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Abstract
We consider the problem of determining the top-k largest measurements from a dataset distributed
among a network of n agents with noisy communication links. We show that this scenario can
be cast as a distributed convex optimization problem called sample quantile inference, which we
solve using a two-time-scale stochastic approximation algorithm. Herein, we prove the algorithm’s
convergence in the almost sure sense to an optimal solution. Moreover, our algorithm handles noise
and empirically converges to the correct answer within a small number of iterations.
Keywords: Networks, quantile regression, stochastic approximation, convex optimization

1. Introduction

The selection of the k largest quantities among a set of n real numbers is of great importance in
many applications of interest including machine learning (Rejwan and Mansour, 2020), data mining
(Tang et al., 2017), and information retrieval (Shi et al., 2019). These are known as top-k strategies.
Top-k strategies also play a role in remote sensing (Zhang et al., 2022) and selection of the most
informative neighbors for distributed optimization (Verma et al., 2021). While this problem is trivial
in the centralized case, where all the data is available at a single agent (server), it is a non-trivial
problem in applications where the data is distributed over a network of clients. Here, we study the
design of a distributed top-k strategy over a network of many agents.

Consider a decentralized system in Fig. 1 where the agents can only communicate with their
neighbors over a noisy channels. Each agent has its own measurement and our goal is to select the k
largest ones by learning an optimal threshold. Once this threshold is properly computed, each agent
independently declares whether its measurement is above the threshold, and therefore that it has one
of the top-k measurements. One possible strategy is to relate the threshold with a sample quantile,
which can be cast as quantile inference problem. Remarkably, this problem admits a natural decom-
position as a distributed nonsmooth convex optimization problem. Herein, we provide an algorithm
based on a two-time-scale subgradient method and perform its corresponding convergence analysis.

There exists a significant literature on the design of top-k strategies in different settings. To
the best of our knowledge (Babcock and Olston, 2003) proposed the first distributed algorithm to
find the k largest values in a federated setting using a technique called range caching. Ustebay
et al. (2011) provided a top-k algorithm to compute the top-k entries based on selective gossip. Ra-
jagopal et al. (2006) studied the distributed estimation of an arbitrary quantile in a communication-
constrained federated scenario. Compared with the above papers, Haeupler et al. (2018) proposed
faster optimal gossip algorithms for quantile computation by designing two types of tournament
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mechanisms. However, their algorithms are very sensitive to communication noise and do not con-
verge to the exact quantile over noisy channels.

Our work is closely related to the work of Lee et al. (2020), where a two-time-scale algorithm
to estimate a sample quantile in a decentralized way is claimed to converge in the mean squared
sense. However, due to a technicality, the proof of convergence in (Lee et al., 2020) fails to hold
due to the lack of monotonicity of the sequence ‖E[w̄(t)]− θp1‖. We avoid this technical difficulty
by considering the convergence in the almost sure sense, combining the classical result of Robbins
and Siegmund (1971) with a modern result on nonsmooth optimization by Yi and Li (2021).

2. Problem setup
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Figure 1: System model – A dataset is
distributed accross multiple clients. Two
clients can communicate if there is a link
in between them. The communication links
are noisy.

We begin our analysis by relating the problem of comput-
ing the top-k observations with quantile inference, which
is a convex optimization problem. Consider a collection
of n agents, [n] = {1, · · · , n}, interconnected by a time-
invariant, undirected, communication graph G = ([n], E),
where E ⊂ [n] × [n] denotes the set of edges between
nodes. Each agent holds a non-negative real number,
which may represent a sensor measurement, a belief, or
an opinion. Throughout this paper, we will simply refer to
them as data. Let zi ∈ R be the data of the i-th agent. The
goal of the team of agents is to determine in a distributed
fashion the k agents holding the top-k largest data. We
want to do this efficiently. Moreover, the communication
among agents occurs in the presence of additive noise.

At first, one may be inclined to consider the follow-
ing strategy: Each agent keeps a list of k entries in its
memory. At time t each agent sends this list to its neigh-
bors. At time t + 1, every agent updates its list with by
selecting the top-k received data and discarding the rest.
Each agent sorts its list and repeats. While this simple
scheme converges to the top-k results in finite time, it has
two main drawbacks. First, this scheme requires noiseless
communication channels of k real numbers per channel use. Even the slightest amount of noise will
cause the algorithm to diverge. Second, it requires a memory with size k. If k ∼ O(n), the commu-
nication and storage requirements will quickly turn the problem of finding the top-k observations
accross the network prohibitive.

On the other hand, this problem can be conveniently cast into the framework of distributed
convex optimization, and admits an implementation where a single real number is exchanged and a
single unit of memory is updated at each time. Furthermore, this algorithm is robust to the presence
of noise. Consider the problem of infering the sample quantile from the dataset containing all
of the agents’ individual data points D def

={zi}ni=1. Let F̂ (ξ;D) denote the empirical cumulative
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Figure 2: Empirical CDF and aggregate score function for k = 3.

distribution function of the data set D, defined as:

F̂ (ξ;D)
def
=

1

n

n∑
i=1

1(zi ≤ ξ). (1)

Let p ∈ (0, 1). The (sample) p-quantile is defined as

θp
def
= inf

{
ξ
∣∣∣ F̂ (ξ;D) ≥ p

}
, (2)

A classic result in quantile regression relates Eq. (2) to the solution of the following optimization
problem (Koenker, 2005, Section 1.3, pp. 7–9):

θp = arg min
ξ∈R

n∑
i=1

ρp
(
zi − ξ

)
, where ρp(x)

def
=

{
(p− 1)x if x < 0

px if x ≥ 0.
(3)
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Figure 3: Score function

Let the local functions of the i-th node be defined as
fi(ξ)

def
= ρp(zi − ξ), which are called the score functions

(see Fig. 3), and the objective be defined as the aggre-
gate score function f(ξ)

def
=
∑n

i=1 fi(ξ), then the sample
quantile is the solution of the following distributed opti-
mization problem:

θp = arg min
ξ∈R

f(ξ) = arg min
ξ∈R

n∑
i=1

fi(ξ). (4)

A few noteworthy aspects of Eq. (4) are: (1) This is a
convex optimization problem; (2) The objective function

is nonsmooth; (3) The local functions have bounded subgradients:

|gi(ξ)| ≤ max{p, 1− p} ≤ 1, gi ∈ ∂fi; (5)

and (4) the p-quantile θp belongs to the dataset D, for any parameter p ∈ P , where

P def
= (0, 1)\

{
1

n
, · · · , n− 1

n

}
. (6)
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This framework can be used to compute many statistics of interest. For example, to compute
the maximum (k = 1), let p ∈ (1 − 1/n, 1). To compute the minimum (k = n), let p ∈ (0, 1/n).
Provided the number of samples in D is odd, to compute the median, set p ∈

(
(n − 1)/2n, (n +

1)/2n
)
. In general, if we would like to find the k-th largest element of D, then

p ∈
(
n− k
n

,
n− k + 1

n

)
. (7)

3. Distributed algorithm and main result

Herein, we propose and analyze the convergence of a two-time scale distributed sample quantile
estimation algorithm in the presence of noise in the communication links. In particular, given the
number of sensors n and any probability p ∈ P , we prove that the algorithm converges to the
sample quantile θp. The non-smoothness of the empirical cummulative distribution function leads
to oscillation around the optimal solution in the process of convergence, which is a difficulty that
must be addressed. A novel analysis technique is introduced to tackle this problem.

As for the G = ([n], E) with n nodes, let Ni denote the set of neighbors of the i-th node,
and dmax = maxi |Ni|. Let L denote the graph Laplacian matrix and λ1, λ2, · · · , λn denote the
eigenvalues of L, which satisfy 0 = λ1 < λ2 < · · · < λn. Let wi(t) denote the local estimate of θp
computed by node i at the t-th iteration, mi(t) denotes the message sent by node i to its neighbors
Ni, and vij(t) be the communication noise on the link between nodes i and j ∈ Ni.
Assumption 1 We assume that the noise sequences of random variables {vij(t)}nt=0 are indepen-
dent and identically distributed (i.i.d.) satisfying the following two properties:

E
[
vij(t)

]
= 0 and E

[
v2ij(t)

]
<∞, (i, j) ∈ E . (8)

Let α(t) and β(t) be two deterministic step-size sequences. We initialize wi(0) = zi, i ∈ [n].
On the t-th round of local communication we perform the following steps:

1. Message computation:

mi(t) = wi(t)− α(t)
(
1
(
wi(t) ≥ zi

)
− p
)
. (9)

2. Local estimate update:

wi(t+ 1) = mi(t)− β(t)
∑
j∈Ni

(
mi(t)− yj(t)

)
, (10)

where yj(t) = mj(t) + vji(t).

Theorem 1 For a given set of samplesD = {zi}ni=1 distributed over n agents connected by a static
undirected network G, and any p ∈ P , there exist step-size sequences α(t) and β(t) satisfying

∞∑
t=0

α(t) =∞,
∞∑
t=0

α2(t) <∞, (11)

∞∑
t=0

β(t) =∞,
∞∑
t=0

β2(t) <∞, (12)

∞∑
t=0

α2(t)

β(t)
<∞, (13)
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Algorithm 1 Distributed two-time scale sample quantile estimation under communication noise
Input: measurements {zi}ni=1, initialization wi(0) = zi, i ∈ [n], two step-size sequences

{α(t)}, {β(t)}, quantile parameter p ∈ (0, 1)
for t = 0, 1, · · · do

Local subgradient step: mi(t) = wi(t)− α(t)
(
1 (wi(t) ≥ zi)− p

)
Send message: mi(t) to neighbors j ∈ Ni
Receive messages: yj(t) = mj(t) + vji(t), j ∈ Ni
Estimate update step: wi(t+ 1) = mi(t)− β(t)

∑
j∈Ni

(
mi(t)− yj(t)

)
end

such that the sequence wi(t) computed acording to Algorithm 1 satisfies wi(t)
a.s.−→ θp, i ∈ [n].

4. Almost sure convergence analysis

Our proof relies on a two-time-scale stochastic approximation algorithm. Define the deterministic
step-size sequences

α(t)
def
=

α0

(t+ 1)τ1
and β(t)

def
=

β0
(t+ 1)τ2

, where β0 ≤
2

λ2 + λn
, α0 ≥ 1, (14)

and τ1, τ2 satisfy 0.5 < τ2 < τ1 ≤ 1 and 2τ1 − τ2 > 1.
Algorithm 1 can be expressed in vector form as

w(t+ 1)
def
=
(
I − β(t)L

)(
w(t)− α(t)g(t)

)
+ β(t)v(t). (15)

where

w(t)
def
=
[
w1(t), · · · , wn(t)

]T
, v(t)

def
=
[ ∑
j∈N1

v1j(t), · · · ,
∑
j∈Nn

vnj(t)
]T
,

gi(t)
def
= 1

(
wi(t) ≥ zi

)
− p, and g(t)

def
=
[
g1(t), · · · , gn(t)

]T
. (16)

Finally, define the following averages

w̄(t)
def
=

1

n

n∑
i=1

wi(t), v̄(t)
def
=

1

n

n∑
i=1

vi(t), and ḡ(t)
def
=

1

n

n∑
i=1

gi(t).

Next, we prove the almost surely convergence of wi(t) to the quantile θp defined in the dynam-
ical system in Eq. (15) in term of `2-norm, where p ∈ P.
Proof Start by rewriting wi(t)

a.s.−→ θp, i ∈ [n] as

lim
t→+∞

‖w(t)− θp1‖ = 0 a.s., (17)

where ‖ · ‖ denotes the `2-norm. From the triangle inequality, we have ‖w(t) − θp1‖ ≤ ‖w(t) −
w̄(t)1‖+ ‖w̄(t)1− θp1‖. We will show Eq. (17) holds by first proving that

lim
t→+∞

‖w(t)− w̄(t)1‖ = 0 a.s., and lim
t→+∞

‖w̄(t)− θp‖ = 0 a.s. (18)
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Part 1: Recall that the Laplacian matrix L satisfies L1 = 0. Multiplying both sides of Eq. (15) by
G

def
= 1

n11T yields
w̄(t+ 1)1 = G

(
w(t)− α(t)g(t)

)
+ β(t)Gv(t). (19)

Let B(s)
def
=
(
I − β(s)L−G

)
. Since B(s)1 = 0, by combining Eqs. (15) and (19) we get

w(t+ 1)− w̄(t+ 1)1 = B(t)
(
w(t)− w̄(t)1− α(t)g(t)

)
+ β(t)(I −G)v(t). (20)

Therefore, after taking the norm and squaring both sides of Eq. (20), we obtain

‖w(t+ 1)− w̄(t+ 1)1‖2 =
∥∥B(t)

(
w(t)− w̄(t)1− α(t)g(t)

)∥∥2 + ‖β(t)(I −G)v(t)‖2

+ 2
〈
B(t)

(
w(t)− w̄(t)1− α(t)g(t)

)
, β(t)(I −G)v(t)

〉
. (21)

Let Ft denote the σ-algebra generated by {v(`)}t−1`=1. Taking the conditional expectation of
Eq. (21) with respect to Ft, we obtain

E[‖w(t+ 1)− w̄(t+ 1)1‖2 | Ft] =
∥∥B(t)

(
w(t)− w̄(t)1− α(t)g(t)

)∥∥2+E
[
‖β(t)(I −G)v(t)‖2

]
,

(22)
where we used the fact that E

[
v(t) | Ft

]
= 0. Let η > 0, using Young’s inequality1, we have

E
[
‖w(t+ 1)− w̄(t+ 1)1‖2 | Ft

]
≤ (1 + η)

∥∥B(t)
(
w(t)− w̄(t)1

)∥∥2
+ (1 + 1/η) ‖α(t)B(t)g(t)‖2 + E

[
‖β(t)(I −G)v(t)‖2

]
. (23)

Using the inequality ‖Ab‖ ≤ ‖A‖‖b‖, we obtain

E
[
‖w(t+ 1)− w̄(t+ 1)1‖2 | Ft

]
≤ (1 + η) ‖B(t)‖2 ‖w(t)− w̄(t)1‖2

+ (1 + 1/η)α2(t) ‖B(t)‖2 ‖g(t)‖2 + β2(t) ‖I −G‖2E
[
‖v(t)‖2

]
. (24)

We can also show that

‖B(s)‖ = max
{
|1− λ2β(s)|, |λnβ(s)− 1|

}
= 1− λ2β(s). (25)

Incorporating Eq. (25) and ‖I −G‖ = 1 into Eq. (24), the following inequality holds for any
η > 0:

E
[
‖w(t+ 1)− w̄(t+ 1)1‖2 | Ft

]
≤ (1 + η)

(
1− λ2β(t)

)2 ‖w(t)− w̄(t)1‖2

+ (1 + 1/η)α2(t)
(
1− λ2β(t)

)2 ‖g(t)‖2 + β2(t)E
[
‖v(t)‖2

]
. (26)

Choosing η = λ2β(t), we get

E
[
‖w(t+ 1)− w̄(t+ 1)1‖2 | Ft

]
≤ ‖w(t)− w̄(t)1‖2 − λ2β(t) ‖w(t)− w̄(t)1‖2

+
α2(t)

λ2β(t)
‖g(t)‖2 + β2(t)E

[
‖v(t)‖2

]
. (27)

1. (a+ b)2 ≤ (1 + η)a2 + (1 + 1/η)b2, η > 0.
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The subgradients of the local functions for the distributed quantile computation problem satisfy
‖gi(t)‖ < 1. Thus, we have ‖g(t)‖ ≤ √n. Together with Eqs. (8), (12) and (13), we obtain

E

[ ∞∑
t=1

(
α2(t)

λ2β(t)
‖g(t)‖2 + β2(t) ‖v(t)‖2

)]
<∞. (28)

Therefore, from Lemma 2 (Robbins-Siegmund Theorem (Robbins and Siegmund, 1971)), we con-
clude that ‖w(t)− w̄(t)1‖ converges almost surely to zero, and

∑∞
t=1 β(t) ‖w(t)− w̄(t)1‖2 <∞.

If τ2 ≤ 1, the sequence β(t) is not summable. Therefore,

lim
t→+∞

‖(w(t)− w̄(t)1‖ = 0 a.s. (29)

Part 2: Multiplying both sides of Eq. (15) by 1
n1T and subtracting θp, we have

w̄(t+ 1)− θp = w̄(t)− θp − α(t)ḡ(t) + β(t)v̄(t). (30)

Squaring both sides of Eq. (30) yields∣∣w̄(t+1)−θp
∣∣2 =

∣∣w̄(t)−θp−α(t)ḡ(t)
∣∣2+β2(t)

∣∣v̄(t)
∣∣2+2β(t)

[
w̄(t)−θp−α(t)ḡ(t)

]
v̄(t). (31)

Taking conditional expectation with respect to Ft and using the fact that E
[
v̄(t) | Ft

]
= 0, yields

E
[∣∣w̄(t+ 1)− θp

∣∣2 | Ft] =
∣∣w̄(t)− θp − α(t)ḡ(t)

∣∣2 + β2(t)E
[
v̄2(t)

]
. (32)

Defining ϕ(t)
def
=
∣∣w̄(t)− θp − α(t)ḡ(t)

∣∣2, we have

ϕ(t) =
∣∣w̄(t)− θp

∣∣2 + α2(t)
∣∣ḡ(t)

∣∣2 − 2α(t)
(
w̄(t)− θp

)
ḡ(t). (33)

For each gi(t), the following chain of inequalities holds:(
w̄(t)− θp

)
gi(t) =

(
wi(t)− θp

)
gi(t) +

(
w̄(t)− wi(t)

)
gi(t) (34)

(a)

≥ fi
(
wi(t)

)
− fi(θp) +

(
w̄(t)− wi(t)

)
gi(t) (35)

(b)
= fi

(
wi(t)

)
− fi

(
w̄(t)

)
+ fi

(
w̄(t)

)
− fi(θp) +

(
w̄(t)− wi(t)

)
gi(t) (36)

(c)

≥ −2
∣∣w̄(t)− wi(t)

∣∣+ fi
(
w̄(t)

)
− fi(θp), (37)

where (a) follows the convexity of fi(x), (b) follows from adding and subtracting fi
(
w̄(t)

)
, and

(c) follows the 1-Lipschitz condition that |gi(t)| < 1 and
∣∣fi(x)− fi(y)

∣∣ ≤ |x− y|. Therefore,

(
w̄(t)−θp

)
ḡ(t) =

1

n

n∑
i=1

(
w̄(t)−θp

)
gi(t) ≥ −

2

n

n∑
i=1

∣∣w̄(t)−wi(t)
∣∣+ 1

n

(
f
(
w̄(t)

)
−f(θp)

)
, (38)

and

ϕ(t) ≤
∣∣w̄(t)−θp

∣∣2− 2α(t)

n

(
f
(
w̄(t)

)
−f(θp)

)
+

4α(t)

n

n∑
i=1

∣∣w̄(t)−wi(t)
∣∣+α2(t)

∣∣ḡ(t)
∣∣2. (39)
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Incorporating Eq. (39) into Eq. (32), we get

E
[∣∣w̄(t+ 1)− θp

∣∣2 ∣∣ Ft] ≤ ∣∣w̄(t)− θp
∣∣2 − 2α(t)

n

(
f(w̄(t)

)
− f

(
θp)
)

+
4α(t)

n

n∑
i=1

∣∣w̄(t)− wi(t)
∣∣+ α2(t)

∣∣ḡ(t)
∣∣2 + β2(t)E

[
v̄2(t)

]
. (40)

Since θp is the minimizer of f(ξ), we have f
(
w̄(t)

)
− f(θp) ≥ 0. Therefore,

E

[ ∞∑
t=1

α2(t)
∣∣ḡ(t)

∣∣2] <∞ and E

[ ∞∑
t=1

β2(t)
∣∣v̄(t)

∣∣2] <∞. (41)

To apply Lemma 2, we must show that

E

[ ∞∑
t=0

α(t+ 1)
∣∣w̄(t+ 1)− wi(t+ 1)

∣∣] <∞. (42)

Since
∣∣w̄(s)− wi(s)

∣∣ ≤ ∥∥w(s)− w̄(s)1
∥∥, using Eq. (20) the following inequalities hold

∞∑
t=0

α(t+ 1)
∣∣w̄(t+ 1)− wi(t+ 1)

∣∣ ≤ ∞∑
t=0

α(t+ 1)
∥∥w(t+ 1)− w̄(t+ 1)1

∥∥
≤
∞∑
t=0

α(t+ 1)
t∏

s=0

∥∥B(s)
∥∥∥∥w(0)

∥∥+
∞∑
t=0

α(t+ 1)
t∑
l=0

α(l)
t∏
s=l

∥∥B(s)
∥∥∥∥g(l)

∥∥
+

∞∑
t=0

α(t+ 1)β(t)‖I −G‖
∥∥v(t)

∥∥+

∞∑
t=0

α(t+ 1)

t∑
l=0

β(l)

t∏
s=l+1

∥∥B(s)
∥∥‖I −G‖∥∥v(l)

∥∥. (43)

By using Lemma 3 and ‖B(s)‖ = 1− β(s)λ2 < exp
(
− β(s)λ2

)
, we get

∞∑
t=0

α(t+ 1)

t∏
s=0

∥∥B(s)
∥∥ <∞, ∞∑

t=0

α(t+ 1)

t∑
l=0

α(l)

t∏
s=l

∥∥B(s)
∥∥ <∞, (44)

∞∑
t=0

α(t+ 1)
t∑
l=0

β(l)
t∏

s=l+1

∥∥B(s)
∥∥ <∞. (45)

From Assumption 1, using Jensen’s inequality we get E
[
‖v(l)‖

]
<
√

E
[
‖v(l)‖2

]
< ∞. The

step-size sequences α(t) and β(t) satisfy
∑∞

t=0 α(t+ 1)β(t) <∞. Therefore,

E

[ ∞∑
t=1

α(t)
∣∣w̄(t)− wi(t)

∣∣] <∞. (46)

Thus, Lemma 2 implies that
∣∣w̄(t)− θp

∣∣ converges almost surely and

∞∑
t=1

α(t)
(
f
(
w̄(t)

)
− f(θp)

)
<∞. (47)
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Figure 4: Aggregate score functions (top left) and noiseless distributed sample quantile estimation for dif-
ferent k, k = 1, 3, 5, 8, 10 (top right). Convergence of distributed sample quantile inference under different
communication noise with σ2 = 1, 10, 20 and k = 1 (bottom left). Number of agents with measurements
greater than their corresponding thresholds as a function of iterations, for k = 1, 3, 5 and σ2 = 10 (bottom
right).

Since α(t) is not summable, we have lim inft→∞ f
(
w̄(t)

)
= f(θp) = 0 almost surely. Thus,

there exists a subsequence
{
w̄(tj)

}
such that

lim
j→∞

f
(
w̄(tj)

)
= lim inf

t→∞
f
(
w̄(t)

)
= f(θp) = 0 a.s. (48)

From (Koenker, 2005, Section 1.3, pp. 7–9), since np is not an integer, θp is the unique minimum
of Eq. (3). Furthermore, since f(ξ) is continuous, we have limj→∞

∣∣w̄(tj)− θp
∣∣ = 0 almost surely.

Together with the fact that |w̄(t)− θp| converges almost surely, we have

lim
t→∞

∣∣w̄(t)− θp
∣∣ = 0 a.s. (49)

5. Numerical results

In this section, we provide some numerical results that display the convergence of the distributed
sample quantile inference algorithm and its application to top-k data selection. Consider a system
with n = 10 agents interconnected by the graph in Fig. 1. The data samples D = (45, 8, 22,
91, 15, 82, 53, 7, 44, 99) were drawn from an i.i.d. uniform distribution on {1, · · · , 100}, whose
empirical CDF is shown in Fig. 2 (left). The communication noises are zero mean i.i.d. Gaussian
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random variables with variance σ2. The parameters of two time-scale sequences are set to α0 = 80,
β0 = 2/(λ2 + λn), τ1 = 1 and τ2 = 0.505.

The panel shown in Fig. 4 displays several aspects that support our theoretical analysis. First,
Fig. 4 (top left) shows the aggregate score functions for different values of k, and we can see how
the curvature varies with the value of k leading to some values of θp being faster to compute than
others. The convergence of distributed sample quantile inference with noiseless links for different k
is shown in Fig. 4 (top right), which shows that the asymptotic convergence rate (slope of the error
curves) are approximately constant. However, the offset among curves depends on k, the dataset,
and the graph connectivity and is difficult to characterize.

The convergence of distributed sample quantile estimation and top-k selection under noisy links
is shown in Fig. 4 (bottom left). The variance of the noise is set to be σ2 = 1, 10, 20, and k = 1.
We have generated 100 sample paths for each value of σ2, and the figure shows the asymptotic
convergence of the average of the sample paths. Finally, Fig. 4 (bottom right) shows the convergence
of the number of agent with data samples greater than their corresponding thresholds, for k = 1, 3, 5
with σ2 = 10. The threshold at each agent is set to be τi(t) = wi(t) − 0.5. This correction needs
to be done to avoid oscillation of the agent holding the k-th largest data sample. When the number
of iterations is larger than 55, 61 and 250, the system can always find the top-5, top-3, top-1 data
points, respectively. Therefore, even though the convergence time in the simulations is in the order
of 104 or 105, the convergence to the right decision whether an agent is holding one of the top-k
data points happen within a much smaller number of iterations, which is a desirable feature2 .

6. Conclusion

In this work, we have studied networked top-k data selection by using distributed sample quantile
inference over noisy channels. We have provided the analysis for the almost sure convergence of
a two-time-scale distributed subgradient method. Numerical results have demonstrated the conver-
gence of the distributed algorithm and the corresponding data selection. There are two interesting
directions for future work. One is to analyze the convergence rate for the distributed sample quantile
estimation. The other is to provide new algorithms to speed up the convergence.

7. Auxiliary Lemmas

Lemma 2 (Theorem 1, Robbins and Siegmund (1971)) Let
{
v(t),Ft

}
,
{
d(t),Ft

}
, and

{
a(t),Ft

}
be three nonnegative adapted sequences. If

E
[
v(t+ 1) | Ft

]
≤ v(t) + a(t)− d(t) and E

[ ∞∑
t=1

a(t)

]
<∞ (50)

then
∑∞

t=1 d(t) <∞ almost surely, and v(t) converges almost surely.

Lemma 3 (Lemma 4.2, Yi and Li (2021)) Suppose that α(t) and β(t) satisfy Eqs. (11) to (13).
Then for any c > 0, we have

∞∑
t=0

α(t+ 1) exp

(
−c

t∑
s=0

β(s)

)
<∞, and

∞∑
t=0

α(t+ 1)

t∑
l=0

α(l) exp

(
−c

t∑
s=l

β(s)

)
<∞.

(51)

2. All the code used to obtain the numerical results contained herein can be found at https://github.com/
mullervasconcelos/L4DC23.git
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