π̂

k
h(a

k
m,h|skh), V

k
m,h+1(s

k
h+1), V

k
m,h+1(s

k
h+1)

)
toM−

m,h(s
k
h);

21 Receive delayed rewards for all states s;
22 for Delayed Reward (m,h, s, i, r) do
23 Extract and remove

(
i, a, π̂, V

′
, V ′) fromM−

m,h(s);

24 Save
(
i, a, π̂, V

′
, V ′, r

)
toM+

m,h(s);

3.2. Execution of the Output Policy

Algorithm 2: DA-MAVL Output for Policy πm

1 Sample k ∼ Uniform([K]);
2 for step h = 1, . . . ,H do
3 Observe current state sh; n← maxm nk

m,h(sh);
4 Sample i from [n] with probability αi

n; k ← kih(sh);
5 Take action am,h ∼ π̂k

m,h(·|sh);

Algorithm 1 outputs a set of independent Markov policies {π̂k
m,h}m∈[M],h∈[H],k∈[K]. Based on

this policy set, we now construct joint policy π = {πm}m∈[M] as the output of DA-MAVL. The

6

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

policy is defined by its execution in Algorithm 2. Notice that all random samples (line 1 and line 4)
are shared across all agents.

This algorithm follows V-learning in Jin et al. (2021); Song et al. (2021) except for the critical
modification in line 3. Intuitively speaking, choosing n = maxm nk

m,h(s) ensures that agent m is
aware of the extra information that the most informed agent possesses, and therefore guarantees that
the output policy of agent m is compatible with that of the most informed agent. Technically speak-
ing, it ensures the optimistic value estimates in Algorithm 1 upper bound the policy performance.

4. Performance Guarantee and Proof Sketch

Recall that the counting sequence {T n
m,h(s)}m∈[M],h∈[H],s∈S,n∈[K] (Equation (4)) is agent m’s accu-

mulated count of unusable and unreceived visits till the n-th visit of (h, s). Also, recall that nk
m,h(s)

is the count of usable visits of (h, s) at the beginning of episode k. Using the two notations, we

define TK := maxm,h
∑

s∈S T
nK
m,h(s)

m,h (s) which will be used in bounding the CCE-gap after K
episodes. We also assume that the reward delays of the MG are upper bounded by some constant.

Assumption 1 The delays are bounded by dmax, that is, max
m∈[M],h∈[H],s∈S,n∈[K]

dnm,h(s) ≤ dmax.

Now we are ready to present the performance guarantee for DA-MAVL:

Theorem 1 Under Assumption 1, for any δ ∈ (0, 1),K ≥ d2maxSι
3 where ι = log(4MHSAK/δ),

suppose Algorithm 1 is run for K episodes, then the following equation holds for the output policy
π of Algorithm 2 with probability at least 1− δ

CCE-gap(π) = max
m∈[M]

(
V

†,π−m

m,1 − V π
m,1

)
(s1) ≲ H3

√
STK/K2ι2 +H3

√
SAι/K. (9)

Under Assumption 1, it can be shown (with Lemma 7 in Appendix E.1 in Zhang et al. (2022)):

TK =max
m,h

∑
s∈S
T

nK
m,h(s)

m,h (s) = max
m,h

∑
s∈S

nK
m,h(s)∑
n=1

(
n− enm,h(s)

)
≤ dmaxmax

m,h

∑
s∈S

nK
m,h(s) ≤ Kdmax.

Substituting it into Theorem 1 gives the CCE-gap of order Õ(H
3
√
Sdmax+H3

√
SA√

K
). In other words,

in the worst case where the delays are always dmax and every (h, s) is visited for K times, at most
K = Õ

(H6S(dmax+A)
ϵ2

)
episodes are needed for an ϵ-CCE. The influence of the reward delays is

linearly bounded by term Õ(H6Sdmax
ϵ2

) and tends to 0 when dmax goes to 0. Note that our result
bears an extra factor H compared with V-learning (Jin et al., 2021; Song et al., 2021), even when all
delays are zero. This is because we have to choose the parameters generously so that our algorithm
is adaptive to potential delays.

4.1. Proof Sketch of Theorem 1

The proof can be broken down into the following three steps.

STEP 1: Bound the ‘Policy Optimization Regret’. For every pair (m,h, s, n), we first define the
policy optimization regret Rn

m,h(s). For notational simplicity, we let kn denote knh(s).

Rn
m,h(s)= max

am∈Am

n∑
i=1

αi
n

[
E
(
rm,h(s,a) + V

ki
m,h+1(s

′)
)
−
(
rkim,h + V

ki
m,h+1(s

ki
h+1)

)]
, (10)

7

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

where a = (am,a−m), αi
n is the weight which we define in Equation (22) in Appendix D in Zhang

et al. (2022), and the expectation is taken over a−m ∼ π̂ki
−m,h(·|s) and s′ ∼ Ph(·|s,a). Intuitively, it

measures the performance of the first n outputs of subroutine ‘POLICY OPTm,h,s’ in Algorithm 1,
i.e. Markov policies {π̂ki

m,h(s)}i∈[n]. Under Assumption 1, we give the following upper bound:

Lemma 1 Let Assumption 1 holds. For ∀(m,h, s, k) ∈ [M] × [H] × S × [K], the following
inequality holds with probability at least 1− δ/2

Rn
m,h(s) ≤ 12H2

√
nA+ T n

m,h(s)

n2
ι+ 2H2dmax

n
ι. (11)

In this lemma, the key difference from V-learning, and main technical difficulty, is that the subrou-
tine needs to learn the n-th output, i.e. π̂kn

m,h(s), without access to all reward information of the first
n − 1 visits of (h, s) due to the reward delays. We have to measure the influence of the delays on
outputs. By comparing it with the no-delay versions, we can show that the influence of the delays
can be reflected by term

√
T n
m,h(s)/n

2 and dmax/n in Equation (11).

STEP 2: Optimism and Pessimism. Utilizing the regret defined above, we carefully design
bonuses β

n
m,h(s) and β

n
in subroutine ‘VALUE UPDATE’ as follows:

β
n
m,h(s) = Rn

m,h(s) + 2H2dmax

n
ι, β

n
= 2

√
H3

n
ι+ 2H2dmax

n
ι. (12)

With the bonuses, we can show that the value estimates V k
m,h(s) and V k

m,h(s) in Algorithm 1 upper
and lower bound the performance of policy πk

m,h.
Lemma 2 Let Assumption 1 holds. For ∀(m,h, s, k) ∈ [M] × [H] × S × [K], the following
inequality holds with probability at least 1− δ

V
k
m,h(s) ≥ V

†,πk
−m,h

m,h (s), V k
m,h(s) ≤ V

πk
h

m,h(s). (13)

In this lemma, policy πk
h(s) can be seen as part of the output policy π(s) in Algorithm 2, that is used

from step h to H . It is formally defined in Algorithm 12 in Appendix D in Zhang et al. (2022).
We note that it is technically difficult to ensure optimism and pessimism under the influence of

heterogeneous reward delays among agents. Notice that V k
m,h(s) and V k

m,h(s) are calculated only

with information of agent m. However, the output policy πk
h, as in V

†,πk
−m,h

m,h (s) and V
πk
h

m,h(s), is a
correlated policy that takes information of all agents into consideration. This information mismatch

makes it technically challenging for V k
m,h(s) and V k

m,h(s) to upper or lower bound V
†,πk

−m,h

m,h (s)

and V
πk
h

m,h(s), and breaks the original optimism and pessimism results in V-learning (Jin et al., 2021;
Song et al., 2021). Here we carefully design Algorithm 2 (especially line 3) to ensure that every
agent is aware of the extra information of the most informed agent. Then with the carefully designed
bonuses as in Equation 13, we are able tackle this difficulty and ensure optimism and pessimism.

STEP 3: Bound the CCE-gap. Finally, given Lemma 2, it suffices to bound the gap between the

optimistic and pessimistic value estimates
K∑
k=1

(V
k
m,1 − V k

m,1)(s
k
h).

As is mentioned in Step 2, the value estimates V
k
m,h(s) and V k

m,h(s) are calculated without
access to all information due to the reward delays. This fact increases the variance of the value
estimates. In the proof of this theorem, we carefully analyze the number of unreceived and unusable
visits for every episode and analyze its cumulative influence across all episodes.

8

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

5. Extension to Infinite Delays

5.1. The Skipping Scheme

The performance of the DA-MAVL algorithm in Section 3 heavily relies on the assumption that
delays are finite. One single infinite delay could prevent the algorithm from convergence because
all visits that happen later are unusable. In this case, it is worth skipping some of the rewards for
better performance. Following the intuitions of Zimmert and Seldin (2020), we extend DA-MAVL
and design a new skipping metric to deal with infinite delays in MARL. Details for the extended
algorithm (DA-MAVL with Reward Skipping) are presented in Appendix C.3 in Zhang et al. (2022).

The critical part of the ‘Skipping’ process is to determine when to skip a visit. When the n-th
visit of (h, s) happens, we maintain the skipping metric ϕi,n

m,h(s) =
∑n

j=i+1(j − i) if the i-th visit

of (h, s) is unreceived. Intuitively speaking, ϕi,n
m,h(s) upper bounds the contribution of the i-th visit

to T n
m,h(s). It is beneficial to skip the i-th visit if ϕi,n

m,h(s) becomes large enough. Following the
intuition of previous reward skipping method in Zimmert and Seldin (2020) in the adversarial bandit
setting, we skip the i-th visit if ϕi,n

m,h(s) exceeds threshold
√
T n
m,h(s).

However, we would like to point out that our design of the skipping metric ϕi,n
m,h(s) is not a

direct generalization of previous skipping method. Unlike the multi-agent setting considered in
this paper, the adversarial bandit setting does not need to consider the heterogeneity of reward
delays among agents, thus their algorithm update does not need to wait for visits to become usable.
Correspondingly, the skipping metric n− i in previous method would fail in our setting, because it
no longer upper-bounds the contribution of the i-th visit to T n

m,h(s).

5.2. Performance Guarantee for DA-MAVL with Reward Skipping

Recall the notation knh(s) stands for the episode when n-th visit of (h, s) happens. With the skipping
scheme, we can also relax Assumption 1 to the following:

Assumption 2 For ∀(m,h, s, n) ∈ [M]× [H]× S × [K], there exists a constant C satisfying:
|{i ≤ n : dim,h(s) + kih(s) ≥ knh(s)}| ≤ C. (14)

Intuitively, Assumption 2 requires that for every pair (m,h, s, n), there are at most C unreceived
visits before the n-th visit of (h, s)for agent m. This implies that either large delays do not appear
too many times or delays are not large enough to influence performance. It is worth noting that the
finite delay Assumption 1 implies Assumption 2 with C = dmax. But Assumption 2 is more general
than Assumption 1 because Assumption 2 holds even if there are less than C infinite delays.

Given a subset of visit indices L ⊂ [K], at episode knh(s) when the n-th visit of (h, s) happens,
we define variable en,Lm,h(s) as the earliest unreceived visit outside of L:

en,Lm,h(s) := min
{
j : djm,h(s) + kjh(s) > knh(s)− 1, j ∈ [n− 1]\L

}
. (15)

If all of the first n− 1 visits are received, we let en,Lm,h(s) = n. Now we define T n,L
m,h (s) as follows:

T n,L
m,h (s) :=

n∑
i=1

i− ei,Lm,h(s). (16)

It counts the accumulated number of unusable and unreceived visits outside of L for the first n
visits of (h, s). Finally, we also define T K,L

m,h :=
∑

s∈S T
nK
m,h(s),L

m,h (s). Intuitively, it counts the
accumulated number of unusable and unreceived visits outside of L during the K episodes.

Now we are ready to present the performance guarantee for DA-MAVL with Reward Skipping:

9

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Theorem 2 Under Assumption 2, for any δ ∈ (0, 1), K ≥ C6S3ι3 where ι = log(4MHSAK/δ),
suppose Algorithm 9 is run for K episodes, then the following equation holds for the output policy
π of Algorithm 2 with probability at least 1− δ

CCE-gap(π) ≲ CH3max
m,h

min
L

{
S|L|
K

+

√
ST K,L

m,h

K2

}
ι2 +H3

√
SA

K
ι. (17)

Theorem 2 implies that DA-MAVL with Reward Skipping can still obtain convergence to CCE
when there are infinite delays. Consider the case where all delays are upper bounded by constant
dmax, except for C infinite delays for every (h, s). Let Lm,h = {n : ∃s, dnm,h(s) = ∞} denote
all visit indices where the delay is infinite for some state s and fixed pair (m,h). We then have
|Lm,h| ≤ CS and T K,Lm,h

m,h ≤ Kdmax. Substituting into Theorem 2 gives CCE-gap of order

Õ(H
3
√
Sdmax+H3

√
SA√

K
), which is exactly the same as the result of Theorem 1.

6. Simulations

We simulate our algorithms in a simple MG with M = 3, S = 3, A = 2, H = 2. Due to the space
limit, the simulation settings are deferred to Appendix B in Zhang et al. (2022). We only present
the simulation results in Figure 1. We can see that our algorithm outperforms the naive algorithm
(mentioned in Section 3) when delays are finite. Moreover, our novel skipping metric outperforms
previous skipping method (mentioned in Section 5.1) when delays are infinitely large.

Figure 1: Left: CCE-gap for Output Policy of DA-MAVL (Our Method) and the Naive Algorithm (Naive
Method); Center: CCE-gap for Output Policy of DA-MAVL under Different Delay Sequences;
Right: CCE-gap for Skipping Metrics in DA-MAVL with Reward Skipping (Our Method), in
Previous Work (Zimmert and Seldin, 2020) (Previous Method) and No Skipping (Naive Method).

7. Conclusion

This paper studies MARL with reward delays. For finite delays, we propose MARL algorithms
with a novel mechanism to choose proper visits for learning, so that agents can reach a CCE even
when facing heterogeneous delays. We also adapt our algorithm to cases with infinite delays using a
novel reward skipping metric. High probability bounds are given on the CCE-gap of our algorithms.
There are many interesting future directions, such as proving or disproving the convergence of the
naive algorithm (Appendix C.2 in Zhang et al. (2022)), providing lower bounds on the CCE-gap for
MARL with reward delays, relaxing Assumption 2 for infinite delays, extending current results to
MGs with function approximation, etc.

10

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Acknowledgments

This work is supported by the NSF grants CNS 2003111 and AI institute 2112085 and by the ONR
YIP award N00014-19-1-2217.

References

Mridul Agarwal and Vaneet Aggarwal. Blind decision making: Reinforcement learning with de-
layed observations. Pattern Recognition Letters, 150:176–182, 2021.

Eman Aldhahri, Vivek Shandilya, and Sajjan Shiva. Towards an effective crowdsourcing recommen-
dation system: A survey of the state-of-the-art. In 2015 IEEE Symposium on Service-Oriented
System Engineering, pages 372–377. IEEE, 2015.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020a.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020b.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

Nicol‘o Cesa-Bianchi, Claudio Gentile, Yishay Mansour, and Alberto Minora. Delay and coop-
eration in nonstochastic bandits. In Conference on Learning Theory, pages 605–622. PMLR,
2016.

Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-
agent reinforcement learning for cooperative and competitive environments. arXiv preprint
arXiv:2005.05441, 2020.

Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Model-free deep reinforcement learning for
urban autonomous driving. In 2019 IEEE intelligent transportation systems conference (ITSC),
pages 2765–2771. IEEE, 2019.

Young-Cheol Choi and Hyo-Sung Ahn. A survey on multi-agent reinforcement learning: Coordi-
nation problems. In Proceedings of 2010 IEEE/ASME International Conference on Mechatronic
and Embedded Systems and Applications, pages 81–86. IEEE, 2010.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov equilib-
rium in stochastic games. arXiv preprint arXiv:2204.03991, 2022.

Peihu Duan, Lidong He, Zhisheng Duan, and Ling Shi. Distributed cooperative lqr design for
multi-input linear systems. IEEE Transactions on Control of Network Systems, 2022.

11

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

Manegueu Anne Gael, Claire Vernade, Alexandra Carpentier, and Michal Valko. Stochastic bandits
with arm-dependent delays. In International Conference on Machine Learning, pages 3348–
3356. PMLR, 2020.

Andras Gyorgy and Pooria Joulani. Adapting to delays and data in adversarial multi-armed bandits.
In International Conference on Machine Learning, pages 3988–3997. PMLR, 2021.

Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Solving sparse delayed coordination
problems in multi-agent reinforcement learning. In International Workshop on Adaptive and
Learning Agents, pages 114–133. Springer, 2011.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentral-
ized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, and Aviv Rosenberg. Near-optimal
regret for adversarial mdp with delayed bandit feedback. arXiv preprint arXiv:2201.13172, 2022.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In
International Conference on Machine Learning, pages 1453–1461. PMLR, 2013.

Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-)
convex optimization: Optimism, composite objectives, and variational bounds. In International
Conference on Algorithmic Learning Theory, pages 681–720. PMLR, 2017.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2021.

Shunsuke Kobayashi and Wolfram Schultz. Influence of reward delays on responses of dopamine
neurons. Journal of neuroscience, 28(31):7837–7846, 2008.

Tal Lancewicki, Aviv Rosenberg, and Yishay Mansour. Learning adversarial markov decision pro-
cesses with delayed feedback. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7281–7289, 2022.

Tianhao Li, Zhishun Wang, Wei Lu, Qian Zhang, and Dengfeng Li. Electronic health records based
reinforcement learning for treatment optimizing. Information Systems, 104:101878, 2022.

Michael L Littman et al. Friend-or-foe q-learning in general-sum games. In ICML, volume 1, pages
322–328, 2001.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforcement
learning with self-play. In International Conference on Machine Learning, pages 7001–7010.
PMLR, 2021.

Yong Liu. On the minimum delay peer-to-peer video streaming: how realtime can it be? In
Proceedings of the 15th ACM international conference on Multimedia, pages 127–136, 2007.

12

MULTI-AGENT REINFORCEMENT LEARNING WITH REWARD DELAYS

Andreja Malus, Dominik Kozjek, et al. Real-time order dispatching for a fleet of autonomous
mobile robots using multi-agent reinforcement learning. CIRP annals, 69(1):397–400, 2020.

Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized general-
sum markov games. Dynamic Games and Applications, pages 1–22, 2022.

Diogo Martinho, João Carneiro, José Neves, Paulo Novais, Juan Corchado, and Goreti Marreiros.
A reinforcement learning approach to improve user achievement of health-related goals. In EPIA
Conference on Artificial Intelligence, pages 266–277. Springer, 2021.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision pro-
cesses under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep rein-
forcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Jayakumar Subramanian, Amit Sinha, and Aditya Mahajan. Robustness and sample complexity of
model-based marl for general-sum markov games. arXiv preprint arXiv:2110.02355, 2021.

Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Zhaopeng Meng, Changjie Fan, et al. Hierarchical deep multiagent reinforce-
ment learning with temporal abstraction. arXiv preprint arXiv:1809.09332, 2018.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in envi-
ronments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18(1):83–105,
2009.

Hang Yin, Yu Wang, Xukai Zhang, and Peng Li. Feedback delay impaired reinforcement learning:
Principal components analysis of reward positivity. Neuroscience letters, 685:179–184, 2018.

H Peyton Young. Strategic learning and its limits. OUP Oxford, 2004.

Yuyang Zhang, Runyu Zhang, Gen Li, Yuantao Gu, and Na Li. Multi-agent reinforcement learning
with reward delays. arXiv preprint arXiv:2212.01441, 2022.

Xiangyu Zhao, Long Xia, Lixin Zou, Hui Liu, Dawei Yin, and Jiliang Tang. Whole-chain rec-
ommendations. In Proceedings of the 29th ACM international conference on information &
knowledge management, pages 1883–1891, 2020.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for adversarial bandits with arbitrary
delays. In International Conference on Artificial Intelligence and Statistics, pages 3285–3294.
PMLR, 2020.

13

	Introduction
	Problem Setup & Preliminary
	Markov Games with Reward Delays
	Learning Objective - Coarse Correlated Equilibrium

	Delay-Adaptive Multi-Agent V-Learning
	The Training Algorithm
	Execution of the Output Policy

	Performance Guarantee and Proof Sketch
	Proof Sketch of Theorem 1

	Extension to Infinite Delays
	The Skipping Scheme
	Performance Guarantee for DA-MAVL with Reward Skipping

	Simulations
	Conclusion
	Related Work
	Simulation Settings
	Algorithms and Subroutines
	Subroutines for DA-MAVL Training (Algorithm 1)
	Naive Multi-Agent V-Learning (Naive-MAVL)
	DA-MAVL with Reward Skipping

	Notations
	Performance Guarantee for DA-MAVL
	Step One: Proof of Lemma 1
	Supporting Details

	Step Two: Proof of Lemma 2
	Proof of Theorem 1
	Supporting Details

	Performance Guarantee for DA-MAVL with Reward Skipping
	Step One: Proof of Lemma 12
	Supporting Details

	Step Two: Proof of Lemma 13
	Step Three: Proof of Lemma 14
	Supporting Details

	Step Four: Proof of Theorem 2
	Supporting Details

