
YUSEG:Yolo and Unet is all you need for cell instance
segmentation

Bizhe Bai
University of Queensland

Australia
bizhe.bai@outlook.com

Jie Tian
Southern Medical University

Guangzhou, Guangdong, China
salen@i.smu.edu.cn

Sicong Luo
Xi’an Jiaotong University,

Xi’an, Shaanxi , China
lsc19980723@foxmail.com

Tao Wang
Fuzhou University

Fuzhou, Fujian, China
1072739254@qq.com

Sisuo LYU
Harbin Institute of Technology, Shenzhen

Shenzhen, Guangzhou, China
sisuolv@outlook.com

Abstract

Cell instance segmentation, which identifies each specific cell area within a mi-
croscope image, is helpful for cell analysis. Because of the high computational
cost brought on by the large number of objects in the scene, mainstream instance
segmentation techniques require much time and computational resources. In this
paper, we proposed a two-stage method in which the first stage detects the bounding
boxes of cells, and the second stage is segmentation in the detected bounding boxes.
This method reduces inference time by more than 30% on images that image size
is larger than 1024 pixels by 1024 pixels compared to the mainstream instance
segmentation method while maintaining reasonable accuracy without using any
external data.

1 Introduction

Cell instance segmentation, which recognizes individual cell bodies in a microscope image, is helpful
for cell analysis. For instance, quantitative cell biology requires measurements of a wide range
of cellular parameters, including form, location, RNA expression, and protein expression. Before
researchers can assign these attributes to particular cells in the image, they must segment an image
into cell instances. However, due to the high computational cost caused by a large number of objects
in the scene, using mainstream instance segmentation methods, for example, Mask R-CNN[1] and
Cascade R-CNN[2] directly on large-size microscopes, is slow[3].In addition, those methods could
not do instance segmentation on whole slide images (WSI) directly because of the limitation of GPU
memory [4]. More specifically, the COCO dataset, whose majority of images are about 640 pixels
by 480 pixels, is used for training and inference by mainstream instance segmentation methods [5].
However, this image size is considerably smaller than WSI, which has a size of about 3000 pixels by
3000 pixels. Thus, we proposed a two-stage method that combines YOLO and Unet for microscopes
instance segmentation that reduces inference time by employing a more lightweight object detection
network and reduces GPU memory consumption by training and inference on window-sliding
patches.YUSEG maintains the same accuracy as the mainstream instance segmentation method while
reducing inference time by more than 30 percent for images larger than 1024 pixels by 1024 pixels. I
will introduce the outline of the YUSEG method at the beginning of section 2 and explain the detail
of the YUSEG method in the rest of section 2. Then I will state details of the YUSEG training and
inference process in section 3 and the result and discussion in section 4. Lastly, I will conclude
section 5.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: The architecture of the YUSEG instance segmentation method. The inference process has
two stages. In the first stage, images larger than 1024 pixels by 1024 pixels will be cut into smaller
patches. Then, each patch will be fed into a model that is an ensemble of five YOLOV5[6] to predict
the bounding boxes of each cell. Then, non-maximum-suppression and weighted box fusion are
applied to those bounding boxes to remove duplicated detected boxes. Next, in the second stage, the
area of the original input image, which is bounded by the bounding boxes, will be fed into a semantic
segmentation model, which has been trained on training images, to separate pixels into cells and
the background. In the end, the segmentation result will be put where the bounding boxes are, and
the patches will be concatenated to make the final instance segmentation result of the original input
image.

2 Architecture of YUSEG

YUSEG is a two-stage method combining an object detection model, an ensemble of five yolov5[6]
models and a segmentation model based on Unet[7]. The illustration is depicted in figure1.In the
training round, two models need to be trained separately: (1) the YOLOV5[6] object detection model
and (2) a semantic segmentation neural network based on Unet[7] with the efficientnet[8] encoder.
The object detection model seeks to detect the bounding boxes for each cell in images, whereas the
semantic segmentation model seeks to distinguish cells from the background. Next, I will describe the
preprocessing technique we used in Section2.1, then describe the object detection model in section
2.2, and then describe the semantic segmentation model in section 2.3.

2



Figure 2: Box plot of the number of pixels in the training set. From left to right are plots of the
number of pixels for phase contrast modality, differential interference contrast modality, brightfield
modality, and fluorescent modality. The rightmost boxplot represents the number of unlabeled pixels.

Figure 3: The illustration of a simple resize strategy. The original size of the image on the left is 4096
pixels by 4096 pixels, while the image on the right is 480 pixels by 640 pixels. If the left image were
resized to the same size as the right image, it would be difficult to distinguish individual cells.

2.1 Preprocessing

The dataset contains four types of images: phase-contrast, differential interference contrast, brightfield,
and fluorescent. A straightforward approach would be to feed the training data directly to the
CascadeRCNN[2] model. Nonetheless, as shown in Figure 2, some images with large sizes exist.
For instance, the number of pixels in a phase contrast image is approximately 3 � 106, which is too
large to feed directly into an algorithm due to the memory limitations of modern graphic cards. Thus,
some works tend to resize all images to a single size before feeding them to a network[9]. However,
resizing the size of a larger image would result in the loss of information. As depicted in Figure
3, resizing the larger image, which is on the left, to the same size as the smaller image, which is
on the right, will raise the difficulty of distinguishing cells in the images. Using sliding window
patched-based training and inference enables the model to accommodate the dataset’s diverse sizes of
input images. In the YUSEG architecture, the input images will be divided into multiple 1024 pixels
by 1024 pixels patches and fed to the object detection model. During inference, the images will also
be divided into numerous patches of the same size. This method would preserve more information in
the larger image than a straightforward resizing strategy.

3



Figure 4: Left image is a combination of four images. The right image is after Mosaic data
augmentation of four images in the object detection part. Four images will be randomly zoomed,
cropped, arranged, and spliced into a new image. Each picture will have its corresponding bounding
boxes.[12]

Table 1: Comparison between an ensemble of five YOLOV5 models and single YOLOV5 model on
tunning set

Ensemble of five models Single model
Mean F1 0:81221 0:7966

2.2 Object Detection stage

The object detection model is based on YOLOV5. It is a combination of five YOLOV5 models. Each
YOLOV5 model will be trained independently on 80% of training data sampled at random during
the training period. Ensembling five models significantly raise the mean F1 Score on the tuning
set as shown in Table1. In the inference period, each YOLOV5 model predicts its bounding boxes.
Since there are five YOLOV5 models jointly predicting bounding boxes, duplicate or overlapping
boxes will exist. Therefore, non-maximal suppression is applied to the bounding boxes to eliminate
the duplicated boxes introduced by the five YOLOV5 models. Then, weighed box fusion is applied
to bounding boxes to remove duplicated cells between overlapping patches. Next, I will introduce
several techniques we applied.

Mosaic Data augmentation
Normally, the metrics of small targets are much lower than that of medium and large targets. The
microscope dataset also contains a large number of small targets. Thus, we embedded Mosaic data
augmentation [10]. Mosaic is inspired by the CutMix[11] data augmentation proposed at the end
of 2019, compared to CutMix only uses two images for splicing, while Mosaic data enhancement
uses 4 images, randomly zoomed, randomly cropped, and randomly arranged for splicing. Mosaic
data augmentation uses four images to stitch images, and each image has its corresponding bounding
boxes. After splicing the four pictures, a new picture is obtained, and the boxes corresponding to
the picture are also obtained. Then the new picture is passed into the neural network, equivalent
to passing in four pictures at a time for learning. This greatly enriches the background of detected
objects. The augmented data will be computed during the batch normalization computation, which
will also benefit the neural network. An example of mosaic data augmentation is shown in figure 4

1This metric is reported by the competition organizers and shown on the official leaderboard of the website

4



Figure 5: Visualization with adaptive image scaling and padding. The left image is the original image,
the middle image is a simple resizing strategy using bilinear interpolation, and the right image results
from adaptive scaling and filling. We can observe that the ratio between the height and width of the
right cell is the same as the original. However, the cells inside the red box in the middle image have
been stretched.

Adaptive image scaling and filling
Besides large-sized images, such as the left image, which has a size of 4096 pixels by 4096 pixels,
there are also some small-sized images, such as the right image, which has a size of 480 pixels
by 640 pixels. However, the input size of YUSEG is manually set to 1024 pixels by 1024 pixels
in consideration of computational cost. Therefore, smaller images must be resized to 1024 pixels
by 1024 pixels. However, simple resizing strategies, such as bilinear interpolation, cause the cell’s
aspect ratio to change, as shown in Figure 5. Therefore, we added adaptive image scaling and filling
in YUSEG and adaptively added the least black border while maintaining the original aspect ratio to
preserve the original image as much as possible. The steps are as follows:
(1) The original image size is 800*600, and the target zoom size is 416*416. After dividing the target
zoom size by the size of the original image, the two zoom factors are 0.52 and 0.69.
(2) Choose a smaller scale factor. The length and width of the original image are multiplied by the
minimum scaling factor of 0.52, then the width becomes 416, and the height becomes 312.
(3) 416-312=104 Calculate the height that needs to be filled, and then use np.mod in numpy to take
the remainder to get 8 pixels, then divide it by 2 to get the value that needs to be filled at both ends of
the image height.

Loss function
The Intersection of Union (IoU), also known as the Jaccard Index, is the most prevalent evaluation
metric in object detection benchmarks. IoU has a plateau and cannot be optimized in the case of
non-overlapping shapes(or bounding boxes)[13]; specifically, if bounding box A does not intersect
bounding box B, i.e., jA \Bj = 0, then IoU(A; B) = 0. In this case, IoU will not indicate whether
two shapes are close together or far apart. Therefore, Generalized Intersection over Union (GIoU) is
chosen as the loss function by YUSEG. As depicted in the diagram, GIoU is the gradient problem
that reduces IOU loss when the bounding boxes do not overlap, as shown in Figure 6. The formula of
GIOU is :

GIoU = 1� IoU(A; B) +
jC �A [Bj
jCj

Weighted boxes fusion
Since the YUSEG method is based on patch training and inference, there will be overlap between
each patch, so there will be many overlapping bounding boxes of cells in the overlapping area.
Therefore, we need to remove those overlapping cells because cells are not allowed to be stacked
together horizontally. A straightforward approach to removing duplicate boxes is Non-Maximum
Suppression (NMS). However, in some cases, the prediction bounding boxes are all wrong. In this
case, NMS will leave only one inaccurate box, while WBF[15] will fuse it using all predicted boxes.
The differences are shown in figure 7. So YUSEG embeds WBF into its architecture.

5



Figure 6: The visualization of regression error of IoU and GIoU. One can see that IoU loss has
large errors for non-overlapping cases. GIoU loss alleviates the gradient issue of IOU loss when the
detection frames do not overlap[14].

Figure 7: Visualization illustration of NMS and WBF outcomes for an ensemble of inaccurate
bounding boxes. Blue boxes are several models' predictions, and red is the ground truth. .[15].

2.3 Semantic segmentation of cell

After obtaining the bounding box of each cell, the next step is to distinguish the area of each cell
from other areas (other areas, including the background and other cells). YUSEG chose a semantic
segmentation method based on the Unet [7] architecture with an ef�cient [8] backbone. The model
structure diagram of Unet is shown in 8. During the training phase of the semantic segmentation
model, the area bounded by the outer rectangle of each cell serves as the semantic segmentation
model's input. The label of the model is a mask image of the corresponding region, with the target
cell labelled 1, the surrounding cells labelled 2, and the background labelled 0 as shown in 9. During
the training, the model does a three-class segmentation, centre cell, other cells, and background. The
signal from other cells does bene�t the model. There is a 3.4%miou increase compared to binary
segmentation on the validation set, as shown in Table 2. During the inference procedure, the model
will predict masks for three classes and assigns other cell pixels to the background.

Table 2: MIoU on the validation set between three-class segmentation model, which is used in
YUSEG, and binary segmentation model.

Three class segmentation model Binary class segmentation model
miou 85:3% 88:7%

6



Figure 8: Architecture of EfcientUNet with EfcientNet-B0 framework for semantic segmentation.
[16]

Figure 9: Visualization of the segmentation model training procedure. The area bounded by ground
truth bounding boxes and the corresponding ground truth mask will be treated as input and labelled
for the semantic segmentation model during training. In this image, the central cell is labelled green,
the surrounding cells are labelled blue, and the background is labelled red.

Techniques to improve speed
The original YOLOV5[6] architecture writes detection results as text �les directly to the disk,
including bounding boxes and corresponding images. In the second stage of YUSEG, however, the
semantic segmentation model must read these images and bounding boxes from the disk, which
requires signi�cant I/O time. Therefore, YUSEG directly embeds the segmentation model into the
YOLO architecture. This engineering advancement reduces inference time by more than 30 percent
as shown in Table 6. Converted Pytorch checkpoint �les to Torchscript checkpoint �les are used to
reduce inference time further.

7



3 Experiments

3.1 Dataset

We do not use any public dataset and pre-trained models.

3.2 Implementation details

3.2.1 Environment settings

The development environments and requirements are presented in Table 3.

Table 3: Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU CPU Intel Xeon W 2150B @ 3.00GHz
RAM RAM 32x4GB2.67MT/s
GPU (number and type) GPU One Nvidia RTX5000 16G
CUDA version 11.0
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.10, torchvision 0.2.2)
Speci�c dependencies opencv-python , Pillow , timm ,scipy ,ensemble_boxes ,segmentation_models_pytorch
Code https://github.com/baibizhe/semi_cell.git

3.2.2 Training protocols

Data augmentation

In the object detection stage, patch-based training and inference strategy is used. We cut each
image into 1024 pixels by 1024 pixels patches (slide window with a patch size1000� 1000).In the
segmentation training and inference, the input images are resized to224� 224.

Table 4: Detection training protocols.

Network initialization [17]section 3.3
Batch size 8
Patch size 1000� 1000
Total epochs 50
Optimizer Adam with momentum 0.9
Initial learning rate (lr) 0.001
Lr decay schedule halved by 200 epochs
Training time 16 hours
Loss function GIOU

Table 5: Segmentation training protocols.

Batch size 64
Input size 224� 224
Total epochs 500
Optimizer Adam with momentum 0.99
Initial learning rate (lr) 0.001
Lr decay schedule CosineAnnealingWarmRestarts[18]
Training time 12 hours
Loss function Cross-entropy

8




	Introduction
	Architecture of YUSEG
	Preprocessing
	Object Detection stage
	Semantic segmentation of cell

	Experiments
	Dataset
	Implementation details
	Environment settings
	Training protocols


	Results and discussion
	Quantitative results on tuning set
	Qualitative results on validation set
	Segmentation efficiency results on tunning set
	Results on final testing set
	Limitation and future work

	Conclusion
	Appendices

