Multi-stream Cell Segmentation with Low-level Cues
for Multi-modality Images

Wei Lou*, Xinyi Yu; Chenyu Liu , Xiang Wan, Guanbin Li, Siqi Liu, Haofeng Li'
Shenzhen Research Institute of Big Data,
The Chinese University of Hong Kong (Shenzhen)
lhaof@sribd.cn

Abstract

Cell segmentation for multi-modal microscopy images remains a challenge due
to the complex textures, patterns, and cell shapes in these images. To tackle the
problem, we first develop an automatic cell classification pipeline to label the
microscopy images based on their low-level image characteristics, and then train a
classification model based on the category labels. Afterward, we train a separate
segmentation model for each category using the images in the corresponding
category. Besides, we further deploy two types of segmentation models to segment
cells with roundish and irregular shapes respectively. Moreover, an efficient and
powerful backbone model is utilized to enhance the efficiency of our segmentation
model. Evaluated on the Tuning Set of NeurIPS 2022 Cell Segmentation Challenge,
our method achieves an F1-score of 0.8795 and the running time for all cases is
within the time tolerance.

1 Introduction

Cell segmentation is a common task in digital biomedical analysis. The goal of cell segmentation
is to label the contour of each cell. Segmenting cells is helpful for many healthcare and life
science applications, such as tumor detection, medicine customization, and the understanding of
cell population heterogeneity [1, 12} 13} 4,15,16,[7]. The common challenge for cell segmentation in
practice is that the microscopy image datasets are usually comprised of multi-modal images. The
images from different modalities could have various textures, patterns, cell size/shape, and usually
lack the annotations of modality. It is difficult to achieve satisfying generalization on a multi-modal
cell segmentation dataset using only a single model.

Therefore, we propose that the images with similar low-level features are suitable to form a group.
It is conducive to the convergence by training a segmentation model with such an image group. To
achieve robust image classification for testing images, we automatically label all the training images
into four groups (namely, categories) in an unsupervised manner, and then train a simple image
classification model. Each testing image is sent into the classifier to predict the image category,
and then sent into the cell segmentation model that is trained for that category. Besides, we find
that different segmentation methods show the performance diversity on the images with various
low-level features. The methods regressing the distances to polygon boundaries may be unsuitable
for segmenting the cells with irregular shape and low convexity. Therefore, we design a class-wise
multi-stream cell segmentation framework to tackle the difficulties of the task. In the proposed
framework, for most of the classes with roundish cells, we deploy Stardist [8] models to segment the
cell instances. For the cell class with irregular and high-concavity shapes, we use a Hover-net [9]]
model. All these models are first trained using the whole training set, and then fine-tuned with the

*Equal Contributions
fCorresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

images of the corresponding class that is assigned to the model. Moreover, we deploy a simple and
efficient backbone model ConvNeXt [[10] to raise the performance and efficiency of the segmentation
model. In this paper, our contributions can be summarized as follows:

» We design an automatic cell image classification pipeline to classify the multi-modal datasets
into four categories based on low-level visual cues, and then train a robust CNN classifier.

* We integrate two advanced segmentation models for different image categories, by utilizing
their advantages in segmenting cells of low- or high-convexity shapes.

* We deploy an efficient backbone model that boosts the segmentation performance and
reduces the inference time.

2 Method

The proposed method contains two parts: 1). Automatic cell image classification; 2). Class-wise
multi-stream cell segmentation. In the step of automatic cell classification, all labeled or unlabelled
images are classified into four categories based on low-level patterns such as color and cell size. In
the step of class-wise multi-stream cell segmentation, we use a specific model for the cells of each
category. In the training stage, all the models are trained with the whole dataset, and fine-tuned with
the images of the corresponding class, respectively.

2.1 Automatic cell image classification

The whole automatic cell image classification pipeline can be described as three steps: 1). Pseudo
segmentation label synthesis. 2). Unsupervised cell image classification. 3). Deep classification
model training. In this work, we utilize four datasets, the dataset of the Cell Segmentation Challenge
and three public datasets (Cellpose [11], Omnipose [12], Sartorius [13]).

! Step 1. Pseudo label synthesis

1
! Inference |
! i . . Unlabeled images !
| All labeled images Train Cell instance i
i Pseudo pairs ;
i

-Labeled pairs |:> segmentation model
. Pseudo labels
True labels

Class 0

1

I .

1

’ ;

I . .

Train |

T Class Deep classification | ;

N _:> :

Big-cell I_IT'| Class 2 | model |
1. I

1
small-cell |~ Class 3| ;
1. N

Labeled pairs

Pseudo pairs

Figure 1: The automatic cell image classification.

The unsupervised classification for cell images is based on low-level features including the character-
istics of cell masks. To make use of unlabeled images, we need to synthesize pseudo labels [[14} 6] of
cell instance segmentation, which is shown as Step 1 in Figure[I] In the pseudo-labeling method,
a fully-supervised segmentation model is trained with all the labeled data, including three public
datasets. Then the trained segmentation model can predict cell instances for each unlabeled image.
Those predicted cell instances are pseudo labels. In the step of pseudo label synthesis, we adopt a
modified Stardist model called ConvNeXt-Stardist as the supervised segmentation model to produce
the pseudo labels. The details of the segmentation model are in Sec.[2.2]

In the step of unsupervised classification, we first divide the labeled and pseudo pairs from all the
datasets into binary and RGB images, according to the number of image channels. All the binary
images with a single channel are classified into Class 0. Second, we convert these RGB images to
HSV color space, and separate them into gray and color images using S (saturation) and V (value). If
the mean saturation of an image is larger than ¢ and the mean value of the image is within a range
of (as,0y), then it is classified as a gray image (Class 1). Otherwise, it is regarded as a color image.

Third, we categorize the color images according to the maximum cell area in each image. If the
maximum cell area of a color image is larger than o pixels, the color image is classified into the
category of large-cell images (Class 2). Otherwise, the color image is categorized into the group
of small-cell images (Class 3). Finally, all the images in the four datasets are separated into binary
images (Class0), gray images (Class1), large-cell images (Class2), and small-cell images (Class3)
automatically.

In the step of deep classification model training, we train a ResNet18 [[15] image classifier by using the
unsupervised classification results as labels so that the CNN classifier can robustly predict the category
of testing images. We set the output channels of ResNet18 to 4, and take the modified ResNet18 as
the image classifier. The input of the classification model is an image of shape 3 x 224 x 224 and the
output contains the probabilities of belonging to each category. We divide all the images labeled in
the unsupervised classification stage into training and validation sets to train the deep CNN classifier.

2.2 Class-wise multi-stream cell segmentation framework

For microscopy images of different categories, we design a class-wise multi-stream cell segmentation
framework to better utilize the advantages of different segmentation models. In the proposed
framework, we modify two instance segmentation methods [8} 9] and integrate them with a powerful
but efficient backbone network ConvNeXt [10]. The modified models are called ConvNeXt-Stardist
and ConvNeXt-Hover, respectively.

1 .
- ConvNeXt-Unet 1 1 ConvNeXt-Stardist

-
i Input !

! i
: Stem Decoder-Block0 | | 1
! i
| | ConvNeXt-Staged é) !
| t !
! o
i
i
i

ConvNeXt
-Unet

Decoder-Blockl

Horizontal / Vertical
distance map

Cell probability map

Figure 2: The architectures of ConvNeXt-Stardist and ConvNeXt-Hover. Note that the ConvNeXt-
Unets used in these two models are independent and have different model weights.

ConvNeXt-Unet We deploy a U-net [16, [7] architecture as the segmentation framework, as shown
in Figure 2] To maintain the segmentation performance and efficiency, we utilize the ConvNeXt-
small [[10] network as the encoder. The encoder consists of a stem layer and four ConvNeXt stages.
The decoder contains four Conv-Relu-BN blocks. The number of ConvNeXt blocks in four stages is
[3, 3, 27, 3]. The stem layer is a 4 x 4 convolution layer with a stride of 4. Each Conv-ReLU-BN
block contains two 3 x 3 convolution layers. Each convolution layer is followed by a ReLLU activation
function and a batch normalization layer. The input of the ConvNeXt-Unet is of shape 3 x H x W
and the output feature is of shape C' x % X %.

ConvNeXt-Stardist We observe that most of the cells in Class 0,2,3 are of roundish shapes that
can be well described or approximated by a star-convex polygon. Thus, we combine the prediction
heads of the Stardist [8]] model with the ConvNeXt-Unet feature extractor to segment cell instances.
The ConvNeXt-Stardist model utilizes two prediction heads (Prob head and Dist head) to output
an object probability map p of shape 1 x H x W and a distance map d of shape R x H x W. R
is the number of rays to build a star-convex polygon. H and W denote the height and width of
the input image. The object probability of a pixel is defined as the normalized smallest Euclidean
distance to the background region. d; € d is a vector of shape R x 1, which contains R predicted
Euclidean distances between the i‘" pixel and the object boundary in R directions. Each prediction

head contains an x4 upsampling layer, a 1 x 1 convolution layer, and a nonlinear activation function.
The Prob head and Dist head adopt Sigmoid and ReL.U as the activation function, respectively.

The loss function consists of two parts. The first part is the cross entropy (CE) loss: Lop =
—% Zivzl P;log P}, it is computed between the predicted probability map P and the ground
truth probability P*. The second part consists of the Dice loss and MAE loss: Lpj.. =
1— 2x 30 (df xdi)+e

Zﬁv=1 df+Efv=1 di+e
input image. They are calculated between the predicted distance map d and the ground truth distance
map d*. The weights for CE loss, Dice loss and MAE loss are 1, 1, and 0.3, respectively. For
post-processing, we perform non-maximum suppression (NMS) [17] to preserve the cell objects with
high object probabilities and remove the highly overlapping cells.

and Lyag = % i, |df —d;|. N denotes the number of pixels in the

ConvNeXt-Hover Since Stardist is designed for the cells with convex-polygon shapes, it is un-
promising to segment irregular cells that account for a considerable proportion of Class 1. Thus, for
Class 1 we resort to HoverNet [9] that segments a cell via its horizontal and vertical distance maps
(HV map). These two distance maps measure the horizontal and vertical distances from each cell
pixel to its cell center, respectively. Both high and low-convexity cell shapes could be predicted by
HoverNet. To exploit the strength of the ConvNeXt-small backbone, we replace the Stardist heads in
ConvNeXt-Stardist with the HoverNet heads to build the ConvNeXt-Hover network, instead of using
multiple decoders as the original HoverNet. The prediction heads of ConvNeXt-Hover produce a cell
pixel (CP) map of shape 2 x H x W, and the distance maps of shape 2 x H x W. The CP map predicts
the probability of each pixel being within a cell. Each prediction head in ConvNeXt-Hover contains a
x4 upsampling layer and a 1 x 1 convolution layer. The prediction heads of ConvNeXt-Hover are
the HV head and CP head, which adopt Identity and Softmax as the activation function, respectively.

The same CE loss and Dice loss used in ConvNeXt-Hover are computed for the predicted CP
map. The mean squared error (MSE) loss: Ly s = % va:l (p'»“’ — I‘i)2 is calculated for the

predicted horizontal/vertical distance maps p"* and the ground truth I'. N denotes the number of
pixels in the input image. The mean squared gradient error (MSGE) loss is defined as Ly;sgg =
LS ien (Va (PY) — Ve (l“w))2 + L5 e (Vy (o) =V, (I‘w))2 m denotes the number
of nuclei pixels and M denotes the set containing all these nuclei pixels in the input image. The
MSGE loss is computed between the gradients of predicted HV maps and the ground truth, V,
and V, are the gradients in the horizontal and vertical directions, respectively. The weights for the
above four losses are set to 1. For post-processing, we perform the marker-controlled watershed
algorithm [18]] using the predicted CP map and HV maps to separate overlapping cells.

2.3 Training and inference scheme

We train four cell segmentation models to segment the four categories, respectively. For Class 0, 2,
3, we first pre-train a ConvNeXt-Stardist model using all the labeled images. Then we utilize the
pre-trained model weights to fine-tune three ConvNeXt-Stardist networks (denoted as Model 0, 2, 3)
using the images of the corresponding category (Class 0, 2, 3), respectively. For Class 1, we pre-train
a ConvNeXt-Hover model with all labeled images, and then fine-tune the model (denoted as Model 1)
using only the images of Class 1. During the inference stage, a testing image is classified by the deep
classification model trained in Sec. [2.1] and then is processed by the trained segmentation model that
has the corresponding categorical label with the testing image.

3 Experiments
3.1 Dataset

Table 1: The datasets and the numbers of samples used in the competition.

Datasets Training Validation Tuning
Cell-seg competition 800 200 101
Cellpose 608 - -
Omnipose 735 - -
Sartorius 606 - -

During the training, We combine the dataset provided by the challenge organizer with 3 different
public datasets, Cellpose [[L1], Omnipose [12] and Sartorius[ﬂ The dataset provided by the organizer
consists of four microscopy modalities including Brightfield (300 images), Fluorescent (300 images),
Phase-contrast (200 images) and Differential interference contrast (200 images). The Cellpose
dataset [[L1] consists of fluorescently labeled proteins that localized to the cytoplasm with or without
4,6-diamidino-2-phenylindole- (DAPI-) stained nuclei in a separate channel (316 images), 50 images
of cells from brightfield microscopy, 58 images of membrane-labeled cells and 86 microscopy images
of other types. Besides, Cellpose includes 98 nonmicroscopy images such as fruits, rocks and jellyfish
for better generalization ability. The Omnipose dataset [12]] is based on two publicly available
microscopy datasets [19,20]. The Satorius dataset is from a Kaggle competition and consists of three
neuronal cell types, including 320 Cortical neurons (Cort), 155 ShsySy, and 131 astrocytes (Astro)
samples.

We randomly select 200 samples from the dataset provided by the competition organizer as the
validation set, and the rest samples plus the public dataset are used as the training set. The tuning set
provided by the competition is used as a testing set. Resulting in 2749 training cases, 200 validation
cases, and 101 testing cases. In our implementations, we adopt the Imagenet-pretrained [21]] model
weights to initialize the ConvNeXt encoder.

3.2 Evaluation Metrics

Mean F1 score The metric is defined as the harmonic mean of the model’s precision and recall.
Precision is the fraction of true positive samples among the predicted cell instances. Recall is the
fraction of true positive samples among the ground truth cells. A true positive sample is a predicted
cell instance whose largest IOU with some ground truth cell is more than 0.5.

Real running time The running time of starting a docker container and inferring an image.

Out-of-tolerance running time If the real running time is within the time tolerance, then the out-of-
tolerance running time is 0. Otherwise, the out-of-tolerance (Out-of-Tol) running time is obtained by
subtracting the time tolerance from the real running time. The time tolerance is proportional to the
image size if the image size is more than 1,000,000 otherwise 10 seconds.

3.3 Implementation details

The development environments and requirements are shown in Table[2] Some training details are
shown in Table[3l

Table 2: Development environments and requirements.

System Linux

CPU Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
RAM 16x4GB; 2.67TMT/s

GPU (number and type) 8x NVIDIA V100 32G

CUDA version 11.3

Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.12, torchvision 0.13.0)

Data augmentation 8 data augmentation techniques are used sequentially, which are RandSpatial-
Crop, RandAxisFlip, and RandRotate90 with probability 0.5, RandGaussianNoise with probability
0.5, RandAdjustContrast, RandGaussianSmooth, and RandHistogramShift with probability 0.25,
RandZoom with min_zoom as 0.5 and max_zoom as 2.

Hyper-parameters In the unsupervised classification step of the automatic cell classification pipeline,
the threshold of Saturation € is set to 0.1 and the range of Value (as,qq) is set to (0.1,0.6). The
area threshold to divide large/small cells is denoted as o and is set to 8000. In the ConvNeXt-
Stardist network, the number of rays R is set to 32. In the non-maximum suppression of the
ConvNeXt-Stardist, we set the object probability threshold to 0.5 and the IOU threshold to 0.4. In the
marker-controlled watershed algorithm of ConvNeXt-Hover, we set the probability threshold of cell
pixels to 0.6.

"https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview

Table 3: Training protocols.

Cell image classification model Cell segmentation models
Network initialization ImageNet-pretrained ResNet18 ImageNet-pretrained ConvNeXt-small
Batch size 64 16
Patch size 224 x 224 512 x 512
Total epochs 20 800
Optimizer SGD AdamW
Initial learning rate 0.001 0.0001
Lr decay schedule decay by a factor of 10 every 7 epochs halved by 200 epochs
Training time 17 minutes 72 hours
Stopping criteria Train for 20 epochs Train for 800 epochs
Model selection criteria Accuracy on the validation set F1 score on the validation set

Pre-processing During the training, we randomly sample 512 x 512 image patches. In the inference
stage, we use a sliding window to crop image patches of size 512 x 512 with a step of 384. Data
augmentations are not used in the testing.

Post-processing For the ConvNeXt-stardist output, we perform non-maximum suppression
(NMS) [17] to obtain the cells with the highest object probabilities and discard highly-overlapping
objects. For the ConvNeXt-Hover, we perform the marker-controlled watershed algorithm [18] using
the predicted CP map and HV maps to separate overlapped cells.

4 Results and discussion

4.1 Performance of the deep classification model

The classification model used in this method is ResNet18 [13]], and the classification accuracies for
four classes are 99.48%, 84.51%, 100% and 98.89%, respectively. The overall classification accuracy
on the validation set is 97.91%. Note that the overall classification accuracy is not the mean value of
the accuracy of the four classes. It is defined as the percentage of correctly classified image numbers
over all the validation images. Figure[3|shows some classification results using the well trained deep
classification model.

Class 1

~ Class 0

Figure 3: Selected results of cell image classification on the validation set.

4.2 Effectiveness of class-wise finetuning and model combination

We conduct ablation studies on the validation set and the tuning set to evaluate the effectiveness
of the class-wise multi-stream framework. In Table@ F§, Fl, F, F} are the F1 score for four
classes on validation set. F! and F}! are the mean F1 score on the validation set and tuning Set.

‘ConvNeXt-Stardist-Pretrained’ and ‘ConvNeXt-Hover-Pretrained” represent the ConvNeXt-Stardist
and ConvNeXt-Hover models trained on all the labeled images. ‘ConvNeXt-Stardist-Finetuned’ and
‘ConvNeXt-Hover-Finetuned’ are the models of two segmentation methods fine-tuned on the images
of different classes. Firstly, comparing the mean F1 score on the tuning set of two pre-trained models
and the fine-tuned models, the class-wise fine-tuning can improve the segmentation performance by
1.96% or 5.81%, respectively. The results show that the class-wise fine-tuning is useful in this multi-
modal cell segmentation task. Secondly, compared with the tuning set F1 score of the segmentation
models ‘ConvNeXt-Stardist-Finetuned’ and ‘ConvNeXt-Hover-Finetuned’, our framework achieves
1.55% and 1.91% F1 score improvement, respectively. The improvement suggests that combining
different segmentation models that are trained for different classes is effective. On the validation set,
‘ConvNeXt-Stardist” shows better segmentation results on Class 0,3, and ‘ConvNeXt-Hover’ performs
better on Class 1,2. However, since we use the F1-scores on the tuning set Ft1 as the model selection
metrics. In our final solution, we use ConvNeXt-Stardist for Class 0,2,3 and ConvNeXt-Hover for
Class 1. ‘Ours-(Hover for Class 2)’ denotes changing the Class 2 model in ‘Ours’ to ConvNeXt-Hover,
which is slightly worse than ‘Ours’ in F!.

Table 4: Effectiveness of class-wise multi-stream cell segmentation framework. ’Pretrained’ mean
that the model is trained using all the labeled images, including the competition dataset and public
datasets. 'Finetuned’ represents that the models are fine-tuned using images of different classes.
’Ours’ is the final model that uses ConvNeXt-Stardist-Finetuned for Class 0,2,3 and ConvNeXt-
Hover-Finetuned for Class1.
F} F F} Fl F! Fl
ConvNeXt-Stardist-Pretrained | 0.9105 | 0.7626 | 0.8177 | 0.8582 | 0.8771 | 0.8444
ConvNeXt-Hover-Pretrained | 0.8930 | 0.8572 | 0.8340 | 0.8180 | 0.8552 | 0.8023
ConvNeXt-Stardist-Finetuned | 0.9320 | 0.8281 | 0.8625 | 0.8647 | 0.8866 | 0.8640
ConvNeXt-Hover-Finetuned | 0.9206 | 0.8565 | 0.8927 | 0.8454 | 0.8869 | 0.8604

Ours-(Hover for Class 2) 0.9320 | 0.8565 | 0.8927 | 0.8647 | 0.8897 | 0.8764

Ours with unlabeled data 0.8821 | 0.8534 | 0.8777 | 0.8709 | 0.8735 | 0.8695

Ours 0.9320 | 0.8565 | 0.8625 | 0.8647 | 0.8875 | 0.8795

4.3 Quantitative results on the tuning set

The F1 score of our method on the tuning set is 0.8795. Note that the segmentation models in our
pipeline are trained with only the labeled data, without using any unlabeled data. For training the
deep cell image classifier, we use unlabeled data. We find that using or not using unlabeled data will
achieve exactly the same classification results on the tuning set. When the segmentation models are
fixed, the same image classification results lead to the same cell segmentation scores. We hope that
the deep image classifier can enjoy better generalization ability on testing sets, so we still choose to
use unlabeled data for the classifier training.

Use of unlabeled data in cell segmentation We perform the pseudo-label [14] method to use the
unlabeled data. The pseudo labels are obtained by inferring unlabeled images with the ConvNeXt-
Finetuned models. Then these unlabeled images are classified into four classes by our deep clas-
sification model and mixed with the labeled images. These mixed images and their pseudo-labels
are used for finetuning the ConvNeXt-Stardist-Finetuned/ConvNeXt-Hover-Finetuned models. The
segmentation results are shown as ‘Ours with unlabeled data’ in Table] The results show that using
the unlabeled data with the Pseudo-labeling method does not enhance the segmentation performance
in our solution.

4.4 Qualitative results on the validation set

The visual results in Figure] show that our method works well not only on the microscopy images
with densely distributed cells, but also on the images with sparsely distributed objects. However,
in some cell types like Figure[5(a), our method may miss some cells. Meanwhile, our method may
predict false positives or fail to segment some cells for the images with bright foregrounds and dark
backgrounds, like Figure[5(b). The failures may be due to the lack of training data that belong to this

type.

Figure 5: Poor segmentation results.

4.5 Segmentation efficiency on the tuning set

The out-of-tolerance running time of our method on all the 101 cases in the tuning set is zero in our
local workstation. Table 5] shows the time tolerance and real running time of some images in the
tuning set. With the increase of the image size, the real running time is increasing but within the time
tolerance.

Table 5: The running time of selected images in the tuning set. ‘Out-of-Tol. RT” denotes the running
time out of the time tolerance.

Name Size Time tolerance (s) | Real Running Time (s) | Out-of-Tol. RT (s)
cell_00001 640%480 10 9.36 0
cell_00009 | 3000*3000 90 13.52 0
cell_00033 1266*944 12 9.72 0
cell_00073 | 2048*2048 42 11.9 0
cell_00101 | 10496*8415 883 388 0

4.6 Results on the final testing set

In Table 6, our solution shows outstanding segmentation performance on Brightfield and Phase-
contrast images. The mean F1-score and median F1-score are all over 0.8. However, our solution

Table 6: The median and mean F1-score for each modality of our solution on the final testing set.
‘BF’, ‘DIC’, ‘Fluo’, ‘PC’ represents Brightfield, Differential interference contrast, Fluorescent and
Phase-contrast modalities.

Team Name | Median F1-All | Median F1-BF | Median F1-DIC | Median F1-Fluo | Median F1-PC
0.8474 0.91 0.7496 0.6645 0.8878
sribdmed Mean F1-All Mean F1-BF Mean F1-DIC Mean F1-Fluo Mean F1-PC
0.7846 0.9002 0.6903 0.6963 0.8044

has difficulty in segmenting the cells from Differential interference contrast and Fluorescent images
precisely. Overall, our solution obtains competitive results for processing multi-modality images with
the Median F1-All score of 0.8474 and the Mean FI1-ALL score of 0.7846.

4.7 Limitation and future work

In the future, we may develop more semi-supervised methods to further enhance the segmentation
performance of our proposed method. Besides, it is possible to improve the segmentation by using
multiple decoders or other decoder structures. We may investigate if using more low-level attributes
to define more categories can further improve the segmentation performance.

5 Conclusion

In this work, we introduce an automatic cell classification pipeline and a class-wise multi-stream
cell segmentation framework to solve the multi-modal cell segmentation task. The proposed method
shows great generalization and performance on different types of cells and maintains high efficiency.
We believe that our framework can serve as a strong baseline model for the cell segmentation task.

Acknowledgement

The authors of this paper declare that the segmentation method they implemented for participation in
the NeurIPS 2022 Cell Segmentation challenge has not used any private datasets other than those
provided by the organizers and the official external datasets and pretrained models. The proposed
solution is fully automatic without any manual intervention. This work is supported by Chinese
Key-Area Research and Development Program of Guangdong Province (2020B0101350001), the
National Natural Science Foundation of China (No.62102267), Guangdong Basic and Applied Basic
Research Foundation (2023A1515011464), and the Guangdong Provincial Key Laboratory of Big
Data Computing, The Chinese University of Hong Kong, Shenzhen.

References

[1] Tim Prangemeier, Christoph Reich, and Heinz Koeppl. Attention-based transformers for instance
segmentation of cells in microstructures. In International Conference on Bioinformatics and
Biomedicine (BIBM), pages 700-707. IEEE, 2020.

[2] Michael Y Lee, Jacob S Bedia, Salil S Bhate, Graham L Barlow, Darci Phillips, Wendy J
Fantl, Garry P Nolan, and Christian M Schiirch. Cellseg: a robust, pre-trained nucleus seg-
mentation and pixel quantification software for highly multiplexed fluorescence images. BMC
Bioinformatics, 23(1):1-17, 2022.

[3] Jing Sun, Attila Tarnok, and Xuantao Su. Deep learning-based single-cell optical image studies.
Cytometry Part A, 97(3):226-240, 2020.

[4] Tim Prangemeier, Christian Wildner, André O Frangani, Christoph Reich, and Heinz Koeppl.
Multiclass yeast segmentation in microstructured environments with deep learning. In Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
pages 1-8. IEEE, 2020.

[5] Markus Leygeber, Dorina Lindemann, Christian Carsten Sachs, Eugen Kaganovitch, Wolfgang
Wiechert, Katharina Noh, and Dietrich Kohlheyer. Analyzing microbial population hetero-
geneity—expanding the toolbox of microfluidic single-cell cultivations. Journal of Molecular
Biology, 431(23):4569-4588, 2019.

[6] Wei Lou, Haofeng Li, Guanbin Li, Xiaoguang Han, and Xiang Wan. Which pixel to annotate: a
label-efficient nuclei segmentation framework. IEEE Transactions on Medical Imaging, 2022.

[7] Hong-Yu Zhou, Chengdi Wang, Haofeng Li, Gang Wang, Shu Zhang, Weimin Li, and Yizhou Yu.
Ssmd: semi-supervised medical image detection with adaptive consistency and heterogeneous
perturbation. Medical Image Analysis, 72:102117, 2021.

[8] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. Cell detection with
star-convex polygons. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 265-273. Springer, 2018.

[9] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee Wah Tsang, Jin Tae
Kwak, and Nasir Rajpoot. Hover-net: Simultaneous segmentation and classification of nuclei in
multi-tissue histology images. Medical Image Analysis, 58:101563, 2019.

[10] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11976-11986, 2022.

[11] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist
algorithm for cellular segmentation. Nature Methods, 18(1):100-106, 2021.

[12] Kevin J Cutler, Carsen Stringer, Teresa W Lo, Luca Rappez, Nicholas Stroustrup, S Brook Pe-
terson, Paul A Wiggins, and Joseph D Mougous. Omnipose: a high-precision morphology-
independent solution for bacterial cell segmentation. Nature Methods, pages 1-11, 2022.

[13] Sartorius. Sartorius - cell instance segmentation. [Online]. https://www.kaggle.com/
competitions/sartorius-cell-instance-segmentation.

[14] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on Challenges in Representation Learning, ICML,
volume 3, page 896, 2013.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770-778, 2016.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical Image Computing
and Computer-assisted Intervention, pages 234-241. Springer, 2015.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in Neural Information Processing
Systems, 28, 2015.

[18] Jierong Cheng, Jagath C Rajapakse, et al. Segmentation of clustered nuclei with shape markers
and marking function. IEEE Transactions on Biomedical Engineering, 56(3):741-748, 2008.

[19] Avelino Javer, Michael Currie, Chee Wai Lee, Jim Hokanson, Kezhi Li, Céline N Martineau,
Eviatar Yemini, Laura J Grundy, Chris Li, QueeLim Ch’ng, et al. An open-source platform for
analyzing and sharing worm-behavior data. Nature Methods, 15(9):645-646, 2018.

[20] Vebjorn Ljosa, Katherine L Sokolnicki, and Anne E Carpenter. Annotated high-throughput
microscopy image sets for validation. Nature Methods, 9(7):637-637, 2012.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248-255, 2009.

10

https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation
https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation

	Introduction
	Method
	Automatic cell image classification
	Class-wise multi-stream cell segmentation framework
	Training and inference scheme

	Experiments
	Dataset
	Evaluation Metrics
	Implementation details

	Results and discussion
	Performance of the deep classification model
	Effectiveness of class-wise finetuning and model combination
	Quantitative results on the tuning set
	Qualitative results on the validation set
	Segmentation efficiency on the tuning set
	Results on the final testing set
	Limitation and future work

	Conclusion

