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Abstract

Many clinical and biological tasks depend on accurate cell instance segmenta-
tion. Currently, the rapid development of deep learning realizes the automation
of cell segmentation, which significantly decreases the workload of clinicians
and researchers. However, most existing cell segmentation frameworks are fully
supervised and modality-specific. Towards this end, this paper proposes a semi-
supervised cell instance segmentation framework for multi-modality microscope
images. Firstly, K-Means clustering is utilized to discriminate the image modality.
Then, for phase contrast and differential interference contrast images, Cellpose
is adopted. For brightfield images, we subdivide them into two sub-categories
according to the cell diameter by K-Means and optimize a U-Net for the large
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diameter group. For fluorescence images, we propose a semi-supervised learning
strategy using CDNet. The leaderboard shows that our proposed framework reaches
an F1 score of 0.8428 on the tuning set, which ranks 6th among all teams.

1 Introduction

Cell segmentation is the prerequisite for many diagnostic and biological tasks [1, 2]. Accurate cell
segmentation not only improves the clinicians’ and researchers’ qualitative understanding of the
change in cell distribution in different diseases but also enhances their comprehension of how different
diseases affect the cell number, diameter, direction, and other texture features quantitatively. There-
fore, cell segmentation advances researchers’ and clinicians’ understanding of disease pathogenesis,
which helps them achieve more accurate diagnosis and treatment options [3, 4, 5].

Traditionally, pathologists have to identify and analyze cells manually under a microscope. However,
due to the dense cell distribution and the heterogeneity of cell morphology, it is very time-consuming
and laborious to observe cells by eyes [6]. The digitalization of pathological images has promoted the
emergence and development of computational pathology, making it possible to use computer vision
methods such as deep learning to realize automated cell segmentation, which significantly facilitates
the pathologists and researchers and reduces their workload [7].

However, most of the existing automated cell segmentation methods are based on fully supervised
frameworks, which require accurate cell segmentation masks for training [8, 9]. Due to the enormous
scale difference between the pathological tissue slides and the cells, it is a complicated and laborious
task to perform accurate cell annotation [10, 11]. In addition, due to the professionality of pathological
images, it is not feasible to utilize distributed annotation strategies popular in natural image annotation,
such as crowdsourcing [12, 13]. In order to solve this problem, some researchers tried to train cell
segmentation networks under a semi-supervised paradigm, which uses a small amount of labeled
data and a large amount of unlabeled data to reduce the annotation burden [14, 15].

Besides the issue of lack of annotations, another challenge in cell segmentation comes with the
variety of image modalities. In addition to the most common H&E-stained images, phase contrast
[16], differential interference contrast (DIC) [17], brightfield [18], and fluorescence [19] are the
most frequently used image modalities in the diagnosis. Pathology images with different modalities
play different roles in disease diagnosis and biology analysis. For example, non-invasive imaging
methods such as phase contrast and DIC are needed in some diagnostic procedures to avoid the
staining of cell specimens, which will lead to cell death [20, 21]. However, pathological images
with different modalities have significant differences and inconsistencies in cell morphology, image
illumination, contrast, color, cell size, etc. Because most existing cell segmentation methods only
focus on a single modality, different segmentation methods need to be used for pathological images
with different modalities, which is not only troublesome for deployment but also needs comprehensive
parameter tuning and selection, making it time-consuming and complex. Therefore, if a unified cell
segmentation framework can be designed for diverse modalities, the speed and efficiency of cell
instance segmentation can be improved.

To solve the above problems, this paper proposes a framework for cell instance segmentation based on
semi-supervised learning. The proposed framework can be simultaneously applied to multi-modality
images, including brightfield, phase contrast, DIC, and fluorescence images, by only using a small
number of fine-grained annotated images and a large number of unlabeled images. The contributions
of this paper can be concluded as the following three aspects.

• A novel semi-supervised cell instance segmentation framework is designed for multi-
modality pathological images. The modality of a given pathological image is judged
by the unsupervised clustering method K-Means [22]. Images with different modalities are
fed into a corresponding segmentation model for training and inference.

• The cell segmentation of multi-modality images is realized by an ensemble of Cellpose [23],
U-Net [24], and CDNet [25]. Besides, two different semi-supervised learning strategies are
adopted to fully utilize the unlabeled images to improve cell segmentation performance.

• Experiments show that the proposed framework can achieve an F1 performance above 0.80
on the tuning set, which ranks 6th among all teams in the challenge.
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Figure 1: The overall architecture of our proposed framework for semi-supervised cell segmentation.

2 Method

2.1 Framework Overview

The challenge’s objective is to solve the semi-supervised cell segmentation problem for four differ-
ent image modalities, namely, brightfield, DIC, phase contrast, and fluorescence, under a unified
segmentation framework. Considering the vast differences among the cell morphologies of the four
modalities, it is difficult to solve the segmentation problem with a single model. To address this issue,
we first utilize K-Means, an unsupervised clustering method, to classify the imaging modality. Then,
different models are trained separately for each modality. The overall architecture of our framework
is shown in Figure 1. There is one segmentation way for each modality, and in each way, we utilize
one or two models for cell instance segmentation.

Considering that the cells in the brightfield images have varied cell diameters from approximately
20 pixels to 200 pixels, we further divide the brightfield images into two subcategories according to
the cell diameter. A Cellpose model is utilized to segment the large-diameter subgroup, and a U-Net
model is adopted for the small-diameter subgroup. For the fluorescence modality, the cells are small
and dense, which makes cell segmentation quite similar to nucleus segmentation and hard for Cellpose
to perform well. Therefore, we choose a state-of-the-art (SOTA) nuclear instance segmentation model
called CDNet for fluorescence images. For the phase contrast and brightfield modality, which have
medium cell shapes, we train two different Cellpose models. Different hyperparameters are tuned
and utilized for each modality according to its particular cell morphology.

2.2 K-Means Clustering

Because manual annotations are strictly forbidden in the challenge, supervised models cannot be
utilized to classify images with different modalities. Considering that the differences among the
four modalities are enormous, it is possible to use unsupervised methods to realize classification.
Specifically, K-Means is utilized for classification in our framework.

In the training phase, we transform the images in the training set (including labeled and unlabeled
data because clustering does not require labels) from the RGB space to the HSV space. Then, the
mean and variance of the HSV channels are calculated as the clustering features. Next, K-Means is
adopted to find the center points of the features corresponding to these four modalities. In the testing
phase, we calculate the feature vector of each input image and its Euclidean distance to the four
centers. The cluster center closest to the feature vector of the input image is found, and the cluster is
treated as the corresponding category of the input image.

3



2.3 Segmentation of Phase Contrast and DIC Images

In our framework, Cellpose is utilized to segment phase contrast and DIC images. Cellpose models
are pre-trained on the Livecell dataset and can achieve SOTA segmentation performance on test
images with very little user-provided training data, making Cellpose a general cell segmentation
model that can provide excellent out-of-the-box results. More precisely, Cellpose composes a deep
neural network with a U-Net style architecture and residual blocks and predicts a probability mask
of a pixel inside a cell and the distances of pixels towards the center of a cell inX andY axes.
Eventually, the probability masks and the distances are fused to construct the cell instance masks.

Since Cellpose is pre-trained on the Livecell dataset, which is composed of phase contrast images, it
shows extraordinary performance on the phase contrast images in the challenge. Besides, we �nd that
DIC images can be segmented accurately after �ne-tuning the Cellpose model. Thus, we directly use
and �ne-tune the Cellpose models for phase contrast and DIC Images.

However, as phase contrast and DIC images share similar color features, we �nd thatK -Means
has a decreased classi�cation accuracy for them. To solve this problem, we additionally train a
general model using the images from the phase contrast and DIC modalities. When the number of
detected cells in the mask is small (< 10) after inference, we assume there is a high probability of
misclassi�cation, and the general model is used for inference again.

Besides, for Cellpose models, we use a pre-trained model to generate pseudo-masks for unlabeled
images and then train models on unlabeled images with pseudo-masks. Finally, we �ne-tune them
with the labeled images as a cycle.

2.4 Segmentation of Bright�eld Modality

For the bright�eld modality, there are several challenges to realizing the segmentation. Firstly, the
cell diameters in the bright�eld images vary a lot. Statistically, the cell diameters of the bright�eld
modality distribute from approximately 20 pixels to 200 pixels. Secondly, cytoplasm and nucleus are
stained separately with different colors, which signi�cantly enhances the probability of misclassifying
the nucleus as cells.

Figure 2: Varieties of different images of the bright�eld modality. (a) is a bright�eld image with
a large cell diameter of approximate 200 pixels. The cytoplasm and nucleus are also stained with
different colors. (b) represents a bright�eld image with much smaller cells with around 20-pixel
diameters. The blue-colored cell is surrounded by a large number of red, circle-shaped backgrounds.

In order to solve the problems mentioned above, we �rst divide the cell images into two subcategories
with K -Means. The mean and variance of RGB values are treated as the features for clustering here.
After clustering, we �nd that one cluster (subcategory) has a larger cell diameter and many cells
overlap, as shown in Figure 2(a). Another subcategory is with smaller and more dispersed cells, as is
shown in Figure 2(b). For the former subcategory, we choose the Cellpose model for segmentation,
as we found that Cellpose performs better on large cells. For the other subcategory, U-Net is utilized
as the segmentation model with VGG16 encoders. We utilize both the dice loss and the cross-entropy
loss for training the U-Net. Technically, the loss of the U-Net is de�ned as:

L U-Net = L dice + L ce; (1)
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whereL dice andL ce represent dice loss and cross-entropy loss, respectively.

2.5 Segmentation of Fluorescence Modality

Fluorescence images are characterized by large cell number, small cell size, blurred cell borders,
and high cell overlapping ratio, as shown in Figure 3. These features make cell segmentation in
�uorescence images very similar to nuclear segmentation. CDNet [25] is a model for nuclear instance
segmentation that constructs direction difference maps according to the centripetal direction feature
of cell instances, aiming to learn the direction features of pixels pointing to the corresponding
cell instance center. Therefore, CDNet can distinguish the overlapping cells and achieve SOTA
performance in nuclear segmentation, and we adopt it for the cell segmentation of �uorescence
modality.

Figure 3: The image of �uorescence modality. (a) is the original �uorescence image. In the image,
cell boundaries are blurred by black pixels. Besides, the green-colored cell cytoplasm overlaps the
blue-colored cell nucleus. (b) is the corresponding cell segmentation instance map. The background
is colored black, cell boundaries are colored yellow, and cell interiors are colored green.

Figure 4: The cross supervision strategy for semi-supervised training.

To fully use the given unlabeled data of the �uorescence modality, we further develop a semi-
supervised training strategy, as shown in Figure 4. Speci�cally, during the training phase, we
initialize two CDNet instancesf (1) andf (2) simultaneously. For the labeled images, we feed the
training images into the two CDNets. Then, the dice and cross-entropy loss are utilized for full
supervision between the prediction and the ground-truth mask as

L ( i )
l = L dice(ŷ( i ) ; y) + L ce(ŷ( i ) ; y); i = 1 ; 2; (2)

whereŷ( i ) stands for the predicted mask of thei th CDNet, and the ground-truth mask is denoted by
y.

For unlabeled data, color augmentation is applied to the input images. Then, the pseudo-masks
generated by the two CDNets are regularized by a cross-constraint regularity to train the other network.
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We take the cross-entropy loss for the regularity, which is calculated by

L (1)
u = L ce(ŷ(1) ; one_hot(ŷ(2) )) ; (3)

and
L (2)

u = L ce(ŷ(2) ; one_hot(ŷ(1) )) ; (4)
where one_hot transforms the predicted probabilities into one-hot segmentation masks.

Finally, the total loss for �uorescence image segmentation is de�ned as

L ( i )
u = L ( i )

l + �L ( i )
u ; i = 1 ; 2; (5)

where� is the weight of the loss for unlabeled data. It is set to0:1 in our experiment.

2.6 Inference Acceleration Strategy

Since the testing images are predicted by the docker one by one, the main time consumption during
inference comes from importing packages and loading models, which takes about 9 seconds on
average. To improve the inference speed, we do the clustering �rst, and then load the corresponding
model, which means we only need to load one model instead of four and can accelerate the inference
procedure.

3 Experiments

3.1 Dataset and Implementation Details

We use both the labeled and unlabeled data given by the challenge. To improve the generalizability
of our models, we enlarge our dataset by adding part of the images from the Cellpose dataset [23]
and the Ominipose dataset [26]. The development environments and requirements are presented in
Table 1.

Table 1: Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
RAM 16� 4GB; 2.67MT=s
GPU (number and type) One NVIDIA GeForce RTX 3090
CUDA version 11.4
Programming language Python 3.7
Deep learning framework Pytorch [27] (Torch 1.10, torchvision 0.11.1)
Code https://github.com/shinning0821/nips_cellseg

3.2 Environment Settings

3.2.1 Training Protocols

Data AugmentationWhen training the Cellpose models, no data argumentation is utilized. When
training the U-Net and the CDNet, we use data argumentation, including af�ne transformation,
random �ipping, random blurring, and color jittering.

Patch Sampling StrategyIn the training phase, we train the Cellpose models with the original
images without considering the image size. For the U-Net trained on bright�eld images, we crop
all images to patches sized512� 512. For CDNet trained on the �uorescence images, the patch
size is256� 256. In the inference phase, the patch size of the sliding window is the same as in the
training phase for each model. Detailed training protocols of U-Net, CDNet, and Cellpose models
are demonstrated in Table 2.

Optimal Model Selection Criteria For the Cellpose models, we use the default model selection
criteria in Cellpose. For U-Net and CDNet, we split the training set, and 80% of the images in the
training set are fed into the models for training. The remaining 20% images are used for validation.
Then, the model with the best F1 score on the validation set is selected as the optimal model.
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Table 2: Training protocols of U-Net, CDNet, and Cellpose. The number of parameters and FLOPs
for Cellpose are unable to obtain due to the encapsulation of the Cellpose model.

Method U-Net CDNet Cellpose
Network

initialization
random

initialization
random

initialization
pretrained
on Livecell

Batch size 8 16 8
Patch size 3 � 512� 512 3� 256� 256 the whole image

Total epochs 20 20 100

Optimizer
Adam [28]

with nesterov momentum
(� = 0 :99)

Adam [28]
with nesterov momentum

(� = 0 :99)
SGD

Initial learning
rate (lr) 0.0005 0.0005 0.01

Lr decay schedule halved by 20 epochs halved by 20 epochs halved by 20 epochs
Training time about 2 hours about 2.5 hours about 10 minutes

Loss function
cross-entropy &

dice loss
cross-entropy &

dice loss
cross-entropy &

dice loss
Number of

model parameters 20.27M 20.47M N/A

Number of FLOPs 377440.17M 148073.35M N/A

Table 3: Ablation studies on using unlabeled data for semi-supervised training.

Fluorescence Image Phase Contrast ImageBright�eld Image
add unlabeled data

mDice 0.8773 0.8948 N/A N/A N/A N/A
mPrecision 0.6860 0.7037 0.8728 0.8709 0.9296 0.9332

mRecall 0.7756 0.7767 0.8279 0.8390 0.8344 0.8366
mF1-score 0.7220 0.7320 0.8433 0.8484 0.8599 0.8621
mInstDice 0.7887 0.8084 0.8276 0.8344 0.8536 0.8560

4 Results and Discussions

4.1 Quantitative results on tuning set

The F1 score of our proposed framework on the tuning set is 0.8428, which ranks 6th among all
teams. Ablation studies for the two semi-supervised strategies are conducted to show the effect of
utilizing unlabeled data. The effects of utilizing unlabeled data for semi-supervised training are
shown in Table 3. For the �uorescence modality, we generate patches from the unlabeled whole
slide images. For the phase contrast and DIC images, we use the unlabeled patches given by the
challenge. Furthermore, we �nd that the semi-supervised strategy works poorly on the bright�eld
images. Therefore we do not apply semi-supervised learning for bright�eld, and only the labeled
bright�eld images are utilized. From the results, it can be concluded that unlabeled data slightly
improves the performance for all three modalities. Speci�cally, the performance enhancement of the
�uorescence images is much more evident than in other modalities.

4.2 Qualitative results on tuning set

Among the four modalities, the proposed model performs best on the �uorescence modality since the
adopted CDNet and our semi-supervised training strategy deal with overlapped cells superiorly, as
shown in Figure 5. Our model has a good performance for phase contrast and DIC modalities as well,
as illustrated in Figure 6.

However, some things could still be improved for our framework. For example, the proposed
framework performs poorly when dealing with cells that do not exist in the training dataset, as
shown in Figure 7. Besides, the performance on the bright�eld modality is not ideal as well. As
demonstrated in Figure 8, some cells are ignored by our framework, and some nuclei are segmented
as cells. This issue is due to the resolution difference between images in the training set and the

7



Figure 5: One example with good segmentation result. (a) is the original image that comes from the
tuning set. (b) is the corresponding mask predicted by our model.

Figure 6: Another example with good segmentation result. (a) is the original image that comes from
the tuning set. (b) is the corresponding mask predicted by our model.

Figure 7: One example with poor segmentation result. (a) is the original image that comes from the
tuning set. (b) is the corresponding mask predicted by our model.

tuning set, which leads to a signi�cant difference in the cell diameter. There are some differences
in cell morphology during training and validation as well, which poses signi�cant challenges to the
generalization of the model. Therefore, better solutions are still required to address these issues.

4.3 Segmentation ef�ciency results in the tuning set

For the small images, because we adopt the inference acceleration strategy, a more ef�cient inference
can be obtained in practice. Overall, the average real running time for small images is around 20
seconds. For whole slide images, we use a sliding window inference strategy together with the
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