
Cell Segmenter: A General Framework for
Multi-modality Cell Segmentation

Kaiwen Hu
Zhejiang University
Hangzhou, 310027

kaiwenhu@zju.edu.cn

Shengxuming Zhang
Zhejiang University
Hangzhou, 310027

zsxm1998@zju.edu.cn

Zhijie Jia
Zhejiang University
Hangzhou, 310027

JiaZhiJie@zju.edu.cn

Lechao Cheng
Zhejiang Lab

Hangzhou, 310027
chenglc@zhejianglab.com

Zunlei Feng
Zhejiang University
Hangzhou, 310027

zunleifeng@zju.edu.cn

Abstract

Cell Segmentation is an initial and fundamental step in biomedical image analysis,
which strongly affects the experimental results of this analysis. Recently, deep
learning based segmentation methods have shown great power in segmentation
accuracy and efficiency. However, these data-driven methods still face many
challenges, such as lack of annotations, multi-modality, and complex morphology
, where morphological complexity significantly limits model performance. In
this paper, we propose a new all-purpose framework with high morphological
adaptability for multi-modality cell segmentation, termed Cell Segmenter (CS). For
high convex cells with an arbitrary size, the Anchor-based Watershed Framework
(AWF) precisely locates well-defined cell centers and generates segmentation based
on these markers. For those elongated or non-convex cells, the center-independent
segmentation method Omnipose [1] is adopted to obtain satisfying masks. In the
inference time, confidence-based quality estimation is conducted on the branch
predictions if needed, and then the better result is chosen as the final segmentation.
The F1-score of the proposed method reaches 0.8537 on TuningSet and 0.6216 on

the final test set of the NeurIPS 2022 Cell Segmentation Challenge.

1 Introduction

As an initial and fundamental step of biology and biomedical image analysis, the performance
of cell segmentation significantly affects image-based biomedical research. In the past few years,
Convolutional Neural Network (CNN) has achieved remarkable success in computer vision tasks,
including semantic segmentation [2, 3, 4], image classification [5, 6], object detection [7, 8], etc. It
inspires many researchers to focus on CNN-based cell segmentation.

Despite the current success of deep learning based methods in bio-informatics image analysis, they
still need to overcome several challenges which strongly affect their applications. Firstly, to achieve a
comparable performance based on a data-driven learning strategy, abundant and clean labeled data is
essential for deep learning models’ training. However, large amounts of annotations are costly and
time-consuming, especially in biology data. Meanwhile, the entirely different statistics of images
from varying microscopes increase the difficulty of handling all types of microscopy images in one
model. Besides, the huge input size in whole slide images also places great demands on model
efficiency.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Furthermore, cell segmentation, as a challenging task to accurately identify individual cells in the
input images, has many domain-specific problems to solve. Currently, based on the basic idea
of their methodology, most deep learning cell segmentation solutions can be categorized into the
following three types: (i) contour-aware segmentation, (ii) marker-based watershed algorithm, and
(iii) gradient-flows based tracking methods.

The first category, contour-aware segmentation [9, 10], often adopts a three-class segmentation
network to differentiate pixels of cell borders and bodies from the background. In the inference stage,
any touched cell bodies will be split with cell border prediction to reduce under-segmentation. To
achieve instance segmentation, Chen et al. [9] proposed a contour-aware framework based on a
multi-level contextual FCN [2]. By regarding border pixels as a special category, they formulated
nuclei/gland segmentation as a multi-task problem. Similarly, Panigraphi et al. [10] also adopted a
three-class U-Net in bacterial cell segmentation, with an extra pre-processing step to make the model
insensitive to intensity. However, all these contour-aware cell segmentation methods are designed for
single modality or single cell line, and a robust cell boundary cannot be appropriately generated in
multi-modality schemes or imprecise boundary annotations.

The marker-based watershed segmentation algorithm is a classical method for general segmentation
tasks. Recently, many researchers [11, 12, 13, 14] attempted to adopt this method in cell segmentation
tasks with a DNN-based watershed energy map and markers. To segment differential interference
contrast (DIC) images with high accuracy, Lux et al. [12] extracted a marker map from the cell
mask, in the post-processing stage, any unlabeled cell pixels will be labeled with the watershed
algorithm. To make the model learns better, they also proposed a weighted map to force the model
to focus more on the markers’ boundary. Kucharski et al. [13] adopted a more complicated way to
reduce over-segmentation in the watershed algorithm. They extracted four maps from ground truth
annotations: cell boundary, cell body, cell center, and background maps. For better cell localization
performance, Koyuncu et al. [11] solved the cell detection problem from a multi-task perspective.
They compound three tasks in one FCN model: inner distance regression, normalized outer distance
regression, and binary classification. They quantitively discovered that the two auxiliary tasks (outer
distance regression and binary classification) could promote the localization accuracy of the inner
distance map. Based on the predictions of their detection model, the cell mask can also be obtained
with the marker-based watershed method. Greenwald et al. [14] further developed this method by
adding a scale factor α to inner the distance map, which brought scale-irrelevant cell localization
ability to the former model. However, these marker-based watershed methods are limited by the
marker generation process. As the morphology of cells is diverse and complicated, center markers
cannot be generated for some cells.

Gradient-flow tracking methods [15, 1] segment cells by tracking pixels in the predicted gradient
fields. All pixels in the same cell will be aggregated into a small individual region or even a point
so that pixels of touched cells will naturally be split. Stringer et al. [15] first combined gradient-
flow tracking with DNN methods to realize general cell segmentation. They proposed a gradient
field generation method named heat diffusion for cells with arbitrary morphology. By training
DNN models to predict this field, they successfully segment most cells by gradient-flow tracking.
However, in practice, their method fails with elongated cells, whose center often locates near or
outside the cell boundary. Therefore, Cutler et al. [1] proposed several enhancements. For gradient
field generation, instead of heat diffusion, they adopted the gradient vector from the solution of the
eikonal equation. To suppress over-segmentation in the post-processing, they further applied the
points cluster algorithm for a better result. Though these gradient-flow tracking methods can handle
cells with diverse morphology, they will fail with large cells.

In the context of multi-modality cell segmentation, we expect to design an all-purpose cell segmenta-
tion framework for cells of arbitrary size and morphology. Currently, most cells can be categorized
into three shapes: (i) simple cells with round or rod-like shapes; (ii) mutant cells, usually highly
non-convex but not long; (iii) elongated cells. Due to their very different natures, an anchor-based
segmentation framework with two-step watershed post-processing is proposed for segmenting cells
with simple or mutant shapes. As for those elongated cells with small sizes, the recent morphology-
independent solution Omnipose is adopted to produce high-quality masks. Because the two branches
cannot handle all cell morphology individually, we further propose a test-time prediction quality
estimation tool to automatically select the better prediction.

2



Our contributions can be summarized as follows: (i) We propose a general cell segmentation
framework, termed Cell Segmenter, to better handle multi-modality data distribution in the challenge.
(ii) In the AWF branch, a two-step watershed algorithm is adopted to precisely locate cell centers in

the input. (iii) Experiment results on Cell Segmentation Challenge dataset show that the proposed
Cell Segmenter can effectively segment various types of cells and achieve promising segmentation
performance.

The remaining parts of this paper are structured as follows: Section 2 introduces all the details of
the proposed pipeline, including pre-processing, network architecture, and post-processing. Section
3 provides the configurations of the training process and experiments. In Section 4, the quantitive
ablation study and qualitative experiments are conducted over the provided TuningSet of the Cellseg
Contest. Besides, an efficiency test is also conducted on the dataset. At the end of this section, the
limitations of the framework and future work are discussed.

2 Method

In this section, we will introduce the detail of the Cell Segmenter, including the pre-processing,
the detail of the proposed method, and the post-processing. In the method detail section, we first
introduce the basic idea of our framework. Then the holistic architecture of the pipeline will be
described, followed by the details of each module.

2.1 Pre-processing

The pre-processing process includes the following aspects: label cleaning, noise data removal, image
normalization, and intermediate target generation.

Label cleaning. We split cell pixels without 4-connectivity, then remove all objects with < 5 pixels
and relabel all cells.

Noise data removal. In practice, we find several images with either incorrect annotations or complex
morphology in the given training dataset, which the proposed AWF cannot handle (F1-scores of these
models are nearly zero with threshold 0.5). Therefore, we remove these images (image ID: 142, 143,
144, 443, 528, 529, 547, 548) with low F1-scores in the training process.

Image normalization. In the training and inference stages, all input images will be channel-wise
normalized to [0, 1].

Intermediate target generation. For the AWF network’s training, the target energy map is synthe-
sized as follows: (i) execute euclidean distance transform on the cell masks; (ii) normalize all values
in the cell with its median distance, so that energy in the cells roughly ranges from 0 to 2, to generate
a scale-invariant energy map. Here, the median distance is normalized to 1 for numerical stability.
The cell-wise normalization operation avoids producing a wide numerical energy range for cells with
different sizes and morphology.

2.2 Cell Segmenter

Early DNN-based nucleus/cell segmentation frameworks are mainly designated or optimized for
one or few cell lines and cannot perform well when the datasets do not match their assumption.
Therefore, to segment multi-modality cells of varied microscopy types, different sizes, and changing
morphology, many works have been proposed in the past few years. However, all these methods still
have limited performance in some challenging modalities, e.g., multinucleated cells and irregular
morphology.

As the main obstacle to the general cell segmentation framework is the complex cell morphology, to
achieve general cell segmentation, we propose a general framework, termed Cell Segmenter, as shown
in Figure 1, by automatically selecting the segmentation method based on the morphology of input
cells. We categorize cells into the following three classes: (i) simple shape, (ii) mutant shape, and (iii)
elongated shape. For the cells of simple or mutant shape, we propose a detection-based watershed
segmentation method, named Anchor-based Watershed Framework (AWF). For those elongated small
cells, we adopt the most recent morphology-independent cell segmentation solution, Omnipose [1],
to generate satisfying masks. In the inference stage, a quality estimator is adopted to automatically

3



Modality
Branch

Selection

Post-processorSegmentation Network(s)

Modality
Classifier

Watershed
Postprocessor

Omnipose
Postprocessor

AWF

Omnipose

Quality Estimator

Modality

Modality
Analyzer

Figure 1: The whole framework of the proposed Cell Segmenter, which can be grouped into four
parts: the Modality Analyzer, the Anchor-based Watershed Framework, the Omnipose Framework,
and a Quality Estimator. In the pre-processing stage, the Modality Analyzer determines the input’s
modality based on color statistics. After that, two branches predict the intermediate representation of
segmentation, and then the mask quality is computed by Quality Estimator with the branch output.
Finally, better segmentation is generated by the corresponding postprocessor. The dashed arrows in
the figure represent the rejected bad segmentation, while solid arrows represent the chosen results.
The modality predicted by the analyzer is used for choosing the optimized AWF.

select the better prediction of the two methods. The proposed Cell Segmenter successfully solves the
multi-modality issue in the cell segmentation task.

2.2.1 Anchor-based Watershed Framework

Marker-based Watershed segmentation, a classical segmentation algorithm widely applied in many
scenarios, generates masks with pre-defined markers and an intermediate energy map. It executes
flood-fill over the energy map to fill all regions which contain markers. Therefore, the quality of
markers strongly affects the quality of produced segmentations. Recently, some works [11, 12, 13, 14]
have attempted to combine CNN and Marker-based Watershed Transform to achieve cell segmentation.
All these methods attempted to classify or regress a ‘center’ for each cell in a pixel-wise manner,
which is only readily defined in the single-modality scenario where cells are in high homogeneity.
However, in multi-modality scenarios, this pixel-wise intermediate result is practicably difficult to
be post-processed due to the varied cell size. Abundant datasets have verified the effectiveness of
the anchor-based object detection framework on regular objects of arbitrary size. Considering the
potential to generate a unique ‘center’ for each object based on the detection box, we propose an
Anchor-based Watershed Framework (AWF) for high-convex cell segmentation of arbitrary size by
combining anchor-based object detection method YOLOv5 and watershed segmentation.

As shown in Figure 2, the framework has a U-Net like structure and is mainly modified from YOLOv5-
small. Unlike the classical U-Net, the AWF network has an extra detection head. In the segmentation
head, the network is trained to do a foreground segmentation and a watershed energy regression. The
loss function for this head defines as follows:

Lseg = LBCE(mpred,mgt) + LMSE(epred, egt), (1)

where mpred , mgt, epred, and egt represent the output mask, the target binary mask, the output
watershed energy map, and the target energy map, respectively, while LBCE stands for the binary
cross entropy loss and LMSE stands for the mean square error loss function.

Due to the heterogeneity of cell size and density, the detection head cannot obtain valid gradients for
those images with few cells. To aid this issue, we add weight factors to the objectness loss based
on box amounts in each sample. Formally, for the k-th image Ik in the batch of size K, it will
contains nk bounding boxes, where 1 ≤ k ≤ K. Then the batch-wise weight factors wk of Ik can be

4



Segmentation
Prediction

SPPF

ResNet-18-SiLU

Layer 1

Layer 2

Layer 3

Layer 4

Detection
PredictionConv

ResNet Layer

CSP BottleNeck
SPPF

Inputs

Figure 2: The network is mainly adapted from YOLOv5-small and U-Net [3]. In the encoder, we only
replace ReLU with SiLU [16] of the pre-trained ResNet-18 backbone on ImageNet. The Segmentation
branch will generate pixel-wise predictions, i.e., for AWF, it will predict foreground probabilities and
watershed energy, while for the Omnipose model, it will compute boundary probabilities, foreground
probabilities, and Omnipose flow fields. The detailed structure of each module used in the network is
given in the A.1.

computed as follows:

wk =

{
0, nk = 0
1
nk

, nk > 0
, (2)

then an extra normalization is adopted over the wk:

w̃k =
wk∑K
k=1 wk

. (3)

Then the re-weighted objectness loss is calculated by Lobj =
∑

w̃kv
obj
k , where vobj

k is the objectness
loss of the k-th image. Finally, the detection loss is calculated as follows:

Ldet = Lobj + αLloc, (4)

where Lloc is a cIoU [17] loss to regress bounding boxes as YOLOv5 does, α is a hyperparameter to
balance Lobj and Lloc.

Then losses of the two heads are summed up to get the final loss:

L = Ldet + βLseg, (5)

where β is also a balance factor.

2.2.2 Omnipose Branch

For those images AWF cannot precisely segment, e.g., the removed training data in the pre-processing
step, we adopt the recently proposed Omnipose [1]. The Omnipose in our framework differs from the
official implementation in the following aspects: (i) We replace the official Omnipose model with our
AWF network for transfer learning; (ii) The foreground cell pixels are segmented straightforwardly
from the binary prediction instead of the hysteresis threshold on the predicted Euclidean Distance
Transform (EDT) map; (iii) Due to the modified learning targets of the method, the loss on the EDT
map is replaced with BinaryCrossEntropy.

2.2.3 Quality Estimation

To automatically select the better segmentation for cells with different morphology, in the inference
time, the quality of predictions from the two branches is estimated. The better one will be chosen as
the final result. In detail, the confidence-based quality is estimated with the average confidence of
the two branch predictions. Formally, for an input image I , both branches will output a map mAWF

5



(or mOmni) with pixel cell probability. Then the average foreground confidence C(m) of map m is
computed as follows:

C(m) =

∑H
i=1

∑W
j=1 mij ∗ 1(mij > 0.5)∑H

i=1

∑W
j=1 1(mij > 0.5)

, (6)

where 1() is the indicator function. The Omnipose prediction is chosen only when C(mAWF) < 0.8
or C(mOmni)− C(mAWF) > 0.05.

2.3 Post-processing

In the post-processing, two enhancements are proposed to the basic marker-based watershed segmen-
tation: (i) modality optimization; (ii) a two-step watershed algorithm.

Modality optimization. For better performance, the post-processing step is optimized for each
modality of the input image. To achieve this, we first classify all microscopy images into grayscale,
fluorescence, and brightfield. For grayscale input images, we predict masks with the grayscale-
optimized AWF model and Omnipose model, then choose the better result. At the same time, we
only adopt an optimized AWF model for acceleration for the other two modalities.

Two-step watershed algorithm. Marker-based watershed algorithm severely suffers from over-
segmentation due to false cell centers, especially in multi-scale settings. Therefore, we propose a
detection-based marker generation policy, which effectively reduces over-segmentation. However, the
non-max suppression will fail in cell clusters, where bounding boxes of cells naturally have relatively
high IoU. To solve all these problems, we design a two-step watershed algorithm. Firstly, a non max
suppression is applied to the predicted bounding boxes. After NMS operation, each box will at most
contain one cell and the box’s center can be selected as cell marker. After the first flood-fill pass
over regions with energy less than −E1, the remaining unlabeled regions with > 5 pixels and energy
lower than −E2 are selected as new markers. Then the second flood-fill pass is run to obtain the final
AWF segmentation.

Table 1: Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
RAM 128GB
GPU (number and type) Two NVIDIA GeForce RTX3090 24G
CUDA version 11.3
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.12.0, torchvision 0.13.0)
Specific dependencies numpy, opencv-python, PyYAML, scipy,

monai, scikit-image, edt, torch_scatter
Code Cell-Segmenter

2.4 Other Tricks

To improve generalizability on the unseen cells, a naive self-training is conducted over the complete
unlabeled training set. All given unlabeled whole slide microscopes are cropped into 640 × 640
patches before pseudo-label generation. In practice, we find the noisy pseudo label may destroy the
functionality of models on labeled data. Therefore, we oversample the labeled data to reduce the toxic
gradients from pseudo-label during self-training. In inference time, sliding window inference and
patch-wise NMS strategy are used to speed up inference time and reduce GPU memory consumption.
Besides, the Omnipose is only adopted in grayscale microscopy.

6



3 Experiments

3.1 Dataset

In the training stage, we adopt the following public datasets: Cellpose, Omnipose. The two datasets
are used to train Omnipose model to predict masks for cells with complex morphology. As for
pretrained models, the ResNet-18 backbone on ImageNet 1 is adopted for all models.

3.2 Implementation Details

In this section, we will introduce the implementation details of our framework, including training
environment, protocols and hyper-parameter settings.

3.2.1 Environment Settings

The development environments and requirements are presented in Table 1.

3.2.2 Training Protocols

Data Augmentation. In the training stage, we apply random geometric transformation for all
samples, including translation, scaling, rotation, shearing, and flipping. Meanwhile, we downsample
or upsample cells based on the average diameter in the image, e.g., any image with an average cell
diameter larger than 200px will be randomly downsampled to 0.125x, 0.25x, or 0.5x. Besides, the
random gamma operation is adopted to make the model robust to bad light conditions. For brightfield
microscopy images, we also adopt RandomColorJitter due to variations in the staining process.

Patch Sampling. During training, we apply the random padded crop with size 640 × 640 to the
transformed image and mask. Any boxes of cells with <20% pixels remaining will be omitted in
the detection loss. For those unlabeled whole slide images, we crop them into 640×640 patches for
acceleration. In the inference time, we adopt a 640 × 640 sliding window with an overlap factor of
0.125 and gaussian weights.

Model Selection. We never use early stopping and always choose the model with the complete
training.

Ensemble Model Training. To improve time efficiency, models adopted in the pipeline are learned
in a pretraining-finetuning way. After removing the noisy data in the training set, a baseline model is
trained on the labeled data. Then pseudo labels of unlabeled data are generated. Finally, four branch
models are trained with different settings. Here we give the main settings of our training process. For
details of hyperparameter settings, please refer to config files.

Table 2: Training protocols for baseline model.

Name Settings
Network initialization “he" normal initialization [18]
Batch size 32
Patch size 3×640×640
Total epochs 300
Optimizer SGD with nesterov momentum (µ = 0.9)
Initial learning rate (lr) 0.01
Lr decay schedule cosine annealing
Warmup 3 epochs
Training time around 80 hours
Loss function CrossEntropy loss and YOLOv5 detection loss
Number of model parameters 12.61M
Number of flops 41.9G

1https://download.pytorch.org/models/resnet18-5c106cde.pth

7



Table 3: Training protocols for general model finetuning. Unchanged parameters are not shown in
this table.

Name Settings
Total epochs 50
Initial learning rate (lr) 0.001
Warmup 1 epochs
Oversample 8x - 30x
Training time around 20 hours

Table 4: Training protocols for Omnipose model. Unchanged parameters are not shown in this table.

Name Settings
Total epochs 100
Initial learning rate (lr) 0.001
Training time around 10 hours
Loss function Modified Omnipose loss
Number of model parameters 12.61M
Number of flops 41.9G

4 Results and Discussion

In this section, we give the quantitive and qualitative experiment results on the TuningSet of the
CellSeg contest. An efficiency evaluation is also conducted.

4.1 Quantitative Results on Tuning Set

As shown in Table 5, the F1-Score of the proposed framework on TuningSet reaches 0.8452, which
verifies the effectiveness of our two-step watershed algorithm. Furthermore, the framework gains a
margin of 0.85% performance improvement after weakly training on each modality.

4.2 Qualitative Results on Tuning Set
Table 5: The ablation study of the proposed framework on TuningSet.

Labeled Two-step Watershed Weakly F1-score

✓ 0.8312
✓ ✓ 0.8452
✓ ✓ ✓ 0.8537

Figure 3 and 4 show some segmentation results of the AWF model in the proposed Cell Segmenter
on NeurIPS 2022 Cell Segmentation TuningSet. From the two figures, we discover that our AWF is
suitable for convex cells, regardless of their cluster degree. However, it has performs inferior in those
clustered mutant cells, especially when bounding box centers of the cells are not in the cell body.

4.3 Segmentation Efficiency Results on Tuning Set

In this section, we plot the running time of the Cell Segmenter on the local workstation. As shown in
Figure 5, most inference processes of images in TuningSet can finish in time tolerance. However,
some of the images still slightly exceed the tolerance, possibly due to our local machine’s low CPU
frequency. Besides, for whole slide images (image id: 101), we find most of the running time
(320.59 secs) is used in the watershed algorithm after non-max suppression (> 80%) due to the
single-threaded watershed implementation.

4.4 Results on Final Testing Set

Table 6 shows the performance of the proposed Cell Segmenter on the final test set. The weak
performance of fluorescence modality may come from some potential bugs.

8



Images Energy Cell Probability Final Prediction

Figure 3: Prediction and corresponding intermediate representation maps of images with a good
performance by the proposed AWF branch on the TuningSet. The ‘Energy’ column visualizes the
watershed energy of input images, and the red points in the map represent centers of detection boxes
before NMS operation.

Images Energy Cell Probability Final Prediction

Figure 4: Prediction and corresponding intermediate representation maps of images with an inferior
performance by the proposed AWF branch on the TuningSet. The ‘Energy’ column visualizes the
watershed energy of input images, and the red points in the map represent centers of detection boxes
before NMS operation.

Table 6: The quantitative results on the final test set.

F1-Score
Modality

Brightfield DIC Fluorescence Phase Contrast All
Median 0.9009 0.6614 0.0492 0.8901 0.7759
Mean 0.8911 0.6025 0.1983 0.7849 0.6216

9



Rank Running Time

0 sec <0.2 sec <0.4 sec <0.6 sec
8.5

10.5

12.5
14.5

16.5
18.5
20.5

5.00 5.50 6.00 6.50 7.00

tim
e(

se
cs

)

log(HW)

Running Time

Time Tolerance

Figure 5: Time Consumption on TuningSet.
4.5 Limitation and Future Work

The proposed framework still contains some limitations: (i) We solve the general cell problem
by adopting different methods on the different modalities, therefore the performance of the Cell
Segmenter is strongly affected by the Quality Estimator; (ii) the Omnipose performs relatively poorly
on large cells and is sensitive to post-processing; (iii) the NMS process for bounding boxes of
mutant cells will lead to under-segmentation for some tilted cells. In the future, we will focus on the
following directions: (i) morphology-independent marker synthesis for watershed segmentation based
on detection algorithm; (ii) the more effective constraint of energy map; (iii) a quicker post-processing
algorithm to reduce inference consumption.

5 Conclusion

In this paper, we propose a general cell segmentation framework for NeurIPS Weakly Supervised
Cell Segmentation in Multi-modality High-Resolution Microscopy Images, named Cell Segmenter.
To segment cells of arbitrary size and morphology, the whole pipeline automatically selects a suitable
branch based on the output of the Quality Estimator. For those cells of simple or mutant shape,
an Anchor-based Watershed Framework is used for size-irrelevant segmentation, while for those
elongated cells, the recent Omnipose framework is applied. The F1-score of our framework reaches
0.8537 on CellSeg TuningSet and 0.6216 on the final test set, which verify the effectiveness of the
proposed method.

Acknowledgement

The authors of this paper declare that the segmentation method they implemented for participation in
the NeurIPS 2022 Cell Segmentation challenge has not used any private datasets other than those
provided by the organizers and the official external datasets and pretrained models. The proposed
solution is fully automatic without any manual intervention.

References
[1] Kevin J Cutler, Carsen Stringer, Teresa W Lo, Luca Rappez, Nicholas Stroustrup, S Brook Pe-

terson, Paul A Wiggins, and Joseph D Mougous. Omnipose: a high-precision morphology-
independent solution for bacterial cell segmentation. Nature Methods, pages 1–11, 2022.

[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,

10



and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence,
40(4):834–848, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[7] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[8] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

[9] Hao Chen, Xiaojuan Qi, Lequan Yu, Qi Dou, Jing Qin, and Pheng-Ann Heng. Dcan: Deep
contour-aware networks for object instance segmentation from histology images. Medical image
analysis, 36:135–146, 2017.

[10] Swapnesh Panigrahi, Dorothée Murat, Antoine Le Gall, Eugénie Martineau, Kelly Goldlust,
Jean-Bernard Fiche, Sara Rombouts, Marcelo Nöllmann, Leon Espinosa, and Tâm Mignot.
Misic, a general deep learning-based method for the high-throughput cell segmentation of
complex bacterial communities. eLife, 10:e65151, sep 2021.

[11] Can Fahrettin Koyuncu, Gozde Nur Gunesli, Rengul Cetin-Atalay, and Cigdem Gunduz-Demir.
Deepdistance: a multi-task deep regression model for cell detection in inverted microscopy
images. Medical Image Analysis, 63:101720, 2020.

[12] Filip Lux and Petr Matula. Dic image segmentation of dense cell populations by combining
deep learning and watershed. In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 236–239, 2019.

[13] Adrian Kucharski and Anna Fabijańska. Cnn-watershed: A watershed transform with predicted
markers for corneal endothelium image segmentation. Biomedical Signal Processing and
Control, 68:102805, 2021.

[14] Noah F Greenwald, Geneva Miller, Erick Moen, Alex Kong, Adam Kagel, Thomas Dougherty,
Christine Camacho Fullaway, Brianna J McIntosh, Ke Xuan Leow, Morgan Sarah Schwartz,
et al. Whole-cell segmentation of tissue images with human-level performance using large-scale
data annotation and deep learning. Nature biotechnology, 40(4):555–565, 2022.

[15] Carsen Stringer, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist algorithm
for cellular segmentation. bioRxiv, 2020.

[16] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.

[17] Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu, and Wang-
meng Zuo. Enhancing geometric factors in model learning and inference for object detection
and instance segmentation. IEEE Transactions on Cybernetics, 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[19] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and
I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages
390–391, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep
convolutional networks for visual recognition. CoRR, abs/1406.4729, 2014.

11



A Appendix
A.1 Network Architecture
A.1.1 ResNet Layer, CSP BottleNeck, and SPPF
The ResNet Layer is a sequential container of Basic Residual Block, which is the same with
torchvision’s implementation.

The CSP BottleNeck, first proposed in [19], can be adopted to enhance the learning capability of
CNN. The implementation of this module comes from the YOLOv5 official repository, and we apply
it in the decoder architecture.

Spatial Pyramid Pooling [20] is an effective module to enhance the scale invariability of the CNN
model. We adopt a fast implementation presented in the YOLOv5 official repo, which replaces
multiscale pooling with iterative single-scale pooling.

A.1.2 Network Details

Table 7 is the configurations of each layers in the two networks. The ‘repeat’ argument of module
‘layer’ specifies the basic block number in single layer.

Table 7: The architecture detail of AWF model. ‘Conv’ represents a nonlinear Conv-BatchNorm-SiLU
block. ‘C3’ represents a CSP BottleNeck block. ‘SegDetect’ only contains two output Conv layers
for detection and segmentation. The Omnipose model will replace the final ‘SegDetect’ module with
a conv2d layer. For other detail of our model, please refer to the official implementation.

Index Module Input Arguments
0 Conv -1 in_channel=3, out_channel=64, kernel_size=7, stride=2, padding=3
1 MaxPool2d 0 kernel_size=3, stride=2, padding=1
2 Layer 1 in_channel=64, out_channel=64, repeat=2, stride=1
3 Layer 2 in_channel=64, out_channel=128, repeat=2, stride=2
4 Layer 3 in_channel=128, out_channel=256, repeat=2, stride=2
5 Layer 4 in_channel=256, out_channel=512, repeat=2, stride=2
6 SPPF 5 in_channel=512, out_channel=512, kernel_size=5
7 Conv 6 in_channel=512, out_channel=256, kernel_size=1, stride=1
8 Upsample 7 scale_factor=2, bilinear, align_corner
9 Concat 8, 4 dim=1

10 C3 9 in_channel=512, out_channel=256, shortcat=False
11 Conv 10 in_channel=256, out_channel=128, kernel_size=1, stride=1
12 Upsample 11 scale_factor=2, bilinear, align_corner
13 Concat 12, 3 dim=1
14 C3 13 in_channel=256, out_channel=128, shortcat=False
15 Conv 14 in_channel=128, out_channel=64, kernel_size=3, stride=1, padding=1
16 Upsample 15 scale_factor=2, bilinear, align_corner
17 Concat 16, 2 dim=1
18 C3 17 in_channel=128, out_channel=64, shortcat=False
19 Conv 18 in_channel=64, out_channel=64, kernel_size=3, stride=1, padding=1
20 Upsample 19 scale_factor=2, bilinear, align_corner
21 Concat 20, 0 dim=1
22 C3 21 in_channel=128, out_channel=64, shortcat=False
23 Upsample 22 scale_factor=2, bilinear, align_corner
24 SegDetect 14, 23 det: in_channel=128, out_channel=6, seg: in_channel=64, out_channel=2

A.2 The effectiveness of the Quality Estimator

In this section, we conduct a preliminary experiment to verify the effectiveness of the proposed
Quality Estimation module. In detail, we first split the training/validation datasets into two parts:
(i) better predictions with the AWF branch; (ii) better predictions with the Omnipose branch. Then
the mean quality of the two data splits is calculated with the two branches, respectively. As shown
in Table 8, there is a huge gap between the quality of the two branches on the ‘Omni’ split, which
verifies the QE module’s effectiveness.
Table 8: The mean prediction quality results of the two data splits predicted with the two models. The
‘AWF’ and ‘Omni’ in the second row mean the corresponding best model of the split. The leftmost
column describes the used model. For example, ‘0.931’ is the mean prediction quality of the ‘Omni’
split predicted with the Omnipose model on the training set.

Quality
Training Set Tuning Set

AWF Omni AWF Omni
AWF 0.939 0.931 0.900 0.831
Omni 0.606 0.849 0.626 0.932

12


	Introduction
	Method
	Pre-processing
	Cell Segmenter
	Anchor-based Watershed Framework
	Omnipose Branch
	Quality Estimation

	Post-processing
	Other Tricks

	Experiments
	Dataset
	Implementation Details
	Environment Settings
	Training Protocols


	Results and Discussion
	Quantitative Results on Tuning Set
	Qualitative Results on Tuning Set
	Segmentation Efficiency Results on Tuning Set
	Results on Final Testing Set
	Limitation and Future Work

	Conclusion
	Appendix
	Network Architecture
	ResNet Layer, CSP BottleNeck, and SPPF
	Network Details

	The effectiveness of the Quality Estimator


