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Abstract
Safety is one of the biggest concerns to applying reinforcement learning (RL) to the physical world.
In its core part, it is challenging to ensure RL agents persistently satisfy a hard state constraint with-
out white-box or black-box dynamics models. This paper presents an integrated model learning and
safe control framework to safeguard any RL agent, where the environment dynamics are learned
as Gaussian processes. The proposed theory provides (i) a novel method to construct an offline
dataset for model learning that best achieves safety requirements; (ii) a design rule to construct the
safety index to ensure the existence of safe control under control limits; (iii) a probablistic safety
guarantee (i.e. probabilistic forward invariance) when the model is learned using the aforemen-
tioned dataset. Simulation results show that our framework achieves almost zero safety violation
on various continuous control tasks.
Keywords: Safe control, Gaussian process, Dynamics learning

1. Introduction

While reinforcement learning (RL) has achieved impressive results in games like Atari (Zhao et al.,
2019), Go (Silver et al., 2017) and Starcraft (Vinyals et al., 2019), the lack of safety guarantee limits
the application of RL algorithms on real-world physical systems such as robotics (Wei et al., 2022).
In its core part, it is critical to ensure that RL agents persistently satisfy a hard state constraint
defined by a safe set (e.g., a set of non-colliding states) in many robotic applications (Zhao et al.,
2021, 2020a,b). Though various constrained RL algorithms (He et al., 2023b; Achiam et al., 2017;
Wachi et al., 2018; Yang et al., 2021; Zhao et al., 2023) have been introduced, the trial-and-error
mechanism of these methods makes it hard to avoid safety violations during policy learning.

On the other hand, when the dynamics model of the system is accessible, energy-function-
based safe control methods can achieve the safety guarantee, i.e., persistently satisfying the hard
state constraint. These methods (Noren et al., 2021; Zhao et al., 2022b; Liu and Tomizuka, 2014;
Gracia et al., 2013; He et al., 2023a) first synthesize an energy function such that the safe states
have low energy, and then design a control law to satisfy the safe action constraints, i.e., to dissipate
energy. Then these methods ensure forward invariance inside the safe set . However, their limitation
is that they exploit either white-box dynamics models (e.g., analytic form) (Khatib, 1986; Ames
et al., 2014; Liu and Tomizuka, 2014; Gracia et al., 2013) or black-box dynamics models (e.g.,
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Figure 1: The flow chart that illustrate the offline state of UAISSA. We first select a proper state space discretization step
size, construct the offline dynamics learning dataset for GP and design parameters of the safety index.

digital twin simulators) (Zhao et al., 2021), while these models are not easy to build in complex
environments. Other related works are summarized in Appendix A.

Practically, compared to dynamics models (i.e., a full mapping from the current state and control
to the next state), it is easier to obtain samples of the dynamic transitions in real-world applications
(Huang et al., 2018; Caesar et al., 2020; Cheng et al., 2019b; Sun et al., 2023). This paper investi-
gates approaches to utilize these transition samples to achieve safety guarantees under the energy-
function-based safe control framework, while relaxing the requirements of white-box or black-box
dynamics models. In our methods, we leverage Gaussian Process (GP) to learn a statistical dy-
namics model due to (i) GP’s reliable estimate of uncertainty (Williams and Rasmussen, 2006); (ii)
its well-established theory on uniform error bounds (Srinivas et al., 2009, 2012; Chowdhury and
Gopalan, 2017; Kanagawa et al., 2018; Lederer et al., 2019). Instead of performing online model
learning using online data, our dynamics model is learned based on an offline constructed dataset.
When the dataset is constructed offline, we have the full control over the data distribution, which
could result in (i) reliable convergence in model learning and (ii) good safety guarantees.

The main contribution of this paper is a theory to probabilistically safeguard robot policy learn-
ing using energy-function-based safe control with a GP dynamics model learned on an offline
dataset. The overall pipeline of our method is shown in Figure 1. To achieve our goal of safe-
guarding RL agents with GP dynamics model, we first show how to construct the dataset for model
learning and how to design the associated energy function (called safety index) so that there always
exists a feasible safe control under control limits. Secondly, we show how to design a safeguard for
arbitrary RL agents to guarantee forward invariance during policy learning. The method is evalu-
ated on various challenging continuous control problems where the RL agents achieve almost zero
constraint violation during policy learning. Additional results and discussions can be found in the
appendix of the arxiv version https://arxiv.org/abs/2210.01041.

2. Problem Background

2.1. Notations

Dynamics Denote xt 2 X ⇢ Rnx as the robot state at time step t; ut 2 U ⇢ Rnu as the control
input to the robot at time step t, and the control space U is bounded. And denote W := X ⇥ U ,
which is assumed to be compact. The system dynamics are defined as:

xt+1 = f(xt, ut), (1)
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where f : W ! X is a function that maps the current robot state and control to the robot state in
the next time step, and f(·) is Lf Lipschitz continuous with respect to the 1-norm. For simplicity,
this paper considers deterministic dynamics (but is unknown).

Safety Specification The safety specification requires that the system state should be constrained
in a closed subset in the state space, called the safe set XS . The safe set can be represented by the
zero-sublevel set of a continuous and piecewise smooth function �0 : Rnx ! R, i.e., XS = {x |

�0(x)  0}. XS and �0 are directly specified by users.

2.2. Preliminary

Gaussian Process A Gaussian process (GP) (Williams and Rasmussen, 2006) is a nonparamet-
ric regression method specified by its mean µg(z) = E[g(z)] and covariance (kernel) functions
k(z, z0) = E[(g(z)� µ(z))(g(z0)� µ(z0))]. Given N finite measurements
yN = [y(z1), y(z2), · · · , y(zN )]T of the unknown function g : RD

! R subject to independent
Gaussian noise v ⇠ N (0,�2

noise), the posterior mean µ(z⇤) and variance �2(z⇤) are calculated as:

µ(z⇤) = kT⇤ (z⇤)(K + �2
noiseIN )�1yN (2)

�2(z⇤) = k(z⇤, z⇤)� kT⇤ (z⇤)(K + �2
noiseIN )�1k⇤(z⇤), (3)

where Ki,j = k(zi, zj) and k⇤(z⇤) = [k(z1, z⇤), k(z2, z⇤), · · · , k(zN , z⇤)]T . In the following dis-
cussions, we assume observation is noise-free, i.e. �noise = 0. Note that noise reduction methods can
be applied to eliminate �noise in practice (Kostelich and Schreiber, 1993). For most commonly used
kernel functions, GP can approximate any continuous function on any compact subset of Z (Srinivas
et al., 2012). In this paper, the dynamics are modeled using GP with the following definition.

Definition 1 (GP Dynamics Model) The dynamics model of f in (1) is represented as a zero mean
Gaussian process with a continuous covariance kernel k(·, ·) with Lipschitz constant Lk on the
compact set W , where Lk can be caluclated analytically for commonly-used kernels (Lederer et al.,
2019). The posterior mean function and covariance matrix function of the GP model are denoted
as µf (·) and ⌃f (·), respectively.

Safety Index To ensure system safety, all visited states should be inside XS . However, XS may
contain states that will inevitably go to the unsafe set no matter what control inputs we choose.
Hence, we need to assign high energy values to those inevitably unsafe states, and ensure forward
invariance in a subset of the safe set XS . Safe Set Algorithm (SSA) (Liu and Tomizuka, 2014)
synthesizes the energy function as a continuous, piece-wise smooth scalar function � : Rnx ! R,
named, safety index. And we denote its 0-sublevel set as X

D
S := {x|�(x)  0}. The general

form of the safety index was proposed as � = �⇤
0 + k1�̇0 + · · · + kn�

(n)
0 where (i) the roots of

1 + k1s + . . . + knsn = 0 are all negative real (to ensure zero-overshooting of the original safety
constraints); (ii) the relative degree from �(n)

0 to u is one (to avoid singularity); and (iii) �⇤
0 defines

the same zero sublevel set as �0 (to nonlinear shape the gradient of � at the boundary of the safe
set). It is shown in (Liu and Tomizuka, 2014) that choosing a control that decreases � whenever �
is greater than or equal to 0 can ensure forward invariance inside XS \ X

D
S .

3



UNCERTAINTY-AWARE IMPLICIT SAFE SET ALGORITHM

2.3. Problem Formulation

The core problem of this paper is to safeguard a nominal controller (i.e., an RL agent) such that all
visited states are inside XS . In this paper, we are specifically interested in degree two systems (i.e.,
the relative degree from �̇0 to u is one), and the safety specification is defined as �0 = dmin � d
where d denotes the safety status of the system, and the system becomes more unsafe when d
decreases. For example, for collision avoidance, d can be designed to measure the relative distance
between the robot and obstacles, which needs to be greater than some threshold dmin. Following the
rules in (Liu and Tomizuka, 2014), we parameterize the safety index as � = �+dnmin�dn�kḋ, and
�, n, k > 0 are tunable parameters of the safety index. It is easy to verify that this design satisfies
the three requirements discussed above.

The nominal control is an RL controller which aims to maximize cumulative discounted rewards
in an infinite-horizon deterministic Markov decision process (MDP). An MDP is specified by a tuple
(X ,U , �, r, f), where r : X ⇥ U ! R is the reward function, 0  � < 1 is the discount factor,
and f is the deterministic system dynamics defined in (1), and we can access data samples of f .
We then define the set of safe control as U

D
S (x) := {u 2 U | �(f(x, u))  max{�(x) � ⌘, 0}},

where ⌘ is a positive constant. Hence, the nominal controller can be safeguarded by projecting the
nominal control urt to U

D
S (x) by solving the following optimization:

min
ut2U

kut � urtk
2

s.t. �(f(xt, ut))  max{�(xt)� ⌘, 0}.
(4)

Since f is unknown, we need to first learn a statistical model of f and then solve (4). The well-
established theories on uniform error bounds (Srinivas et al., 2009, 2012; Chowdhury and Gopalan,
2017; Kanagawa et al., 2018; Lederer et al., 2019) for GP allows us to a build a reliable statistical
model for a given dataset.

Lemma 2 (Well-Calibrated Model) For a dataset and � 2 (0, 1), there exists �f (�) that we can
learn a GP model

�
µf (x, u),�f (x, u)

 
that satisfies: 8x 2 X , u 2 U , P

⇣
||f(x, u)�µf (x, u)||1 

�f�f (x, u)
⌘
� 1� �, where �f means �f (�) for simplicity and �f (x, u) = Tr(⌃

1
2
f (x, u)).

This lemma ensures that the confidence intervals of GP prediction cover the true dynamics func-
tion with high probability given an appropriate constant �f . The expressions of �f are discussed
in (Srinivas et al., 2009, 2012; Chowdhury and Gopalan, 2017; Kanagawa et al., 2018; Lederer et al.,
2019).

Challenges The challenges for solving (4) can be divided into two parts: (1) offline synthesis
stage: how to generate a data set for model learning and safety index synthesis such that: (a) there
is always a solution for (4) with the learnt dynamics under control limit; (b) safety is preserved under
model mismatch. (2) online computation stage: how to efficiently solve (4) with learnt dynamics
to find safe controls.

3. Offline Safety Index Synthesis

In this section, we introduce the theoretical results to tackle the aforementioned offline synthesis
stage challenges. We first show that the deterministic constraint (4) can be verified via introducing

4
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an upper bound of safety index. Next, we introduce a theory that verifies the feasibility of the prob-
abilistic constraint for all possible states (which is uncountably many) by verifying the feasibility of
a similar problem for finitely many states (Proposition 5). Lastly, we discuss the criteria of dataset
construction for model learning and the associated safety index design rule which ensure nonempty
set of safe control for all possible system states (Theorem 7).

3.1. Preserving Safety with Learnt Model

As mentioned in Section 2.3, our ultimate goal is to solve (4), whereas it is intractable to directly
solve (4) since f is unknown. On the other hand, we can learn a reliable statistical model of f via
GP, i.e.

�
µf (x, u),�f (x, u),�f

 
as stated in Lemma 2. Hence, as long as we can find a probabilistic

upper bound of safety index �(f(x, u)), denoted as Uf (x, u) such that Uf (x, u) � �(f(x, u)), the
deterministic condition of (4) can be verified through a stricter condition, i.e.

Uf (x, u) < max(�(x)� ⌘, 0). (5)

In Lemma 10, we derive the probabilistic upper bound of safety index as

Uf (x, u) := �(µf (x, u)) + L��f�f (x, u), (6)

where L� is the Lipschitz constant of �(·) with respect to 1-norm. Lemma 10 shows that �(f(x, u))
is smaller than Uf (x, u) with probability at least (1��). The proof of this probabilistic upper bound
is given in Appendix C.1.

Nonempty Set of Safe Control By introducing Uf (x, u), we have addressed the challenge (1.b).
In the following two subsections, we will address challenge (1.a) by ensuring the existence of
nonempty set of safe control for all possible states under control limit when solving (5), i.e.

8x 2 X , 9u 2 U , s.t. Uf (x, u) < max(�(x)� ⌘, 0). (7)

3.2. Infinite to Finite Conditions

Notice that verifying condition (7) on the continuous state space is still intractable. Therefore, we
consider a discretization of the state space defined as follows.

Definition 3 (Discretization) A ⌧ -discretization H⌧ of a set H is defined as H⌧ := {h1, h2, . . .}
such that 8h 2 H, 9hi 2 H⌧ s.t. ||hi � h||1  ⌧ .

Definition 4 (Data) A dataset on a state space ⌧ -discretization X⌧ is a collection of transition
samples defined as D⌧ := {

�
xi, ui, f(xi, ui)

�
}
|X⌧ |
i=1 where xi 2 X⌧ .

Given this discretization, if we ensure the existence of safe control for states in X⌧ , together with the
Lipschitz continuity and the bound on posterior variance of statistical models, then we can ensure
the existence of safe control on the continuous state space X .

Proposition 5 (Equivalence in Feasibility Conditions) With the GP defined in Definition 1, the
state-space ⌧x-discretization X⌧x defined in Definition 3 and the dataset D⌧x defined in Definition
4, if the following condition holds:

8(xi, ui),Uf (xi, ui) <max{�(xi)� ⌘, 0}� L�Lf⌧x � L�⌧x � 2L��f �̃f , (8)
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where

�̃f = nx

r
2Lk⌧x + 2|X⌧x |Lk⌧xkK�1k max

w,w02W
k(w,w0),

then it holds with probability 1� � that

8x 2 X , 9u 2 U , s.t. Uf (x, u) < max(�(x)� ⌘, 0).

The proof of Proposition 5 is given in Appendix C.6. Proposition 5 states that, in order to provide
guarantee on the nonempty set of safe control in the whole continuous state space X , it is sufficient
to check a stricter condition (i.e., (8)) of nonempty set of safe control on the discretized state set
X⌧x . Note that the additional bounds on discretized states X⌧x (i.e. L�Lf⌧x, L�⌧x, 2L��f �̃f ) of (8)
become zero as the discretization constant ⌧ goes to zero.

3.3. Dynamics Learning and Safety Index Design Theory

Synthesize Safe Index So far, we have shown that (8) implies (7) in a probabilistic way. There-
fore, a theory that quantifies how to parameterize � to make (8) hold is needed. To begin with, we
first need to ensure there exists such a safety index to make (8) hold. Hence, an assumption is made:

Assumption 1 (Safe Control) The state space is bounded, and the infimum of the supremum of
�ḋ can achieve positive, i.e., infx supu�ḋ(x, u) > 0.

Here �ḋ denotes the change of ḋ at one time step. The necessity of Assumption 1 is summarized
in Appendix C.2. Essentially, Assumption 1 enables a degree two system to dissipate energy (i.e.,
�̈ < 0) at all states. Subsequently, the safety index design rule is summarized as follows:

Theorem 6 (Feasibility of Safety Index Design) Denote d(·) and ḋ(·) as the mappings from x to
d and ḋ with Lipschitz constant Ldx and Lḋx

with respect to 1-norm. Under Assumption 1, if we (1)
select a state-space ⌧x-discretization X⌧x with step size such that

⌧x  min

(
1,


infx supu �ḋ(x,u)

2(Ldx+Lḋx
)
�
1+Lf+2�fnx

p
2Lk

p
1+|X⌧x |kK�1kmaxw,w02W k(w,w0)

�
�2)

(9)

(2) construct the corresponding dataset {
�
xi, uGP,i, f(xi, uGP,i)

�
}
|X⌧x |
i=1 on X⌧x by selecting uGP,i

such that for any xi 2 X⌧x

ḋ(f(xi, uGP,i))| {z }
ḋGP,i

� ḋ(xi)| {z }
ḋi

>
infx supu�ḋ(x, u)

2
, (10)

(3) choose the safety index parameters such that
8
><

>:

� = 0,

n = 1,

k > maxxi2X⌧x

�
max

�
1,⌥i

  
(11)

6
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where we denote dGP,i = d(f(xi, uGP,i)), di = d(xi), and

⌥i =
⌘ + di � dGP,i

ḋGP,i � ḋi � (Ldx + Lḋx
)
�
⌧x � Lf⌧x � 2�fnx�̃f

�

�̃f = nx

r
2Lk⌧x + 2|X⌧x |Lk⌧xkK�1k max

w,w02W
k(w,w0),

then there always exists a safe control for any discretized state

8xi 2 X⌧ , 9u 2 U , s.t. (12)
Uf (f(xi, u)) < max{�(xi)� ⌘, 0}� L�Lf⌧x � L�⌧x � 2L��f �̃f .

The proof for Theorem 6 is summarized in Appendix C.9 . Theorem 6 states that, firstly, we
select a proper discretization gap of state space such that it is small enough according to (9). Sec-
ondly, we construct an offline dataset such that the selected control for each discretized state can
increase ḋ by a certain volume according to (10). Lastly, by performing GP regression on the con-
structed dataset, the safety index designed according to (11) ensures the existence of probabilistic
safe control for all discretized states to satisfy (12). Note that (12) is equivalent to (8), the following
theorem is thus a direct consequence of Proposition 5 and Theorem 6.

Theorem 7 Under the same assumptions of Theorem 6, by selecting state discretization step size
according to (9), constructing Gaussian process dataset according to (10), and defining safety index
according to (11), then it holds with probability 1� � that

8x 2 X , 9u, s.t. (13)
�(f(x, u))  Uf (x, u) < max(�(x)� ⌘, 0).

Remark 8 It is worth noting that the system property infx supu�ḋ(x, u) > 0 is crucial for estab-
lishing the nonempty set of safe control theorem as indicated in (9) and (10). In practice, a lower
bound of infx supu�ḋ(x, u) can be obtained via sampling the state space and control space, which
is summarized in Appendix C.10.

4. Uncertainty-Aware Implicit Safe Set Algorithm

In the previous section, we established theoretical results for safety index design to ensure a nonempty
set of safe control with learned dynamics models. However, due to the non-control-affine nature
of the GP dynamics model and the limitations of conventional QP-based projection methods, we
employ a multi-directional line search approach to solve the black-box optimization problem in
(4). In this section, we present a practical algorithm called Uncertainty-Aware Implicit Safe Set
Algorithm (UAISSA) that builds upon the theoretical foundations discussed earlier and utilizes a
sample-efficient black-box constrained optimization algorithm (Zhao et al., 2021). The details of
UAISSA can be found in Algorithm 1 (see Appendix B). To have a better understanding on the
Offline Stage of UAISSA, we summarize the procedure for constructing a valid safety index and the
associated GP dynamics model in Figure 1. Firstly, we randomly select a step size ⌧ , and perform
⌧ -discretization of the state space. For each discretized state xi, we use sampling (grid sampling
or random sampling) to find a control uGP,i satisfying (10), which results in a dynamics learning

7
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dataset {
�
xi, uGP,i, f(xi, uGP,i)

�
}
|X⌧x |
i=1 . Next, we learn a GP dynamics model from the constructed

dataset. Together with the Lipschitz constants and well-calibrated GP dynamics model, we can then
evaluate (9). If (9) does not hold, we will further shrink the discretization step size by half, and
repeat the aforementioned procedures. If (9) holds, we will evaluate ⌥i for each xi from the dataset,
and select the parameters for the safety index �(x) according to (11).

With the guarantee of nonempty set of safe control provided by Theorem 7, and the fact that
ISSA can always find a suboptimal solution of (4) with finite iterations if the set of safe control is
non-empty [Proposition 2, (Zhao et al., 2021)], the following theorem is thus a direct consequence
of Theorem 1 from (Zhao et al., 2021).

Theorem 9 (Forward Invariance) If the control system satisfies Assumption 1 and with the GP
model and the safety index as specified in Theorem 6, then if �(xt)  0, Algorithm 1 guarantees
�(xt+1)  0 with probability 1� �.

5. Experiment

We evaluate UAISSA in two experiments: (i) Robot arm, where we apply Theorem 7 to ensure
nonempty set of safe control for an unknown robotics manipulator system ; (ii) Safety Gym, where
we apply UAISSA to safeguard unknown complex systems.

5.1. Robot Arm

Figure 2: 2DOFs robot
manipulator.

We verify the correctness of our approach on a planar robotics manipulator
with 2 degrees of freedom (2DOFs) (Zhao et al., 2022a). The robot has a
four dimensional state space: x = [✓1, ✓2, ✓̇1, ✓̇2], where ✓i is the i-th joint
angle in the world frame. We consider limited state space, i.e., ✓1 2 [0,⇡],
✓2 2 [0, 2⇡], 8i = 1, 2, ✓̇i 2 [�0.1, 0.1]. The system inputs are accelerations
of the two joints, i.e. [✓̈1, ✓̈2]. The system is simulated with dt = 1ms.
The system is shown in Figure 2, where the robot is randomly exploring the
environment and we need to safeguard the robot from colliding with the wall.
The link length of the robot is 1 meter. The wall is 1 meter away from the
robot base.

5.1.1. SAFETY INDEX DESIGN RUNNING EXAMPLE

To apply Theorem 7 to obtain the safety index parameters, we consider Lf , L�ḋ, Ldx , Lḋx
to be

known. Firstly, we need to find the proper state space disretization step size ⌧x. We start with ⌧x =
0.5, and construct a learning dataset where a safe control is sampled for each discretized state, such
that (10) holds. dynamics data sample include input entry and output entry, where the input entry is
a stack of state and sampled control ([✓1, ✓2, ✓̇1, ✓̇2, ✓̈1, ✓̈2]), and output entry is the state at next time
step. An example for data sample is: {[0.1, 0.5,�0.1,�0.1, 0.82, 0.36], [0.1, 0.49,�0.09,�0.09]}.

Then, we perform Gaussian Process to learn a well-calibrated dynamics model, where a uniform
error bound theory (Lemma 16 in Appendix C.7) with � = 1% (i.e., 99% confidence interval) is
applied to select �f . With the learnt GP model, we check if (9) holds. If not, we further decrease ⌧x
by multiplying ⌧x with 0.99 and repeat the process.

Finally, we find a discretization step of ⌧x = 0.174, resulting a dataset with 2516 samples.
By setting ⌘ = 0.05, the safety index parameterization is obtained as: � = 0, n = 1, k = 2.54

8
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Time steps

Figure 3: Evolutions of safety index and its upper bound with UAISSA over two runs.

according to (11). Intuitively, k reflects UAISSA reaction sensitivity to unsafe situations, e.g. larger
k indicates safe control is more likely to be generated when the robot moves toward the obstacle.

5.1.2. ROBOT ARM RESULTS

This section numerically verifies that the synthesized safety index facilitates probabilistic forward
invariance, by showing that 1) the upper bound Uf of the safety index is a true upper bound; 2)
there is always a feasible control that satisfies the constraint in (4).

We simulate the system for 2000 time steps with the safety index parameters designed above,
and the evolution of Uf (x, u) (orange curves) and �(f(x, u)) (blue curves) is summarized in
Figure 3. Overall, by ensuring Uf (x, u) < max(�(x) � ⌘, 0), UAISSA ensures �(f(x, u)) <
max(�(x)�⌘, 0) along the simulations. As shown in Figure 4, with the safety index synthesized us-
ing (11), the nonempty set of safe control for all possible states are guaranteed.

K=0.1 K=2.54

Figure 4: Distribution of states with infeasible
safe controls when we optimize the safety index.
Each grid in the graph corresponds to a position
of joint angles (✓1, ✓2). We sample 100 states at
each position (with different velocities of joint
angles). The color denotes how many states at
this position has an empty set of safe control.
The left shows that a randomly selected safety
index (k = 0.1) results in empty set of safe con-
trol for many system states. The right shows that
our synthesized safety index (k = 2.54) ensures
that we can always find a feasible safe control.

Furthermore, We conduct an ablation study on different
discretization gap ⌧ . The results are summarized in Fig-
ure 7 (Appendix D.5), where the gap between the upper
bound of the safety index and the safety index decreases
with smaller discretization gaps. This result validates our
theoretical results as smaller discretization gaps result in
smaller error bounds of the safety index. In practice, we
believe a smaller discretization gap is beneficial to the
performance of robot controllers since more accurate esti-
mates of Uf (x, u) alleviate the performance drop caused
by conservative safeguards. However, note that smaller
discretization gaps also result in large datasets which may
be computationally expensive for GP. It is a trade-off be-
tween lower computational cost and better performance.

5.2. Safety Gym

Scale to High-dimensional Environments One drawback of GP is that it scales very badly with
the number of observations. To scale UAISSA to hign-dimensional environments, we propose to
use deep Gaussian Process (Gal and Ghahramani, 2016) as an approximation of GP for dynamics
learning. Note that the scalability comes with the price of losing theoretical safety guarantee because
the uniform error bound of GP no longer holds when we use deep GP. Nevertheless, this section
shows that UAISSA empirically achieves near zero-violation safety performance with deep GP.
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Goal-Hazard-0.15 Push-Hazard-0.15 Goal-Hazard-0.30 Push-Hazard-0.30 

Figure 5: Cost rates and rewards of UAISSA and baselines on Safety Gym benchmarks with different tasks and sizes of
the hazard over five random seeds.

Environment Setting To test how UAISSA safeguards RL policies in high-dimensional com-
plex environments, we conduct experiments on the widely adopted benchmark of safe RL, Safety
Gym (Ray et al., 2019). We evaluate UAISSA on two different control tasks (i.e., Goal-Hazard and
Push-Hazard), where the environment settings are introduced in Appendix D.
Baseline Selection We choose PPO (Schulman et al., 2017) as the nomial RL algorithm and add
UAISSA as a safeguard (namely PPO-UAISSA) on top of the nominal RL policy. We compare
UAISSA with (i) PPO (Schulman et al., 2017) (stardard RL algorithm); (ii) PPO-Lagrangian (Chow
et al., 2017) and CPO (Achiam et al., 2017) (safe RL algorithms); (iii) PPO-SL (Dalal et al., 2018)
(RL with a different safeguard).
Policy Settings Detailed parameter settings are summarized in Table 2 (Appendix D). All the
policies in our experiments use the default hyper-parameter settings hand-tuned by Safety Gym (Ray
et al., 2019) except that we set the cost limit = 0 for PPO-Lagrangian and CPO since the goal is to
achieve zero-violation performance.
Evaluation Results The evaluation results are shown in Figure 5, where PPO-UAISSA achieves
near zero violation while gaining comparable rewards on both tasks. Note that the violations made
by PPO-UAISSA are so few (nearly 1% of violations made by standard PPO), making it hard to
observe in Figure 5. Such results align with our probabilistic safety guarantee given in Theorem 9.
As for safe RL methods, both CPO and PPO-Lagrangian fail to achieve zero violation even with
a cost limit of zero. PPO-SL proposed in (Dalal et al., 2018) also uses learned dynamics with an
offline dataset, but PPO-SL failed to reduce safety violation due to (i) the assumption of linear cost
functions is unrealistic in complex environments like MuJoCo (Todorov et al., 2012); (ii) the lack
of quantification of the error bound from neural networks. More experiments details, comparison
metrics and experimental results are summarized in Appendix D.6.

6. Conclusion

This paper presented a safe control framework with a learned dynamics model using Gaussian
process. The proposed theory guarantees (i) the nonempty set of safe control for all states under
control limits, and (ii) probabilistic forward invariance to the safe set. Simulation results on a robot
arm and Safety Gym show near zero violation safety performance. One limitation of our work
is that offline synthesis requires grid-based discretization of state space, which is computationally
expensive for high-dimensional system. In the future work, we are going to investigate how to speed
up offline synthesis, such as parallelization computation.
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Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 3387–3395, 2019a.

Yujiao Cheng, Weiye Zhao, Changliu Liu, and Masayoshi Tomizuka. Human motion prediction us-
ing semi-adaptable neural networks. In 2019 American Control Conference (ACC), pages 4884–
4890. IEEE, 2019b.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853. PMLR, 2017.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. CoRR, abs/1801.08757, 2018.

Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to control the con-
strained linear quadratic regulator. In 2019 American Control Conference (ACC), pages 5582–
5588. IEEE, 2019.

James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody Fleming. Shieldnn: A provably safe
nn filter for unsafe nn controllers. CoRR, abs/2006.09564, 2020.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

11



UNCERTAINTY-AWARE IMPLICIT SAFE SET ALGORITHM

Thomas Muirhead Flett. 2742. a mean value theorem. The Mathematical Gazette, 42(339):38–39,
1958.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

Luis Gracia, Fabricio Garelli, and Antonio Sala. Reactive sliding-mode algorithm for collision
avoidance in robotic systems. IEEE Transactions on Control Systems Technology, 21(6):2391–
2399, 2013.

Suqin He, Weiye Zhao, Chuxiong Hu, Yu Zhu, and Changliu Liu. A hierarchical long short term
safety framework for efficient robot manipulation under uncertainty. Robotics and Computer-
Integrated Manufacturing, 82:102522, 2023a.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation
reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2023b.

Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang, Yuanqing
Lin, and Ruigang Yang. The apolloscape dataset for autonomous driving. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages 954–960, 2018.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaus-
sian processes and kernel methods: A review on connections and equivalences. arXiv preprint
arXiv:1807.02582, 2018.

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous
robot vehicles, pages 396–404. Springer, 1986.

Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and dynamic
vehicle models for autonomous driving control design. In 2015 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 1094–1099. IEEE, 2015.

Eric J Kostelich and Thomas Schreiber. Noise reduction in chaotic time-series data: A survey of
common methods. Physical Review E, 48(3):1752, 1993.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for gaussian process
regression with application to safe control. Advances in Neural Information Processing Systems,
32, 2019.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error and posterior variance bounds for
gaussian process regression with application to safe control. arXiv preprint arXiv:2101.05328,
2021.

Anjian Li, Somil Bansal, Georgios Giovanis, Varun Tolani, Claire Tomlin, and Mo Chen. Gener-
ating robust supervision for learning-based visual navigation using hamilton-jacobi reachability.
In Learning for Dynamics and Control, pages 500–510. PMLR, 2020.

Changliu Liu and Masayoshi Tomizuka. Control in a safe set: Addressing safety in human-robot
interactions. In Dynamic Systems and Control Conference, volume 46209, page V003T42A003.
American Society of Mechanical Engineers, 2014.

12



UNCERTAINTY-AWARE IMPLICIT SAFE SET ALGORITHM

Charles Noren, Weiye Zhao, and Changliu Liu. Safe adaptation with multiplicative uncertainties
using robust safe set algorithm. IFAC-PapersOnLine, 54(20):360–365, 2021.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforce-
ment learning. CoRR, abs/1910.01708, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic
regret bounds for gaussian process optimization in the bandit setting. IEEE transactions on
information theory, 58(5):3250–3265, 2012.

Yifan Sun, Weiye Zhao, and Changliu Liu. Hybrid task constrained planner for robot manipulator
in confined environment. arXiv preprint arXiv:2304.09260, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
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