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Abstract

Cell segmentation is an important initial task in medical image analysis, and
in recent years, data-driven deep learning methods have made groundbreaking
achievements in this field. In this challenge, a multi-modal and partially labeled
dataset is provided. In this paper, we propose a multi-modality cell segmentation
framework called Re-Unet, which is based on the nnU-Net pipeline and an iterative
self-training method. Re-Unet enriches the original data and fully considers the
information of cell intervals while making full use of the semi-supervised data.
Our proposed method achieves a mean F1 score of 0.6101 on the tuning set and a
F1 score of 0.4492 on the testing set.

1 Introduction

Identifying clear cellular trends from microscopy images is a task of great importance as the basis for
a variety of biomedical applications[1, 2, 3]. Because of sensitive nature and privacy concerns of
Medical Image Analysis, researchers usually get dispersive, sometimes multi-source samples. With
the development and wide application of deep learning in vision tasks[4, 5, 6], related models are
widely used in microscope image analysis and have achieved outstanding results.

Besides, it’s extremely time-consuming for doctors to accurately annotate the images. These lead to a
multi-modality and semi-supervised segmentation task. As the samples are independently collected
from different centers, we need to address big modality gap. We also want our model be robust to
new modalities. These requires high-level comprehension from our model. Besides, less than half of
the cases are labeled, so semi-supervised methods must be applied to utilize the unlabeled samples.

Weakly Supervised Cell Segmentation in Multi-modality High-Resolution Microscopy Images was
hosted at NeurIPS 2022 to solve this porblem. Provided with 1000 labeled images and 1700+
unlabeled datasets, the competition is currently performing instance segmentation on cell data of
different microscope types, staining types, and tissue types.

In this paper, we propose a model named Reunet for multimodal semi-supervised cell-instance
segmentation. We first construct a fully-supervised model on labeled samples using nnU-Net [7].
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To further improve boundary performance, we apply weight map [6]. After fine-tuning, we fuse
the model into an iterative self-traning framework [8] to make use of the unlabeled cases. Finally,
we convert our semantic segmentation results to instance segmentation result depending on the
connectivity between the pixels. The remainder of this paper includes: 2.Method that introduces our
method in detail, 3.Experiments that shows experimental details, 4.Results and discussion that shows
the model performance and further discussions and 5.Conclusions.

2 Method

We use nnU-Net [7] as the backbone network for our approach. Firstly, we fine-tune the u-net
model on the labeled samples. To improve boundary performance, we incorporate weight map [6]
to emphasize the boundary loss. Furthermore, we employ a self-training-based semi-supervised
framework [8] to utilize the unlabeled samples.

2.1 Preprocessing

Following preprocessing methods provided officially, we first create interior maps with instance seg-
mentation masks. Specifically, we assign cell interior with 1, background with 0 and boundary with 2.
By this means, we formulate our task as a pixel-wise 3-class classification problem. By differentiating
boundary and interior pixels, we hope to detect overlapping cells in instance segmentation phase.

Second, we perform channel normalization on sample images to alleviate modality gaps. Given a
3-channel image, for each channel, if not empty, we linearly re-scale pixel intensities into interval
0 ∼ 255. Finally, to make them compatible with nnU-Net, we convert both the sample images and
masks into .nifti format.

2.2 Proposed Method

In recent years, convolutional neural networks have significantly improved medical image segmen-
tation. In 2015, U-Net [6] was proposed, and its variants have continued to improve segmentation
performance in medical image settings. In 2018, nnU-Net [7], which integrates certain network
designing principles, achieved state-of-the-art performance without manual tuning. Due to its self-
adapting property and multiple data augmentations, we have built our model based on nnU-Net. To
optimize boundary performance, we apply weight maps [6] to encourage the loss function to focus
on boundary quality. Overall, we utilize the above network in a self-training-based semi-supervised
framework to make use of unlabeled data.

2.3 Network Architecture

Our model is based on the generic U-Net architecture, which includes skip connections between
different resolution stages of the encoder and decoder. Both the encoder and decoder are composed of
stacks of convolutional blocks. In the encoder, we use 9 convolutional blocks, each of which consists
of two sets of consecutive 3 × 3 convolution layers followed by instance normalization and leaky
ReLU activation. We also include dropout layers. In the decoder, we use 8 convolutional blocks, each
of which takes the output of the previous block, upsamples feature maps with a 2 × 2 transposed
convolutional layer, and concatenates the output with the corresponding shortcut output from the
encoder. We then feed the concatenated features into a convolutional block similar to the blocks in
the encoder.

2.4 Weight Map

Due to the variety in modality, it is challenging to accurately detect cell boundaries. To address this,
we adapted the weight map method proposed in [6] to emphasize boundary loss, forcing the network
to learn more about boundary features. A weight map for a case is an array with the same size as the
case image, which gives a weight for the loss of each pixel. To emphasize boundary areas, we give
boundary pixels more weight than background and cell interior pixels. Following [6], we define the
weight map of a case x as

w(x) = wc(x) + w0 · exp
(
− (d1(x) + d2(x))2

2σ2

)
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Figure 1: Network architecture. in every convolution block, the kernel size and output channel
number is given. ’Tconv’ denotes transposed convolution layer. The arrows denote data flows, and
dotted lines shows skip connections between encoder and decoder.

where wc(x) denotes the class-balanced map, where we assign each pixel with the inverse of the area
that the class of the pixel accounts for. d1(x) and d2(x) denote the distance to the boundary of the
nearest and second nearest cells, respectively. We set w0 = 10 and σ = 5. In the training phase, we
compute weight maps beforehand to prevent extra time cost.

2.5 Loss function

Our loss function is composed of the unweighted summation of the Dice loss and cross-entropy loss.
This has been proven to be robust for various medical image segmentation tasks [9]. Following [7],
we use the multi-class version of the Dice loss variant proposed in [10], which is defined as

LDice(u, y) = − 2

|C|

C∑
c

∑N
i ui,cyi,c∑N

i ui,c +
∑N

i yi,c
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The cross-entropy loss can be written as

LCE(y, ŷ) = − 1

N

N∑
i

C∑
c

Iyi,c=1log(ŷi,c)

where N denotes the total pixel number of a case, C denotes number of classes. yi,c is the one-hot
encoding of the ground truth mask. ŷi,c denotes the network output, the logit probability of that pixel
i belongs to class c. And ui,c is the softmax output of ŷi,c.

The Dice loss is weighted in response to weight map method. When calculating true positive, true
negative, false positive and false negative arrays, we multiply them with the weight map in pixel-wise
manner.

The total loss function is
LTotal = LDice + LCE

2.6 Semi-supervision strategy

To utilize the unlabeled cases, we employ an iterative self-training framework [8]. We first fine-tune
U-Net with weight map on the labeled cases, which serves as the initial ’teacher network’. The
learned network then generates pseudo-annotations for the unlabeled cases. The pseudo-labels are
thresholded into one-hot vectors. With the labeled and pseudo-labeled cases, we re-train the teacher
network to obtain the updated ’student network’. This re-training process is repeated iteratively, with
the updated student network serving as the new teacher network until convergence.

2.7 Result conversion

In this section, we convert our semantic segmentation results to instance segmentation result. Specifi-
cally, we divide the cell part into different connected blocks and label them according to connectivity
between the pixels. In the same time, we will convert the nnU-Net result format to standard result
format.

Re-UnetLabeled Data Unlabeled DataTraining

Iteration

Predicting

Figure 2: Schematic diagram of the iterative structure of the entire model. Our final model parameters
are the structure obtained after 3 iterations

3 Experiments

3.1 Dataset

We trained our model using only the official training set. The labeled images were used to train the
basic nnU-Net model, while the unlabeled images were used to train the final nnU-Net model.
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3.2 Implementation details

We use SGD[11] optimizer with an initial learning rate of 1e-2 in traing baseline, and 3e-3 infine-
tuning. The code in implemented using PyTorch[12] and nnU-Net[7] with somie midifications. The
base model structure is from nnU-Net[7]. We use 1 RTX3090 cards for training. More details are
showed in followed sections.

3.2.1 Environment settings

The development environments and requirements are presented in Table 1.

Table 1: Development environments and requirements.

System Ubuntu 18.04.6 LTS
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
RAM 125GB
GPU (number and type) Four NVIDIA GeForce RTX 3090 24G
CUDA version 11.4
Programming language Python 3.7.13
Deep learning framework Pytorch (Torch 1.12.1, torchvision 0.13.1)
Code nnU-Net

3.2.2 Training protocols

Our training process consists of two parts: Baseline and Retraining. We use the Baseline model
to generate a template mask for unlabeled images and then use these masks to train the Retraining
model. The main training protocols are presented in Tables 3 and 4. Since our model is based on the
nnU-Net baseline, the data augmentation and other processing methods are dependent on it.

Data augmentation (Based on the winning solutions in FLARE 2021, we recommend using extensive
data augmentation)

patch sampling strategy during training (e.g., randomly sample 1024× 1024 patches) and inference
(slide window with a patch size 1024× 1024)

optimal model selection criteria

Table 2: Training protocols. If the method includes more than one model, please present this table for
each model seperately.

Network initialization “he" normal initialization
Batch size 2
Patch size 80×192×160
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 72.5 hours
Number of model parameters 41.22M1

Number of flops 59.32G2

Preprocess We used the official method to normalize the images and converted the labels to three
classes: cell, boundary, and background. The image and labels were then converted to the ".nii.gz"
format with three modalities.

Data augmentation All of the augmentation methods we used depend on nnU-Net. We randomly
crop the images to fit the size 1024×1024. Then we apply the following transformation methods to
enhance the images, including mirror transform, gamma enhancement, rotate, scale, gauss and
so on.
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Deep Supervision In order to train the model effectively, we utilize Deep Supervision to calculate
the loss. For the upsampling results of each size in nnU-Net, we convert them to the output space and
calculate loss between corresponding size targets and the output.

Model Selection All model parameters are determined using 5-fold cross-validation. After finding
the best model, the nnU-Net combines the 5 folds together and applies post-processing methods such
as removing small connected components to enhance the model performance.

Predict After finding the best model, we can apply it to the testing images to obtain the segmentation
result. We convert the result to three channels where each channel represents one of the three classes:
cell, boundary, and background. We differentiate different cells by using the boundary channel, which
separates the cells from each other.

Table 3: Training protocols for Baseline.

Network name Baseline
Batch size 2
Patch size 3×1024×1024
Total epochs 5×500
Cross-Validation 5 fold
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 250 epochs
Training time 42 hours
Loss function CrossentropyLoss and DiceLoss
Number of model parameters 52.56M
Number of flops 262.61G

Table 4: Training protocols Retraining.

Network name Retraining
Batch size 2
Patch size 3×1024×1024
Total epochs 5×200
Cross-Validation 5 fold
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.003
Lr decay schedule halved by 100 epochs
Training time 16 hours
Loss function CrossentropyLoss and DiceLoss
Number of model parameters 52.56M
Number of flops 262.61G

4 Results and discussion

4.1 Quantitative results on tuning set

Our F1 score on tuning set is 0.6101. If we only use the labeled cases (fully-supervised), the F1 score
on tuning set is 0.6021. With our semi-supervised framework, though without many iterations, the
unlabeled cases do provide useful information.

4.2 Qualitative results on validation set

We show an example of good segmentation results and an example of bad segmentation results are
shown in Fig 2 and 3.
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Figure 3: An example of good segmentation results.

Figure 4: An example of bad segmentation results.

4.3 Segmentation efficiency results on validation set

The total running time on tuning set on our own work station is 656s. This time is the running time of
the whole pipeline, including the time for data preprocessing and enhancement. The time of the core
reasoning part is far less than this value.

4.4 Testing Results

Testing Results are shown in table 5

Table 5: Testing Results

Median F1-ALL Median F1-BF Median F1-DIC Median F1-Fluo Median F1-PC
0.4492 0.5889 0.4183 0.0274 0.6831
Mean F1-ALL Mean F1-BF Mean F1-DIC Mean F1-Fluo Mean F1-PC
0.4397 0.6247 0.4203 0.1159 0.5882

4.5 Limitation and future work

The way we utilize the unlabeled cases is still naive. Self-training method is an entropy minimization
problem, but lacks prior knowledge. We believe that the segmentation performance can be further
improved with introduction of carefully-designed restrictions. In the future, we should look deeper
into the mathematical structures of these restrictions and form new models. Besides, medical images
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can have very large size, which requires faster interference. We will put our efforts in the acceleration
of the model in the future.

Furthermore, we hope to develop targeted data augmentation models based on data characteristics
in the future. Our model does not deeply mine the characteristics of different modality data. Using
generative models to generate data from different modalities may further improve our results.

It is worth mentioning that although we use a semi-supervised method to mine the information of
unlabeled data, its improvement in accuracy is very limited and does not bring fundamental changes.
We expect methods like self-supervised learning[13, 14, 15] to bring more improvements.

5 Conclusion

This paper proposes a multi-modality cell segmentation framework based on the nnU-Net pipeline.
We apply the weight map method to improve boundary performance and utilize unlabeled cases with
the self-training method. Our Re-Unet model achieves a F1 score of 0.6101 on the tuning set and
0.4492 on the testing set. Our model fully considers the information of cell intervals and enriches the
original data. The self-iterative model is used to make full use of semi-supervised data. However, we
did not overcome the heterogeneity of the mode and failed to make effective adjustments to the data
center. Future work should focus on efficiently exploiting multimodal and unlabeled data features
based on Re-Unet.
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