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Abstract

Automatic cell segmentation enjoys great popularity with the development of deep
learning. However, existing methods tend to focus on the binary segmentation
between foreground and background in a single domain, but fail to generalize
to multi-modality cell images and to exploit numerous valuable unlabeled data.
To mitigate these limitations, we propose a Modality-aware Anti-ambiguity U-
Net (MAUNet) in a unified deep model via an encoder-decoder structure for
robust cell segmentation. The proposed MAUNet model enjoys several merits.
First, the proposed instance-aware decode endows pixel features with better cell
boundary discrimination capabilities benefiting from cell-wise distance field. And
the ambiguity-aware decode aims at alleviating the domain gap caused by multi-
modality cell images credited to a customized anti-ambiguity proxy for domain-
invariant learning. Second, we prepend the consistency regularization to enable
exploration of unlabeled images, and a novel post-processing strategy to incorporate
morphology prior to cell instance segmentation. Experimental results on the official
validation set demonstrate the effectiveness of our method. Code and models are
available at https://github.com/Woof6/neurips22-cellseg_saltfish.

1 Introduction

Cell segmentation plays a vital role in medical image analysis, which is usually the first step for
downstream single-cell analysis in microscopy image-based biology and biomedical research [1, 2, 3].
However, manual delineation is impractical since cell image datasets can be petabytes in size.
Recently, with the development of computer vision, deep learning technology has been widely used
in the field of semantic segmentation [4, 5, 6, 7, 8]. Inspired by the conspicuous achievements
of natural image segmentation, researchers are resorting to deep learning to achieve automatic
cell segmentation [9, 10, 11]. However, since the complexity of cell microscopic images (e.g.,
inhomogeneous illumination, diverse cell appearance, adherent cells), how to fully exploit valuable
information from complicated cell images for accurate segmentation is thus extremely challenging.

Top-performing cell segmentation methods [12, 10, 13, 14, 15] tend to utilize the binary mask to
represent the cells, concentrating on distinguishing between foreground and background but neglecting
to focus on the edges of cells. To exploit more cell prior information, some methods [16, 17] consider
using cell boundaries to further impose constraints, but they struggle to discriminate between different
individual cell entities, leading to sub-optimal results ascribed to simple classifiers utilized. Some
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methods [18, 19] introduce predicting the distance-transform map for joint learning to improve the
performance, but they only consider this shape prior as an auxiliary task in the training phase, while
we further take full advantage of it in the inference stage based on image morphological processing to
enhance segmentation results. In other words, these methods can neither deal with the phenomenon of
cell adhesion nor handle the massive differences in cell morphology, resulting in instance confusion.

In this paper, we propose a solution to the NeurIPS 2022 Cell Segmentation Challenge [20] which
aims at efficiently segmenting cell instances in multi-modality microscopy images (see Figure 1a),
contains massive labeled and unlabeled data for microscopy biology and biomedical research. Starting
from the characteristics of the competition data, we deem that two aspects need to be considered.
Multi-modality ambiguity. It is essential to differentiate the features near the decision boundary of
the model in the feature space. Due to the large gap among the modalities of microscopy images, the
distribution of pixel features from different domains is of great variety. As shown in Figure 1b, the
model which usually separates foreground and background well on certain domains tends to suffer
from ambiguity in the domains close to the decision boundary. This ambiguity will lead to not only
poor performance in these indistinguishable regions but also inferior generalization ability of models
in other domains. Utilization of unlabeled data. It is vital to make full use of the precious unlabeled
data in the model training process. Limited labeled data will lead to the risk of model underfitting and
overfitting, while unlabeled data is relatively easier to obtain, containing more beneficial information
that can be mined.
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Figure 1: Illustration of our motivation. (a) shows the multi-modality cell images, including
brightfield, fluorescent, differential interference contrast, and Phase-contrast. (b) shows the model
that usually separates foreground and background well in certain domains tends to suffer from
ambiguity on the domains close to the decision boundary. (c) shows the customized anti-ambiguity
proxy for domain-invariant learning to mitigate the domain gap caused by multi-modality cell images.

Based on the above discussion, we propose a Modality-aware Anti-ambiguity U-Net (MAUNet),
which consists of a representation encoder, an instance-aware decoder, and an ambiguity-aware
decoder. In the representation encoder, we obtain multi-scale features from different stages of the
CNN backbone [21, 22] for fine-grained cell representation. In the instance-aware decoder, we
introduce the cell-wise distance field prediction to better distinguish each cell instance. Specifically,
we fuse the hierarchical features derived from the representation encoder to obtain high-resolution
pixel-level features following U-Net [12]. Then we feed the features into a regression head to get the
distance of each pixel from the background region, which is used in the post-processing to alleviate
the problem of cell adhesion. In the ambiguity-aware decoder, we propose an anti-ambiguity proxy
to improve decision boundary discrimination capabilities in different domains, resulting in the explicit
foreground, background, and boundary mask. As shown in Figure 1(b), the classifier can not separate
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foreground pixels and background pixels in some specific domains (e.g., Domain B and C). As shown
in Figure 1(c), the anti-ambiguity proxy serves as an additional class to push foreground pixels and
background pixels away in the confusion area. Thus we can learn features with better-discriminating
properties across different domains and alleviate the performance degradation caused by inter-domain
varieties. Additionally, we attempt to implement the semi-supervised learning strategy based on
consistency regularization (CR) [23] for training to exploit the abundant unlabeled data. Based on the
cell masks and distance fields output by two decoders, we propose a novel post-processing process to
capture the cell morphology and predict each cell instance segmentation. Our main contributions are
summarized as follows:

– We propose a novel Modality-aware Anti-ambiguity U-Net (MAUNet) in a unified deep model via
an encoder-decoder structure for robust cell segmentation. The proposed instance-aware decode
endows pixel features with better boundary discrimination capabilities. And the ambiguity-aware
decode aims at alleviating the domain gap credited to a customized anti-ambiguity proxy for
domain-invariant learning.
– We prepend the consistency regularization to enable exploration of unlabeled images, and a novel
post-processing strategy to incorporate morphology prior to cell instance segmentation.
– Experimental results on the official validation set demonstrate the effectiveness of our method.

2 Method

In this paper, we devise a Modality-aware Anti-ambiguity U-Net (MAUNet) including a representation
encoder, an instance-aware decoder, and an ambiguity-aware decoder (see Figure 2). For each cell
image, we perform preprocessing (Sec. 2.1) to normalize the image and obtain image features by
representation encoder (Sec. 2.2.1), and then the resultant features are endowed with better cell
boundary discrimination capabilities benefiting from the the instance-aware decoder (Sec. 2.2.2).
Furthermore, assembled with the ambiguity-aware decoder (Sec. 2.2.3), the domain gap caused
by multi-modality cell images can be alleviated credited to a customized anti-ambiguity proxy for
domain-invariant learning. Besides, we prepend the consistency regularization (Sec. 2.2.4) to enable
exploration of numerous unlabeled cell images. Finally, a novel post-processing strategy (Sec. 2.3) is
developed to capture the cell morphology and predict each cell instance segmentation.

2.1 Preprocessing

We apply normalization to the images before they are fed into the network. In detail, We transform
the images from grayscale mode to RGB mode firstly by copying images by three times and stacking
them in channel dimensions. Then we scale the intensity level of the RGB images to the range of
[0.01, 0.99]. For the cell instance labels, we convert them into three semantic categories: cell interior,
boundary, and background. In view of the differences in the resolution of images and the size of
cells, we adaptively set the thickness of the cell boundary according to the size of each cell instance:
ti =

√
Si

20 , where Si denotes the number of pixels for the i-th cell instance. Then we generate the
corresponding distance transformation for pixels belonging to each cell instance: di = 1

1+αβγ , where
α = 1√

Si
, γ represents the distance between every pixel in i-th cell to the center of the cell, and β is

a hyper-parameter (we set to 1) to control the distribution of di. For those pixels of the background,
the value of distance transformation is 0.

2.2 Modality-aware Anti-ambiguity U-Net

2.2.1 Representation Encoder

The representation encoder aims at extracting multi-scale cell representation, which is compatible
with any backbone architecture. To reduce the computational cost, we use the convolution-based
backbone ResNet50 [21] and WideResNet50 [22] pretrained on ImageNet [24] to obtain generic
hierarchical feature representation. We remove the last stage of WideResNet50 [22] in order to make
its number of parameters close to that of ResNet50 [21].
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Figure 2: Network architecture of the MAUNet, which consists of a representation encoder, an
instance-aware decoder, and an ambiguity-aware decoder.

2.2.2 Instance-aware Decoder

The instance-aware decoder is responsible for predicting cell-wise distance field by the upsampling
pathway following U-Net [12]. Concretely, features with different resolutions extracted by the
representation encoder are fed to the instance-aware decoder via skip connection. Features from
stage i of the encoder are reshaped to the size of H

2i ×
W
2i and input into the residual block composed

of two convolutional layers with 3× 3 kernel, followed by an instance normalization layer. Then,
the resolution of the feature maps is increased by a factor of 2 using a deconvolutional layer and the
output is concatenated with the one of the previous stages. Repeatedly, the concatenated features are
fed into the next residual block. Finally, we utilize a regression head, which is implemented by a
1× 1 convolution layer, to predict the cell-wise distance field (i.e., the distance of each pixel from the
background region).

2.2.3 Ambiguity-aware Decoder

The ambiguity-aware decoder is responsible for predicting the foreground, background and boundary
mask through a similar upsampling architecture with the instance-aware decoder followed by three
classification heads. However, since the dataset includes images from different domains, the centroids
of features vary with domains. When we push away centroids of two categories (i.e., foreground and
background) in one modality, the centroids in another modality may be pulled close, leading to poor
discrimination. Besides, when the data is from an unknown domain, the learned classifier has no
ability for domain generalization without extra domain constraints.

To alleviate the multi-modality ambiguity problem, we propose an anti-ambiguity proxy to improve
decision boundary discrimination capabilities in different domains. We assume that there exists a
domain-invariant category and introduce a proxy to represent it. By pushing features away from
the proxy, it will provide the common reference for multi-domain features, resulting in better
discriminating property. Specifically, we add an additional classification head at the end of the
decoder and it produces the predication of the proxy. Then the segmentation will be calculated by the
soft-max operation on predictions of all four classifiers. Our experiments show that the introduced
anti-ambiguity proxy can improve domain generalization, resulting in higher performance.

2.2.4 Consistency Regularization

We train the model with unlabeled data by imposing consistency regularization between the classifi-
cation and regression results from two decoders. As shown in Figure 3, we set up our framework with
two branch networks (Net1 and Net2) with the same architecture but different initialization, which
is a popular paradigm in semi-supervised learning. In the training stage, for the ambiguity-aware
decoder, the argmax operation is applied to the classification result from both Net1 and Net2, and
the output is considered as the pseudo label to supervise each other. For the instance-aware decoder,
we directly minimize the distance between the regression result from two networks. For efficient
inference, we just utilize Net1 to generate the final segmentation result in the inference stage.

2.2.5 Loss Function

For images with ground truth Ycls and Yreg , denoting the classification label and distance transforma-
tion label respectively, we use the summation of Dice loss and focal loss to supervise the classification
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Figure 3: Illustration of Consistency Regularization. This framework consists of two networks with
the same architecture and the pseudo labels are generated to supervise each other.

result of two branches of the ambiguity-aware decoder.

Lcls =
1

N

N∑
i=1

(Ldice(Pcls, Ycls) + Lfocal(Pcls, Ycls)), (1)

where N denotes the number of labeled images, Pcls means the classification result. The weighted
average L1 loss is used to supervise the regression result for distance transformation from two
branches of instance-aware decoder:

Lreg =
1

N

N∑
i=1

(
1∥∥M∥∥

1

∥∥|Yreg − Preg| ·M
∥∥
1
+

1∥∥1−M
∥∥
1

∥∥|Yreg − Preg| · (1−M)
∥∥
1
), (2)

where Preg means the regression result for distance transformation, M = 1(Yreg > 0) represent the
mask of foreground, · denotes element-wise multiplication and ∥·∥1 means L1 norm of the matrix
(e.g., element-wise summation of the matrix).

For images without ground truth, we employ cross entropy loss and L2 loss for classification result
and regression result to impose consistency regularization respectively:

Lcr =
1

N

N∑
i=1

(LCE(Pcls,1, P̂cls,2) + LCE(Pcls,2, P̂cls,1) + L2(Preg,1, Preg,2)) (3)

where Pcls,j and Preg,j (j = 1, 2) denote classification result and regression result from j-th branch,
P̂cls means the argmax output of Pcls. As a result, our network is trained by minimizing the overall
objective as follows:

L = Lcls + Lreg + λLcr, (4)
where λ is the trade-off weight.

2.3 Post-processing

Our post-processing strategy includes the following steps and is shown in Figure 4:

• Step 1. According to the probability map of classification, we obtain the mask Mfo with a
background probability less than 0.3 as the representation for the foreground. Then we get the
mask Min with cell interior probability greater than 0.7 as the representation for the main body of
the cell. We also calculate the distance transformation map noted as Dt.

• Step 2. We can roughly calculate the average size of cells according to Min, and then adaptively
select the size of the Gaussian kernel for fuzzy processing of predicted distance transformation to
obtain the Dtf . Specifically, we choose values larger than 0.8 in the distance transform map as cell
skeleton Dts, which is considered as the marker of the watershed algorithm, and Min is taken as
the template to get the preliminary segmentation result in P1. This step enables us to find most of
the cell instances.
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• Step 3. The peak selection algorithm is adopted to seek the extreme points in the distance
transformation map to locate the small cells in the image that are ignored in step 2 and we note it
as Dtp. Then the watershed algorithm takes these points as markers and Min as the template. This
step supplements the original segmentation result and obtains the relatively refined one P2.

• Step 4. Finally, we use the aggregation of P1 and P2 as the marker and Mfo as the template
to conduct the watershed algorithm the third time. This enables us to obtain a more accurate
segmentation map. A remove-small-object algorithm will be applied in the end to filter the noise in
the final segmentation result in Pfinal.

Gaussian fuzzy 
processing 

Peak
selection

Watershed

inM

foM

inM

tD

Step1 Step2 Step3 Step4

tfD tsD tpD

1P 2P 3P

finalP

>0.8

Watershed

Watershed

Figure 4: Pipeline for post-processing. This multi-step process enables the model to generate fine-
grained segmentation results.

3 Experiments

3.1 Dataset and Evaluation Metrics

We only use the dataset provided by the NeurIPS 2022 Cell Segmentation Challenge [20]. The
training set includes 1,000 labeled image patches from various microscopy types (e.g., brightfield,
fluorescent, phase-contrast, and differential interference contrast), tissue types, staining types, and
more than 1,500 unlabeled images. The validation set contains a total of 101 images from different
domains, including a whole-slide image (about 10,000×10,000). The testing set includes 200+
images, some of which are from unseen domains.

The evaluation metrics consist of the F1 score with 0.5 as the threshold and running time, both of
them will be used in the ranking scheme. Besides, the GPU memory consumption has a 10 GB
tolerance and RAM has a 28 GB tolerance.

3.2 Implementation Details

3.2.1 Environment Settings

The development environments and requirements are presented in Table 1.

3.2.2 Training Protocols

Data Augmentation We first apply random resize to input images in a range from 0.25 to 2, with
padding and random cropping to sample 512×512 patches. Then we adopt data augmentation
including flip, rotation, Gaussian noise, contrast adjustment, Gaussian smoothing, and histogram
shift during training. Our inference adopts slide window with a patch size 512×512.
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Table 1: Development environments and requirements.

System Ubuntu 22.04.1 LTS
CPU Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10 GHz
RAM 16×4 GB; 2.67 MT/s
GPU (number and type) 2 NVIDIA Titan RTX (24G)
CUDA version 11.3
Programming language Python 3.10.4
Deep learning framework Pytorch (Torch 1.11.0, torchvision 0.12.0)
Specific dependencies monai 0.9.0
Code https://github.com/Woof6/neurips22-cellseg_saltfish

Parameter Setting We train two MAUNet with different backbones respectively and merge them
together in the prediction stage. The setting for fully-supervised protocol is presented in Table 2. The
setting for semi-supervised protocol is presented in Table 3, and we set λ to 1.5.

Table 2: Fully-supervised protocols.

Network initialization default normal initialization by pytorch
Batch size 16
Patch size 512×512
Total epochs 1,000
Optimizer Adamw
Initial learning rate (lr) 6e-4
Lr decay schedule multiply by 0.95 for every 10 epochs
Training time 24.0 hours
Loss function Ldice + Lfocal + wL1

Number of model parameters 39.40 M (Res50), 28.84 M (WideRes50)1

Number of flops 10.09 G (Res50), 14.31 G (WideRes50)2

Table 3: Semi-supervised protocols.

Network initialization default normal initialization by Pytorch
Batch size 8 for labeled images and 8 for unlabel images
Patch size 512×512
Total epochs 700
Optimizer AdamW
Initial learning rate (lr) 6e-4
LR decay schedule multiply by 0.95 for every 10 epochs
Training time 36.0 hours
Loss function Ldice + Lfocal + wL1 + λLcr

4 Results and Discussion

4.1 Quantitative Results on Validation Set

To analyze the effect of the proposed method, we sample 100 labeled images from the train set
and use the other 900 to train our model. And we report the mean dice score for the semantic
segmentation metric and F1 score with 0.5 as the threshold for the instance segmentation metric. All
the networks are built with resnet50 as the backbone and we evaluate the effect of regression loss
(Lreg), Consistency Regularization (CR), and Anti-Ambiguity Proxy (AAP) respectively. Table 4
shows our results, where F1ori represents the F1 score without our proposed post-process strategy.

1https://github.com/sksq96/pytorch-summary
2https://github.com/facebookresearch/fvcore
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Table 4: Ablation study for our method.

Method Mean Dice F1ori F1
MAUNet-R50 0.7499 0.7310 0.8309

MAUNet-R50 w/o Lreg 0.7458 0.7284 -
MAUNet-R50 w/ CR 0.7443 0.7075 0.8217

MAUNet-R50 w/ CR* 0.7403 0.7101 0.8243
MAUNet-R50 w/ AAP 0.7543 0.7318 0.8494

As shown in Table 4, we implement the MAUNet with only the Ambiguity-aware Decoder and there
is only classification loss for training. We find that the introduced Instance-aware Decoder leads to the
performance gain for classification. This paradigm for multi-task learning provides more information
for supervision and is beneficial for representation learning. The CR method doesn’t work well in
our task. We argue that since our data set from different domains includes multiple centers but only
three categories for classification, it will lead CR to generate a large number of inaccurate labels,
especially for some unusual domains. We observe that these consistency constraints will degrade the
performance greatly when our model makes inferences for some rare data. We add CR directly to the
classification loss (CR*) and obtain similar results. We also find that the introduced Anti-Ambiguity
Proxy can improve the performance in this case. We will discuss it in the next section. For the
submission, we do not use CR and only labeled data is used to train our model. Table 5 shows our
F1 score on the official validation set, we adopt the test time augmentation by merging multi-scale
inference from 1, 1.25, and 1.5 times the original size. As mentioned before, our complete model
includes two MAUNet using different backbones.

Table 5: Results on official validation set under different backbone protocols.

Method MAUNet-R50 MAUNet-WR50 Ensemble
F1 0.8162 0.8211 0.8250

O
rig
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Im
ag
e

Pr
ed
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tio
n

(1) (2) (3) (4)

Figure 5: Examples on the validation set. We present the segmentation results for images from
different microscopy types.

4.2 Qualitative Results on Validation Set

Some examples from our segmentation results for the validation set are shown in Figure 5. We find
that our method works well in most cases. But when cells have an irregular shape or are not convex
(e.g., Figure 5(3)), the watershed algorithm in post-processing will lead to over-segmentation. And if
the cells are not imaged intensely enough (e.g., Figure 5(4)), they will be regarded as background. We
deem the reason is that we just apply a simple intensity normalization during training and inference.

We also visualize the features learned with AAP, as shown in Figure 6. For each image, we respectively
calculate the average features within the background mask and the cell interior mask and apply the
PCA algorithm for dimension reduction to obtain the scatter diagram in Figure 6(a). We find that
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the distribution of features has multiple centroids, and the introduction of the proxy can significantly
enhance the discriminability of features. Then we visualize the distribution of features from two
specific domains and define the weight of classifiers as proxies in Figure 6(b). We estimate the
decision boundary according to the class proxies. With the introduction of AAP, the network learns the
decision boundary with better performance, which exactly conforms to the illustration of motivation
in Figure 1. We visualize some examples of the ablation of AAP. As shown in Figure 7, there is bright
light pollution in the original image, the initial model performs extremely poorly in this case. While
this performance loss is effectively mitigated after the introduction of the extra classification head.

Domain A  w/o AAP Domain B  w/o AAP Domain A   w/ AAP Domain B   w/ AAP

Foreground proxy pointForeground feature point

Background feature point Background proxy point

Anti-Ambiguity Proxy

Decision boundary

(a)

(b)

Res50_Unet  w/ AAP Res50_Unet  w/o AAP Res50w_Unet  w/ AAP Res50w_Unet  w/o AAP

AAP AAP

Figure 6: Visualization of features. The features encoded by models with AAP are more distinguish-
able and their distribution is more concentrated.

MAUNet-R50 w/ AAP MAUNet-WR50 w/ AAP

MAUNet-R50 w/o AAP MAUNet-WR50 w/o AAP

Original Image

Figure 7: Example for ablation of AAP. In this case, the original models perform poorly because of
bright light interference, while the networks with AAP reveal better-discriminating power.

4.3 Segmentation Efficiency Results on Validation Set

Our approach achieves efficient inference. In Table 6, we report the efficiency evaluation results
on our personal server with 28 GB RAM, AMD EPYC 7713 CPU, and RTX-3090 GPU using the
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official evaluation code. 2. As Table 6 shows, the inference time and the GPU memory usage increase
as the resolution of the testing image increases. But the inference time of our method does not exceed
the time tolerance given by officials, demonstrating the efficiency of our method.

Table 6: Efficiency evaluation results of our submitted docker.

Resolution Docker inference time(s) GPU Memory(MiB)
640×480 9.67 2,884
1,024×1,024 10.35 3,024
3,000×3,000 18.56 5,886
8,415×10,496 74.16 8,592

4.4 Results on Final Testing Set

Table 7 shows the results of the proposed MAUNet on the final test set, which includes four microscopy
modalities.

Table 7: The quantitative results on the final test set

F1-Score Brightfield DIC Fluorescence Phase Contrast All
Median 0.9024 0.7293 0.235 0.8327 0.749
Mean 0.8908 0.683 0.3076 0.7314 0.6489

4.5 Limitations and Future Work

In a semi-supervised semantic segmentation task, the performance of the model can be improved
by imposing consistency regularization on a large amount of unlabeled data. But we do not take
advantage of such a learning paradigm since the distinguishing ability of the model will degrade when
transferred to different domains. We will refer to the growing research progress and hope to utilize
unlabeled data to improve the performance and generalization ability of our model in the future.

5 Conclusion

In this paper, we propose a Modality-aware Anti-ambiguity U-Net (MAUNet) in a unified deep
model via an encoder-decoder structure for robust cell segmentation, and the proposed instance-
aware decode endows pixel features with better cell boundary discrimination capabilities. And the
ambiguity-aware decode aims at alleviating the domain gap credited to a customized anti-ambiguity
proxy for domain-invariant learning. Besides, we prepend the consistency regularization to enable
the exploration of unlabeled images, and a novel post-processing strategy to incorporate morphology
prior to cell instance segmentation. Experimental results on the official validation set demonstrate the
effectiveness of our method.
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