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Abstract
Differentiable simulation enables gradients to be back-propagated through physics simulations.
In this way, one can learn the dynamics and properties of a physics system by gradient-based
optimization or embed the whole differentiable simulation as a layer in a deep learning model for
downstream tasks, such as planning and control. However, differentiable simulation at its current
stage is not perfect and might provide wrong gradients that deteriorate its performance in learning
tasks. In this paper, we study differentiable rigid-body simulation with contacts. We find that
existing differentiable simulation methods provide inaccurate gradients when the contact normal
direction is not fixed - a general situation when the contacts are between two moving objects. We
propose to improve gradient computation by continuous collision detection and leverage the time-
of-impact (TOI) to calculate the post-collision velocities. We demonstrate our proposed method,
referred to as TOI-Velocity, on two optimal control problems. We show that with TOI-Velocity, we
are able to learn an optimal control sequence that matches the analytical solution, while without
TOI-Velocity, existing differentiable simulation methods fail to do so.
Keywords: differentiable simulation, rigid-body simulation, collision and contacts, optimal control

1. Introduction

With rapid advances and development of machine learning and automatic differentiation tools, a
family of techniques has emerged to make physics simulation end-to-end differentiable (Liang and
Lin, 2020). These differentiable physics simulators make it easy to use gradient-based methods for
learning and control tasks, such as system identification (Zhong et al., 2021; Le Lidec et al., 2021;
Song and Boularias, 2020a), learning to slide unknown objects (Song and Boularias, 2020b), shape
optimization (Strecke and Stueckler, 2021; Xu et al., 2021) and grasp synthesis (Turpin et al., 2022).
These applications demonstrate the potential of differentiable simulations in solving control and de-
sign problems that are hard to solve with traditional tools. Compared to black-box neural network
counterparts, differentiable simulations utilize physical models to provide more reliable gradient
information and better interpretability, which benefits various learning tasks involving physics sim-
ulations. One important and popular category of differentiable simulation investigates rigid-body
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simulation with collisions and contacts. However, current methods might compute gradients incor-
rectly, providing useless or even harmful signals for learning and optimization tasks. In the present
study, we directly identify why wrong gradients occur in the original optimization problem and
propose a novel technique to improve gradient computation. Our results on two optimal control
examples clearly show the advantage of our proposed method. It is worth noting that another line of
research in recent literature has attempted to address the challenge by modifying the optimization
problem by incorporating randomness into the objective function (Suh et al., 2022b,a; Lidec et al.,
2022) or implementing a smooth critic (Xu et al., 2022).

2. Preliminaries

2.1. Differentiable Simulation with Contacts

In this section, we provide a brief overview of the different types of differentiable contact models.
We classify these methods into the following two categories.

Velocity-impulse-based methods treat contact events as instantaneous velocity changes. There
are many ways to solve these velocity impulses. For frictional contacts, the problem can be formu-
lated as a nonlinear complementarity problem (NCP) (Howell et al., 2022). Most existing works
approximate the NCP by a linear complementarity problem (LCP) and apply different techniques
to calculate the gradients (de Avila Belbute-Peres et al., 2018; Heiden et al., 2021b; Degrave et al.,
2019; Qiao et al., 2021; Werling et al., 2021; Du et al., 2021; Li et al., 2021). Another line of re-
search solves velocity impulses by formulating it as a convex optimization problem (Todorov, 2011;
Todorov et al., 2012; Todorov, 2014). Zhong et al. (2021) implement a differentiable version of it
with CvxpyLayer (Agrawal et al., 2019). If the contact is frictionless, the velocity impulses can be
computed directly in a straightforward way, e.g., as done in Chen et al. (2021), and we refer to it as
the direct velocity impulse method.

Non-velocity-impulse-based methods treat contact events in different ways. Compliant models
resolve contact in multiple consecutive time steps and are studied extensively in the context of
differentiable simulation (Carpentier and Mansard, 2018; Xu et al., 2022; Heiden et al., 2021b;
Murthy et al., 2021; Geilinger et al., 2020; Li et al., 2020; Heiden et al., 2021a; Du et al., 2021;
Macklin, 2022; Geilinger et al., 2020). Besides compliant models, position-based dynamics (PBD)
(Müller et al., 2007; Macklin et al., 2016) that directly manipulate positions to resolve contacts can
also be easily made differentiable as done in Macklin (2022); Freeman et al. (2021); Macklin et al.
(2020); Liang et al. (2019); Qiao et al. (2020); Yang et al. (2020); Hu et al. (2020).

We refer readers to Zhong et al. (2022) for a more detailed overview of these methods.

2.2. Time-of-impact - Position

Hu et al. (2020) is among the first to study differentiable simulation with contacts from the perspec-
tive of velocity impulses. They find that the most straightforward implementation might produce
wrong gradients due to time discretization and they propose to use continuous collision detection to
find the time-of-impact (TOI) to improve gradient computation. We refer to it as TOI-Position since
it leverages TOI to adjust the post-collision position. In this paper, we argue that TOI-Position is
not enough to solve all the issues caused by time discretization, especially if the contact normal is
not fixed over the optimization iterations. We propose a new technique for velocity-impulse-based
methods to improve gradient computation.
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3. Motivating Problem

In this section, we revisit an optimal control problem studied by Hu et al. (2022) and demonstrate
that current velocity-impulse-based differentiable simulation methods cannot learn an optimal con-
trol input for this problem.

3.1. Problem Setup
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Figure 1: Motivating problem

The system is shown in Figure 1. The two blue circles represent
the initial position of two balls, respectively. The pre-collision
trajectory of Ball 1 is shown in green, and the post-collision
trajectory of Ball 2 is shown in red. The goal is to push Ball 1 to
strike Ball 2 so that Ball 2 will reach the target at the end of the
simulation. We will formulate it as an optimal control problem
later in Section 5. Hu et al. (2022) uses the hybrid minimum
principle (HMP) to obtain an analytical solution to this class of
optimal control problems. We will use this analytical solution
to evaluate the performance of different methods.

3.2. Learning with Direct Velocity Impulse

An optimal control problem can be viewed as a constrained optimization problem where we design
the control input at each time step to minimize an objective function. With differentiable simu-
lation, we can compute the gradients of the objective with respect to the control inputs and use
gradient-based optimization approaches to learn an optimal control sequence that minimizes the
objective/loss function. Figure 2 shows the learning curves of the direct velocity impulse method
implemented in Taichi and PyTorch, along with the analytically obtained optimal value. We observe
that both implementations fail to converge to the analytical value even when TOI-Position is used.
In Section 5, we will see that the learned control inputs do not match the analytical solution either
(Figure 5). This result highlights the issues present in existing differentiable simulation methods.
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Figure 2: Learning curves of direct velocity impulse method implemented in Taichi and PyTorch.

3.3. A Hint of the Issue

To understand why the learning curve does not converge to the analytically obtained optimal solu-
tion, we initiate the learning with the analytical solution. Figure 3 shows the learning curve over
the first 100 iterations. We observe that the loss jumps up in certain iterations, and the learning
converges to a solution with a higher loss. This behavior is persistent across different learning rates,
which indicates that the gradients computed by the differentiable simulation are incorrect.
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Figure 3: Motivating problem: Learning curve initialized from the analytical optimal solution.

4. Method

In this section, we first explain why the loss function increases in Figure 3 and then introduce a new
technique, referred to as TOI-Velocity, to improve gradient calculation in differentiable simulation.
We mainly work with a discrete-time formulation, where the simulation duration T is discretized
into N time steps with ∆t = T/N . As the examples in the paper involve two objects moving in the
2D space, we use pn = [p1,n, p2,n] = [px1,n, py1,n, px2,n, py2,n] to denote the x and y coordinates of
the two objects at time step n. When we need to distinguish variables from different optimization
iterations, we use the superscript i to denote variables in iteration i.

(a) (b) (c)

Figure 4: (a) ball positions in iteration i ; (b) ball positions in iteration i+1 ; (c) Difference between
penetration direction n̂ and collision direction n̄ in an arbitrary iteration.

4.1. The Reason Behind Loss Increase

After taking a detailed look, we find that the increase of loss appears when the time step at which
the collision happens changes over optimization iterations. The increase in the loss can be explained
using the diagrams in Figure 4. In Figure 4(a), pi1,n−1 and pi1,n show the position of the Ball 1 at
time step n − 1 and n in iteration i, respectively. p̂i1,n+1 denotes the penetrated position of Ball
1, which is an intermediate variable used to resolve the collision (explained below). The direction
of the post-collision velocity of Ball 2 is determined by the penetration direction, indicated by the
green arrow. Assume that after a gradient update, the position of the balls changes to the one shown
in Figure 4(b), where the collision happens in time step n instead of time step n + 1. Now the
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direction of the post-collision velocity of Ball 2 is determined by the penetration direction indicated
by the red arrow. As the change of penetration direction is not continuous, the change in the post-
collision velocity of Ball 2 is also not continuous. Thus, the final position of Ball 2 suffers from
a sudden change over these iterations, which could cause an increase in the loss since the terminal
cost in the objective depends on the final position of Ball 2. This discontinuity in velocity between
consecutive gradient updates is the main reason of the loss increase in Figure 3.

4.2. Time-of-impact - Velocity

To improve gradient computation in aforementioned situations where contact normal directions are
not fixed, we propose to adjust post-collision velocity by continuous contact detection, and we call
the technique TOI-Velocity. We present TOI-Velocity using the two-ball collision scenario shown in
Figure 4(c), but the idea applies to collisions among multiple objects with a general class of shapes.

We assume we are using the symplectic Euler integration scheme, but the idea applies to other
integration schemes as well. With symplectic Euler, we have

v̂n+1 = vn + un∆t, (1)

p̂n+1 = pn + v̂n+1∆t, (2)

where vn = [v1,n, v2,n] = [vx1,n, vy1,n, vx2,n, vy2,n] is the velocity of two balls at the nth time step
and un = [u1,n, u2,n] = [ux1,n, uy1,n, ux2,n, uy2,n] is the control input to the two balls at the nth
time step. Variables with a hat (̂·) denote intermediate variables before a collision is resolved. If
there is no collision detected in this time step, we would have vn+1 = v̂n+1 and pn+1 = p̂n+1. If
we detect a collision as shown in Figure 4(c), we refer to p̂n+1 as penetration position and v̂n+1

as penetration velocity. The penetration direction is defined as n̂ = (p̂2,n+1 − p̂1,n+1)/||p̂2,n+1 −
p̂1,n+1||2. Traditional simulation methods solves the post-collision velocities vn+1 using penetration
velocity v̂n+1 and penetration direction n̂, both of which may be discontinuous across optimization
iterations due to time discretization. The TOI-Position proposed by Hu et al. (2020) computes TOI
as the time spent after the penetration appears, i.e.,

TOI = d/
(
(v̂2,n+1 − v̂1,n+1) · n̂

)
. (3)

where d = ||p̂2,n+1 − p̂1,n+1||2 − 2r is the penetration depth. In other words, the collision time
is estimated by (∆t − TOI) after the balls are in position pn. Then the post-collision position
is adjusted by pn+1 = pn + v̂n+1 · (∆t − TOI) + ṽn+1 · TOI , where ṽn+1 is the velocity after
resolving collision, which depends on elasticity. However, we argue that adjusting the position only
is not enough since the post-collision velocity is also incorrectly estimated. To improve that, we
consider the collision position p̄n+1 and velocity v̄n+1

v̄n+1 = vn + un(∆t− TOI), (4)

p̄n+1 = pn + v̂n+1(∆t− TOI). (5)

The collision direction based on the collision position are then

n̄ = (p̄2,n+1 − p̄1,n+1)/||p̄2,n+1 − p̄1,n+1||2. (6)

Figure 4(c) shows a demonstration of collision position p̄n+1 and collision direction n̄. We propose
to use collision velocity v̄n+1 and collision direction n̄ to solve for post-collision velocities vn+1.
In this way, the post-collision velocities would not suffer from the sudden jump as we observed in
Figure 4(a) and 4(b). Post-collision position pn+1 can be determined accordingly.
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5. Experiments

5.1. Optimal control formulation

The problem is formulated as an optimal control problem in continuous-time with state jumps:

minimize
u(·)

ϕ(s(T )) +

∫ T

0
L(s(t), u(t))dt, (7)

subject to ṡ(t) = f(s(t), u(t)), t ∈ [0, T ] \ ∪k∈K{γk},
ψ(s(γ−k )) = 0,

s(γ+k ) = g(s(γ−k )).

Here we use s = [p, v] to denote the positions and velocities of two balls as the state variable. f
denotes the state dynamics under external forces u; ∪k∈K{γk} denotes the set of collision instances
which is characterized by the collision detection function ψ; and g denotes the effect of collisions
on the state. We choose the terminal cost to be ϕ(s(T )) = ||p2(T )||22 to capture our goal of Ball 2
reaching the origin and running cost to be L(s, u) = ϵ||u||22 to penalize large control inputs. In the
experiments, we set ϵ = 0.01. See the appendix of Hu et al. (2022) for the analytical solution of
this optimal control problem.

To solve the above problem approximately, we discretize the problem into

minimize
u0,...,uN−1

ϕ(sN ) +
N−1∑
i=0

L(si, ui)∆t, (8)

subject to si+1 = step(si, ui,∆t). (9)

where the step function takes the current state and control as inputs and calculates the next time
step state based on dynamics and collisions. In our experiments, the simulation time is T = 1s. The
time period is discretized into N = 480 steps, i.e., ∆t = 1/480. As the simulation can be made
differentiable, we can differentiate through the step function and solve for the optimal control
sequence directly using gradient descent.

5.2. A Single-Collision Example (Motivating Problem)

In this section, we demonstrate our proposed techniques using our motivating problem (Figure 1).
We have two balls, of the same size (radius r = 0.2) on a plane. The collision between the two
balls is frictionless and totally elastic. The initial positions of the balls are p1,0 = [−1,−2] and
p2,0 = [−1,−1] and the initial velocities are v1,0 = v2,0 = [0, 0]. We can freely choose control
inputs as forces acted on the Ball 1, i.e., u1,n. The goal is to push Ball 1 to strike Ball 2 so that
Ball 2 would be close to the origin at the end of the simulation. This goal can be formulated as an
optimal control problem (8), where we set ϵ = 0.01. We initiate our control sequence as a constant
force u1,n = [0, 3], n = 0, ..., N − 1.

5.2.1. PERFORMANCE OF EXISTING METHODS

We implemented several differentiable simulation methods discussed in Section 2.1 - linear comple-
mentarity problems (LCP), convex optimization problem (Convex), direct velocity impulse (Direct),
compliant model (Compliant) and position-based dynamics (PBD).
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Figure 5: Single-collision: learning curves of different existing differentiable simulation methods.
Left: Methods based on velocity impulses. Right: Compliant models and PBD.

Figure 5 shows the learning curves of existing methods. The left panel shows all the velocity-
impulse-based methods and none of them converges to the analytical optimal loss. The right panel
shows non-velocity-impulse-based methods, where many spikes exist in the learning process except
PBD implemented in Warp.

The challenge encountered by existing methods can be further observed from the learned control
shown in Figure 6. Even though in the x direction some of the learned control sequences match the
shape of the analytical one, in the y direction none of the existing methods is able to learn the correct
shape. Specifically, the pre-collision control sequence in the y direction should increase over time
while all the learned pre-collision control sequences decrease over time.
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Figure 6: Single-collision: learned control from existing differentiable simulation methods.

5.2.2. PERFORMANCE OF TOI-VELOCITY

We implement TOI-Velocity using PyTorch and Taichi. The learning curves in Figure 7 show that
both implementations are able to converge to the analytical optimal loss. Figure 8 shows the learned
control sequences. Both implementations can learn the shape of analytical optimal control and the
PyTorch implementation matches the analytical solution better. When comparing Figure 8 with the
results of existing methods in Figure 6, we see a clear improvement especially in the y direction,
since increasing pre-collision sequences are learned correctly.
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Figure 7: Single-collision: learning curves of our proposed method
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Figure 8: Single-collision: learned control sequence of our proposed method.

5.3. A Multiple-Collision Example

In this section, we study the system shown in Figure 9, where multiple collisions could happen.
We have two balls, of the same size (radius r = 0.2) on a plane. The initial positions of the balls
are p1,0 = [0.25,−0.3] and p2,0 = [−0.5, 0.6] and the initial velocities are v1,0 = v2,0 = [0, 0].
There is a wall at location y = 1. Both the ball-ball collision and ball-wall collision are frictionless
and totally elastic. We can freely choose control inputs as forces acted on the first ball. The goal
here is to push Ball 1 to strike Ball 2 so that Ball 2 would be close to the origin at the end of
the simulation. The problem can be formulated as (7). Figure 9(a) shows the trajectory before
optimization where a constant control of u1,n = [−3.5, 3.0], n = 0, ..., N − 1 is applied to Ball 1.
This trajectory involves two ball-ball collisions and one ball-wall collision. Figure 9(b) shows the
analytical optimal trajectory, which involves one ball-ball collision and one ball-wall collision.

−2 −1 0 1 2
−1.0

−0.5

0.0

0.5

1.0

1.5

target

(a)

−2 −1 0 1 2
−1.0

−0.5

0.0

0.5

1.0

1.5

target

(b)

Figure 9: Multiple-collision: (a) Trajectory before optimization; (b) Analytical optimal trajectory.
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5.3.1. PERFORMANCE OF EXISTING METHODS

Figure 10 shows the learning curves of existing differentiable simulation methods and none of them
converges to the analytical optimal loss. The left panel shows results of velocity-impulse-based
methods and for each method, there exists certain time steps where the loss increases over the iter-
ations. This increase of loss is similar to the one observed in Figure 3, indicating wrong gradients
calculated by the differentiable simulations. The right panel shows results of non-velocity-impulse-
based methods. The learning using the Brax implementation of PBD is unstable as there are many
spikes. The other learning curves are smooth but there is a clear gap between the analytical op-
timal loss and the converged values. Figure 11 shows the control sequences learned by existing
differentiable simulation methods and none of them are close to the analytical optimal control.
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Figure 10: Multiple-collision: learning curves of different existing differentiable simulation meth-
ods. Left: Methods based on velocity impulses. Right: Compliant models and PBD.
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Figure 11: Multiple-collision: learned control sequences of existing methods.

5.3.2. PERFORMANCE OF TOI-VELOCITY

Applying TOI-Velocity can successfully solve the optimal control problem. Figure 12 shows that
both Taichi and PyTorch implementation converges to the analytical optimal loss. Figure 13 shows
that the learned control sequences match the analytical optimal control very well. By comparing
these results with existing methods, we can conclude that adding the TOI-velocity improves the
gradient calculation of velocity-impulse-based differentiable simulation methods. These improved
gradients enable us to learn optimal control simply using gradient descent.
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Figure 12: Multiple-collision: learning curves of our proposed method.
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Figure 13: Multiple-collision: learned control of our proposed method.

5.4. Ablation Study

We have shown that adding TOI-Velocity enables us to successfully learn optimal control, but it
is unclear whether TOI-Position is still necessary once TOI-Velocity is applied. Table 1 shows
an ablation study on TOI-Position and TOI-Velocity for the two examples in Section 5.2 and 5.3.
We find that only by applying both TOI-Position and TOI-Velocity can we end up with a loss value
close to the analytical optimal loss in both examples. Without TOI-Position, the computed gradients
would be wrong, which affects gradient-based learning.

Table 1: Ablation study on TOI-Position and TOI-Velocity

TOI-Position TOI-Velocity single-collision example multiple-collision example

✗ ✗ 0.3616 0.5261
✓ ✗ 0.3949 0.5841
✗ ✓ 0.4797 0.6142
✓ ✓ 0.3151 0.3785

Analytical optimal loss 0.3115 0.3737

6. Conclusion

In this paper we propose a novel technique, TOI-Velocity, to reduce discontinuity caused by time
discretization in physics simulation. Our proposed method is designed to improve gradient com-
putation in differentiable simulation with contacts. We demonstrate TOI-Velocity in two optimal
control examples. Our results show that applying TOI-Velocity together with TOI-Position is the
only differentiable simulation implementation that can successfully learn the optimal control in
these examples.
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