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Abstract
Causal models have proven extremely useful in offering formal representations of causal relation-
ships between a set of variables. Yet in many situations, there are non-causal relationships among
variables. For example, we may want variables LDL, HDL, and TOT that represent the level
of low-density lipoprotein cholesterol, the level of high-density lipoprotein cholesterol, and total
cholesterol level, with the relation LDL+HDL = TOT . This cannot be done in standard causal
models, because we can intervene simultaneously on all three variables. The goal of this paper is to
extend standard causal models to allow for constraints on settings of variables. Although the exten-
sion is relatively straightforward, to make it useful we have to define a new intervention operation
that disconnects a variable from a causal equation. We give examples showing the usefulness of this
extension, and provide a sound and complete axiomatization for causal models with constraints.
Keywords: Causality; Constraints; Interventions; Abstractions

1. Introduction

Causal models have proven extremely useful in offering formal representations of causal relation-
ships between a set of variables. Yet in many situations we want to study both causal and non-causal
relationships between a single set of variables; this cannot be done in a standard causal model. For
example, a standard causal model cannot talk simultaneously about the level of high-density lipopro-
tein cholesterol (HDL), the level of low-density lipoprotein cholesterol (LDL), and the level of
total cholesterol (TOT ), although this seems quite natural. One can imagine a situation where
we only have data regarding the level of total cholesterol, even though our causal model may say
that certain health conditions depend on the amount of LDL. The problem is that standard causal
models allow simultaneous interventions to all variables in the model. But we cannot intervene to
simultaneously set LDL to 120 mg/dL, HDL to 70, and TOT to 180, for that is logically inconsis-
tent! In this example, the variables have a part-whole relationship, rather than a causal relationship.
Other kinds of non-causal constraints giving rise to similar problems include:

• Unit transformations; for example, having variables that describe weight in pounds and weight
in kilograms.

• Mathematical relationships; for example, having variables for both Cartesian co-ordinates and
polar co-ordinates.
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• Microscopic/macroscopic relationships; for example, having variables for chemical composi-
tions combined with variables indicating whether a liquid sample is water, hydrogen peroxide,
or sulphuric acid; or variables representing the distribution of molecular velocities in a sample
of gas, together with variables representing temperature and pressure.

Representing any of these using standard causal models would require having separate causal mod-
els for each separate description, thereby ignoring the important non-causal relationships between
the variables in the distinct models.

Allowing models with non-causal constraints increases the expressive power of causal models
in important ways. For one thing, we can represent ambiguous interventions. For example, if
we change only TOT , rather than changing the levels of LDL and HDL separately, then such a
change is ambiguous, because it can be realized in a number of different ways, corresponding to
different (and perhaps unknown) interventions on LDL and HDL. (This terminology, as well as
the cholesterol example, are taken from (Spirtes and Scheines, 2004).) Having constraints also gives
us a way of effectively disallowing certain interventions, by stipulating that certain settings of the
variables are disallowed, such as setting TOT below the sum of LDL and HDL.

Moreover, causal models with constraints have an important practical application. In many
cases, different institutions or researchers study the same causal domain using non-causally related
sets of variables. These relationships can be as trivial as the unit transformations mentioned above,
but can also be far more complicated, such as the relationship between particular settings and outputs
of fMRI machines produced by different companies, the translation of terminology used in the
financial reporting of different countries, or more generally, the relationship between datasets that
encode observations of the same kind using different conventions. We cannot combine the causal
models used by such groups into one (standard) causal model, because of the relationships between
the variables used in different models. On the other hand, causal models with constraints allow for
the integration of the causal knowledge of the individual models into one combined model.

The goal of this paper is to show how all of this (and more) can be accomplished by extend-
ing causal models with constraints on settings of variables. Although the extension is relatively
straightforward, to make it useful we have to define a new operation. Specifically, we need to be
able to disconnect a variable from a causal equation. We provide examples that illustrate how causal
models with constraints can capture many situations of interest.

We are not the first to suggest moving beyond standard causal models. In many ways, our
framework can be seen as formalizing the informal suggestions of Woodward (2015). In addition,
Blom, Bongers, and Mooij (2019) consider causal constraint models, which also allow non-causally
related variables, but their emphasis lies on extending causal models with additional causal con-
straints, rather than the non-causal constraints that we consider. (Concretely, they focus exclusively
on causal representations of dynamic systems, and consider the constraints that arise in equilibrium.)
Our work differs from theirs in several respects (see Section 5); the approaches can be viewed as
complementary.

The rest of this paper is structured as follows. The next section reviews the formalism of causal
models. Section 3 introduces our new formalism for representing non-causal constraints. In Sec-
tion 4, we provide a sound and complete axiomatization for causal models with constraints, in the
spirit of that provided by Halpern (2000) for causal models. We conclude with some discussion in
Section 5.
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2. Causal Models

Before getting to the new definitions, we review the standard definition of a causal model (Halpern,
2000, 2016) (with a slight modification; see below). A causal model M is a pair (S,F), where S is
a signature, which explicitly lists the endogenous and exogenous variables and characterizes their
possible values, and F defines a set of structural equations, relating the values of the variables.
Formally, a signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a set of
endogenous variables, and R associates with every variable Y ∈ U ∪ V a nonempty set R(Y ) of
possible values for Y (i.e., the set of values over which Y ranges).

For some endogenous variablesX ∈ V , F associates a function denoted FX such that FX maps
R(U ∪ V − {X}) to R(X) (where, if Y is a set of variables, we take R(Y ) to be an abbreviation
for ×Y ∈YR(Y )); that is, FX takes as input the values of the variables in U ∪ V other than X , and
returns a value in the range ofX . Note that we have departed from standard causal models (Halpern,
2000, 2016) by not requiring F to associate a function FX with every variable X ∈ V , only some
of them. This turns out to be critical when we add constraints.

If the value FX depends only on the variables in some subset W ⊆ U∪V−{X}, we often write
FX(w) = x or X = FX(W ). For example, if we have an exogenous variable U and endogenous
variables X1, . . . , X5, and X3 is the sum of X1 and X2, we write X3 = X2+X1, omitting X4, X5,
and U . Formally, if Y = U ∪V −{X}−W , then FX(w) = x is an abbrevation of FX(w,y) = x
for all y ∈ Y . While this shorthand is quite common, as we will see below it is particularly useful
in the presence of constraints.

Much of the work on causality has focused on recursive or acyclic models, where there are
no dependency cycles between variables, and the values of all endogenous variables are ultimately
determined by the context, that is, an assignment of values to the exogenous variables. As we shall
see, once we allow constraints, even in acyclic models, the values of the endogenous variables may
not be determined by the context; we also need a state, that is, an assignment of values to the
endogenous variables. A context-state pair is called an extended state. Our approach for dealing
with constraints generalizes the way Halpern (2016) deals with cyclic models, so we allow cyclic
models from the start. Given a signature S , letMS denote all causal models of the form (S,F),
where F can be arbitrary.

It is useful to have a language for reasoning about causality. The language that has been used in
earlier papers is defined as follows: Given a signature S = (U ,V,R), a primitive event is a formula
of the form X = x, for X ∈ V and x ∈ R(X). A basic causal formula (over S) is one of the form
[Y1 ← y1, . . . , Yk ← yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables in V , and

• yi ∈ R(Yi), for i = 1, . . . , k.

Such a formula is abbreviated as [Y ← y]ϕ, using the vector notation. The special case where
k = 0 is abbreviated as [ ]ϕ.1 We assume for simplicity that the variables in V are ordered, and, no
matter in what order the variables appear in an intervention, the resulting formula is syntactic sugar
for the formula where the variables appear in order. For example if Y1 is earlier in the order than

1. In standard acyclic models (where there is no disconnection and an equation for each endogenous variable), we can
identify [ ]ϕ and the formula ϕ, but in our setting, we cannot do so.
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Y2, then [Y2 ← y2, Y1 ← y1]ϕ is syntactic sugar for [Y1 ← y1, Y2 ← y2]ϕ. (This assumption is
made implicitly in (Galles and Pearl, 1998; Halpern, 2000; Halpern and Peters, 2022), the papers
that we are aware of that provide axiomatizations for causal models. Without it, the axiomatizations
they provide would not be complete: we would need an axiom that allows us to rearrange the order
of interventions.) Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would hold if Yi were set to
yi, for i = 1, . . . , k. A causal formula is a Boolean combination of basic causal formulas. For
S = (U ,V,R), let L(S) consist of all causal formulas where the variables in the formulas are taken
from V and their possible values are determined byR.

A causal formula ψ is true or false in a causal model, given an extended state. We write
(M,u,v) |= ψ if the causal formula ψ is true in causal modelM given extended state (u,v). The |=
relation is defined inductively (see (Halpern and Pearl, 2005; Halpern, 2016)). (M,u,v) |= X = x
if (u,v) satisfies all the equations in F and X = x in state v. We extend |= to conjunctions and
negations in the standard way. Finally, (M,u,v) |= [Y ← y]ϕ iff (MY←y,u,v

′) |= ϕ for all
states v′ such that (u,v′) satisfies all the equations in FY←y, where MY←y = (S,FY←y), and
FY←y is identical to F , except that for each Yi in Y and corresponding yi in y, the causal equation
for Yi is replaced by Yi = yi (or Yi = yi is added if there was no equation for Yi in F). We write
(M,u) |= ψ if the truth of ψ depends only on the context u, which is easily seen to be the case for
formulas of the form [Y ← y]ϕ and write v |= ψ if ψ is a Boolean combination of primitive events
that is true in state v (note that the truth of Boolean combinations of primitive events is completely
determined by the state).

Some comments:

• In a standard acyclic causal model, there is a unique v such that (u,v) satisfies the equations
in F . That is why, in the standard semantics for causal formulas in acyclic causal models,
there is no mention of the state v; cf. (Halpern, 2016). In cyclic causal models there may be
more than one such v such that (u,v) satisfies the equations in F , or none. Once we drop the
requirement that there is an equation for each endogenous variable, there may again be more
than one such v, even in acyclic models.

• It is easy to check that this definition is equivalent to the standard definition of |= in acyclic
causal models.

• If we define 〈X ← x〉ϕ as an abbreviation of ¬[X ← x]¬ϕ, then (M,u) |= 〈X ← x〉true
iff there is some state v such that (u,v) satisfies all the causal equations in FX←x. In this
case we say that v is a solution of (M[X←x],u), meaning that (with the obvious abuse of
notation) (M,u) |= 〈X ← x〉V = v.

3. Causal Models With Constraints

We now extend causal models by allowing constraints. Some of the constraints we are interested in
are defined by equations, such as TOT = HDL + LDL. But we also want to allow constraints
such as (1) X ≤ Y , (2) X − Y ∈ S (where S is a set of values), and (3) X and Y are either both
positive or both negative. Thus, we take a causal model with constraints to be a triple (S,F , C),
where, as before, S is a signature and F is a collection of equations, and C is a set of extended
states (intuitively, the extended states that satisfy the constraints). In the special case where C
contains all possible extended states (i.e., where C = ×Z∈U∪VR(Z), so C places no constraints)
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and F associates an equation with each variable in V , the causal model with constraints (S,F , C)
is equivalent to the standard causal model (S,F). Given a signature S, letMSc consist of all causal
models with constraints of the form (S,F , C), where S is fixed and F and C are arbitrary.

We give semantics to formulas in L(S) just as before, except that we take C into account.
Specifically, (M,u) |= [Y ← y]ϕ iff (MY←y,u,v) |= ϕ for all states v such that (u,v) ∈ C and
(u,v) satisfies all the causal equations in FY←y.

Note that, crucially, the causal equations only matter for extended states (u,v) that satisfy the
constraints. This explains why we often need not write an equation FX as depending on all other
variables, and why not all endogenous variables require a causal equation. Consider a model where
D is diet, WP is weight in pounds, WK is weight in kilograms, and the constraints C implement
the obvious logical constraint that relates WP and WK (meaning that WP and WK fully determine
each other). It does not matter whether we write FWP

as a function of the values of both D and
WK or as a function only of D, since for all extended states (wP , wK , d) and (wP , w

′
K , d), if both

(wP , wK , d) and (wP , w
′
K , d) are in C, then wP = FWP

(wK , d) iff wP = FWP
(w′K , d). Moreover,

it is unnecessary to write an additional causal equation for WK ; it is far more natural for WK to be
determined by the logical constraint that relates WP and WK .

We find it useful to extend the languageL(S) a little further, to allow us to disconnect some vari-
ables X from their causal equations, so that the values of the variables in X are determined only by
the constraints. Specifically, we allow formulas of the form [disc(X),Y ← y]ϕ, where X and Y
are disjoint, and either of X or Y may be empty. (M,u) |= [disc(X),Y ← y]ϕ iff (M−X ,u) |=
[Y ← y]ϕ, where M−X is the model that is just like M , except that all causal equations for
variables in X are removed from F .2 Let Ld(S) be the language that extends L(S) by allowing
disconnection.

Causal models with constraints, as the name suggests, extend causal models by adding con-
straints on possible solutions to the structural equations. While, at some level, this is a straight-
forward extension, as the examples we present below show, it actually adds significant expressive
power, letting us capture realistic situations that cannot be captured in standard causal models. The
extension also brings out some subtle issues regarding the relationship between exogenous and
endogenous variables and how the value of an endogenous variable is determined that we briefly
discuss here.

• In some respects, an endogenous variable for which there is no equation behaves similarly to
an exogenous variable: neither is determined by the structural equations, and they can both
be restricted by the constraints. However, in other respects, they behave quite differently: the
value of an exogenous variable is assumed to be simply given, as it’s determined by factors
that are not part of our model, whereas the value of an endogenous variable that does not have
an equation is either free to take on any value that is allowed by the constraints, or is set to
some value by means of an intervention.

• We could further generalize the way that the values of endogenous variables are determined.
Instead of having to choose between an endogenous variableX being uniquely determined by
its equation or not being determined by an equation at all, we could have an equation FX such
that FX mapsR(U ∪V−{X}) to P(R(X)). (Peters and Halpern (2021) go even further and

2. Requiring that X and Y be disjoint does not lose expressive power. If X and Y were not disjoint, we would want
(M,u) |= [disc(X),Y ← y]ϕ iff (M,u) |= [disc(X − Y ),Y ← y]ϕ.
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abandon equations altogether, taking a causal model to simply be a mapping from context-
intervention pairs to states.) Although we believe that this is a sensible generalization, we
believe that the current framework is already sufficiently expressive to merit a discussion of
its own.

Example 1 Suppose that two different researchers study the effect of temperature on heat stroke in
vulnerable populations. One expresses temperature in Celsius (and uses a variable TC to represent
temperature in Celsius) while the other uses a variable TF to represent temperature in Fahrenheit.
We can combine their two models into a single causal model M that includes the constraint TF =
1.8TC + 32 (which means that C consists of all those extended states where the equation holds).
For simplicity, suppose that the value of TC is determined by an exogenous variable U according
to the causal equation TC = U . There is no causal equation for TF (whose value is determined by
the constraint). There is one other variable HS (the patient will suffer heatstroke), with the causal
equation HS = 1 if TC ≥ 40, and HS = 0 otherwise. Consider the context u where U = 35, so
that TC = 35, TF = 95, and HS = 0. Clearly we have that (M,u) |= 〈TC ← 40〉(HS = 1);
if we set TC to 40, there is a unique solution to the equations, and in that solution HS = 1.
On the other hand, we do not have (M,u) |= 〈TF ← 104〉(HS = 1). If we set TF to 104
degrees in context u, then TC remains at 35 degrees (since the value of TC is determined by the
context u, which has not changed). The resulting state is not in C; there are no solutions to the
equations in C where TC = 35 and TF = 104. Thus, [TF ← 104](HS = 0) is vacuously true
in all these solutions; that is, (M,u) |= [TF ← 104](HS = 0). On the other hand, we have
(M,u) |= 〈disc(TC), TF ← 104〉(HS = 1). Once we disconnect the equation for TC, there is
a (unique) solution to the equations where TF = 104; in that solution, TC = 40 (because of the
constraint) and HS = 1. The key point here is that we need to disconnect TC to get the desired
effect of intervening on TF .

Now consider a formalization of the cholesterol example.

Example 2
Consider a model M that represents the impact of cholesterol on atherosclerosis in a particular

patient. While it is normal for physicians to report total cholesterol level, total cholesterol in-
cludes three different kinds of cholesterol: HDL cholesterol, LDL cholesterol, and very low-density
lipoproteins (VLDL cholesterol). LDL cholesterol is harmful,contributing to the buildup of plaque
in arteries. By contrast, HDL cholesterol is beneficial, since it helps to clear LDL cholesterol out
of the arteries. VLDL cholesterol has little direct impact on the arteries, but it contributes to levels
of triglycerides, which are harmful. In practice, it is very difficult to directly measure LDL and
VLDL cholesterol. Instead, VLDL cholesterol is inferred from observed triglyceride levels, and this
inferred value is used together with measured values of HDL and total cholesterol to estimate the
value of LDL cholesterol. For this reason, it may be useful to be able to include all of these variables
together in the same causal model. The model has the following endogenous variables:

• AS – atherosclerosis, level of plaque build-up in arteries

• HDL – level of HDL cholesterol

• LDL – level of LDL cholesterol

• VLDL – level of VLDL cholesterol
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• TOT – total cholesterol level

• TRI – level of triglycerides

• D – dietary factors that affect cholesterol.

U D HDL

LDL

VLDL TRI

AS

Figure 1: Causal graph for the cholesterol example (Ex. 2).

There is one exogenous variable, U . The causal equations are

• D = FD(U)

• HDL = FHDL(D)

• LDL = FLDL(D)

• VLDL = FVLDL(D)

• TRI = FTRI(VLDL)

• AS = FAS(HDL,LDL,TRI)

D is determined by the exogenous variable (i.e., the context). We do not specify the precise
equations, but assume that FAS is a decreasing function of HDL and increasing in LDL and
TRI; we also assume that FTRI is an increasing function of VLDL. The constraint C consists of
all the states where TOT = HDL+ LDL+VLDL.

In this model, we can freely intervene on HDL, LDL, and VLDL; the value of TOT will
change in the appropriate way, so as to maintain the constraint. Of course, if we intervene to set
HDL = hdl, LDL = ldl, VLDL = v ldl and TOT = tot simultaneously, then unless the
intervention is such that tot = ldl + hdl + v ldl, there will be no states satisfying the constraints,
so all formulas of the form [LDL ← ldl,HDL ← hdl,VLDL ← v ldl,TOT ← tot]ϕ will be
vacuously true. Indeed, in a context u where LDL = ldl∗, HDL = hdl∗, VLDL = v ldl∗, and
TOT = tot∗, an intervention that sets TOT to tot′ > tot∗ will also lead to an inconsistency,
unless we disconnect the equation for at least one of LDL, HDL, or VLDL.

In the context just described, if we intervene to set TOT = tot′, while disconnecting the equa-
tion for LDL (but not the equations for HDL and V LDL), there will be a unique solution to the
equations, where HDL = hdl∗, VLDL = v ldl∗, TOT = tot′, and LDL = tot′ − hdl∗ − v ldl∗.
That is, intervening on TOT while disconnecting LDL results in the values of HDL and VLDL
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remaining fixed, while LDL changes to maintain the constraint. Similarly, if we disconnect only
HDL or only VLDL. If we disconnect all of HDL, LDL, and VLDL while setting TOT = tot′,
then there will be multiple solutions to the equations: HDL, LDL, and VLDL can take arbitrary
values that add up to tot′. This makes (disc(LDL,HDL,VLDL),TOT = tot′) what Spirtes
and Scheines (2004) call an ambiguous intervention.

The next example shows that using the disconnection operation allows us to distinguish different
ways of implementing an intervention on a variable.

Example 3 A point is confined to the first quadrant of the Cartesian plane. We can represent its
position using Cartesian coordinates X and Y , with 0 < X,Y . We can also represent its position
using polar coordinates R and θ, with 0 < R and 0 < θ < π

2 . The model requires X,Y,R, and θ
to satisfy the usual constraints:

• R =
√
X2 + Y 2

• θ = arctan( YX ).

In the absence of intervention, the point will remain in place. Thus, we can have as our exogenous
variable the previous position of the point U = (UX , UY ). The causal equations are

• X = UX

• Y = UY

• R =
√
U2
X + U2

Y

• θ = arctan(UY
UX

).

If we want to set the value of X in a meaningful way, we need to either disconnect both R and
θ or disconnect Y and R. That is, we consider interventions of the form

• disc(R, θ), X ← x and

• disc(Y,R), X ← x.

The first intervention sets the value ofX while leaving Y alone; technically, this means that Y takes
the value determined by the causal equations. This corresponds to sliding the point horizontally
until the desired value of X is reached. This intervention removes R and θ from the influence of
their causal equations, effectively forcing them to take the values determined by the constraints.
The second intervention, disc(Y,R), X ← x, sets the value of X while leaving θ alone. This
corresponds to sliding the point along the ray connecting its current position to the origin, until
the desired value of X is reached. We can also consider the intervention disc(Y, θ), X ← x.
This corresponds to rotating the point around the origin until X = x. In context (uX , uY ), this

intervention only yields solutions consistent with the constraint when x <
√
u2X + u2Y .
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4. A sound and complete axiomatization for causal models with constraints

In this section we provide a sound and complete axiomatization for the language Ld(S) with respect
toMSc . Following (Halpern, 2000), we restrict to the case that S = (U , V,R) is finite, that is, U is
finite, V is finite, andR(X) is finite for all X ∈ U ∪ V .

Halpern (2000) considers a somewhat richer language than we do, where the context u is part
of the formula, not on the left-hand side of the |=. Specifically, Halpern considers primitive events
of the form X(u) = x, where M |= X(u) = x in Halpern’s semantics iff (M,u) |= X = x in our
semantics. We follow what is now the more standard usage, with the context u on the left of |=. We
thus follow (Halpern and Peters, 2022) and consider a variant of Halpern’s axioms more appropriate
for our language.

Here are Halpern’s axioms, as given in (Halpern and Peters, 2022) (we keep the same number-
ing):3

D0. All instances of propositional tautologies.

D1. [Y ← y](X = x⇒ X 6= x′) if x, x′ ∈ R(X), x 6= x′

D2. [Y ← y](
∨
x∈R(X)X = x) (definiteness)

D3. 〈X ← x〉(W = w ∧ ϕ)⇒ 〈X ← x,W ← w〉(ϕ) if W /∈X4 (composition)

D4. [X ← x](X = x) (effectiveness)

D5. (〈X ← x, Y ← y〉(W = w ∧Z = z) ∧ 〈X ← x,W ← w〉(Y = y ∧Z = z))
⇒ 〈X ← x〉(W = w ∧ Y = y ∧Z = z) if Z = V − (X ∪ {W,Y }) (reversibility)

D7. ([X ← x]ϕ ∧ [X ← x](ϕ⇒ ψ))⇒ [X ← x]ψ (distribution)

D8. [X ← x]ϕ if ϕ is a propositional tautology (generalization)

D9. 〈Y ← y〉true ∧ (〈Y ← y〉ϕ⇒ [Y ← y]ϕ) if Y = V or, for some X ∈ V , Y = V − {X}
(unique outcomes for V and V − {X})5

MP. From ϕ and ϕ⇒ ψ, infer ψ (modus ponens)

We refer the reader to (Halpern and Peters, 2022) for a detailed discussion of how these axioms
compare to those of Halpern (2000).

Let AX+ consist of axiom schema D0-D5 and D7-D9, and inference rule MP.

Theorem 1 (Halpern, 2000) AX+ is a sound and complete axiomatization for the language L(S)
with respect toMS .

We now want to extend this result to causal models with constraints. The first step is to deal with
disconnection, which can be done using the following surprisingly simple axiom, where R(X) =
×X∈XR(X).

3. The axiom D6 that we omit is for axiomatizing acyclic models, since our focus is on general models here.
4. The requirement W /∈ X is not explicit in (Halpern, 2000), but is needed to ensure that the variables in 〈X ←

x,W ← w〉 are distinct.
5. Halpern (2000) did not include the case that Y = V , but it seems necessary for completeness.
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DSC. [disc(X),Y ← y]ϕ⇔
∧

x∈R(X)[X ← x,Y ← y]ϕ.

Roughly speaking, DSC says that disconnecting all the variables in X is the same as nondetermin-
istically assigning the variables in X an arbitrary value in their range. As we shall see, DSC is
exactly what we need to capture disconnection.

We also need to modify D9. We break the modification up into two parts, which we discuss
further below.

D9′. (〈Y ← y〉(X = x)∧ 〈Y ← y〉(X = x′)∧ 〈Y ← y∗, X ← x′′〉true)⇒ 〈Y ← y∗〉(X = x′′)
if Y = V − {X} and x 6= x′.

D9′′. ∧x∈R(X)〈Y ← y, X ← x〉true ⇒ 〈Y ← y〉true , where Y = V − {X}.

D9′ is intended to deal with the case that FX is undefined (i.e., F does not associate a function FX
with the variable X) in a causal model M . This must be the case if there are two distinct values
x, x′ ∈ R(X) such that (〈Y ← y〉(X = x)∧〈Y ← y〉(X = x′) is true in (M,u) for some context
u. In that case, 〈Y ← y∗〉(X = x′′) must be true in (M,u) for all y∗ ∈ R(Y ) and x′′ ∈ R(X)
such that (u,y∗, x′′) ∈ C, which will be the case exactly if 〈Y ← y∗, X ← x′′〉true is true in
(M,u). D9′′ says that, for a fixed setting y of the variables in Y = V − {X}, if the constraints do
not preclude X from taking any value, then there is some solution to the equations FY←y, whether
or not FX is defined.

Let AX+,d be the result of adding axiom DSC to AX+ and replacing D9 by D9′ and D9′′.

Theorem 2 AX+,d is a sound and complete axiomatization for the language Ld(S) with respect
toMSc .

Proof We here focus on the parts of the proof that differ from that of (Halpern, 2000).

4.1. Completeness

For completeness, using DSC, we can eliminate all occurrences of disc(X) from formulas, so it
suffices to show that if a formula ϕ ∈ L(S) is valid inMSc , then it is provable from AX ′, where
AX ′ is identical to AX+ except that D9 is replaced by D9′ and D9′′. The steps of the argument are
standard: It suffices to show that if a formula ϕ ∈ L(S) is consistent with respect to AX ′ (i.e., we
cannot prove ¬ϕ in AX ′), then there is a causal model with constraints M ∈ MSc and a context u
such that (M,u) |= ϕ.

We extend {ϕ} to a maximal set C of formulas consistent with AX ′. We then use the formulas
in C to define a model M = (S,F , C) ∈MSc such that in all contexts u of M and for all formulas
ψ ∈ L(S), we have that (M,u) |= ψ iff ψ ∈ C. Halpern (2000) used the formulas in C to
define F , by taking FX(u,y) = x if y ∈ R(V − {X}) and 〈Y = y〉(X = x) ∈ C. It follows
easily from D1, D2, and D9 that FX is well defined: there is a unique value x ∈ R(X) such that
〈Y = y〉(X = x) ∈ C for Y = V − {X}. We must work harder here, since we do not have axiom
D9, only axioms D9′ and D9′′. For each variable X ∈ V , there may be a unique x ∈ R(X) such
that 〈Y ← y〉(X = x) ∈ C, but there may not be any such value x, and there may be more than
one. We have to define F in all these cases.

We proceed as follows. We define C to consist of all extended states (u,v) such that 〈V ←
v〉true ∈ C. To define F , for each variable X ∈ V we consider three cases. Given X , if for some
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y ∈ Y = V − {X} there are two values x and x′ in R(X) such that both 〈Y ← y〉(X = x) ∈ C
and 〈Y ← y〉(X = x′) ∈ C, then FX is undefined. Otherwise, for all y ∈ R(Y ), there is at most
one x ∈ R(X) such that 〈Y ← y〉(X = x) ∈ C. Thus, if there is some x ∈ R(X) such that
〈Y ← y〉(X = x) ∈ C, then x is unique, and we take FX(u,y) = x for all contexts u. Finally,
if there are no values x ∈ R(X) such that 〈Y ← y〉(X = x) ∈ C, then there must be some
x ∈ R(X) such that 〈Y ← y,X ← x〉true /∈ C, for otherwise, by D9′′, 〈Y ← y〉true ∈ C, and
it follows by standard modal reasoning, using D2, D7, D8, and MP, that 〈Y ← y〉(X = x) ∈ C
for some x ∈ R(X). We define FX(u,y) = x for all contexts u. (If there is more than one value x
such that 〈Y ← y, X ← x〉true /∈ C, we can choose one arbitrarily.) Let M = (S,F , C), for this
definition of F and C.

Since FX (if it is defined) is independent of u, it follows that for all formulas ψ ∈ L(S),
(M,u) |= ψ for some context u iff (M,u) |= ψ for all contexts u. We show that for all ψ ∈ L(S),
we have that (M,u) |= ψ for some (and hence all) contexts u iff ψ ∈ C. Using standard modal
reasoning as in (Halpern, 2000), it suffices to consider primitive events and formulas of the form
〈Y ← y〉(X = x). Using D4, we can further restrict to the case where X and Y are disjoint. We
proceed by induction on |V − Y |. If |V − Y | = 0, then Y = V and we can take X = x to be the
formula true and take Y = y to be V = v for some state v. Note that 〈V ← v〉true ∈ C iff v ∈ C
iff (M,u) |= 〈V ← v〉true , as desired.

If |V − Y | = 1, then V − Y = {X} for some variable X ∈ V . Suppose that 〈Y ← y〉(X =
x) ∈ C. Then by D3, we must have 〈Y ← y, X ← x〉true ∈ C. There are two cases: If for some
y∗ ∈ R(Y ) there exist two values x′ and x′′ inR(X) such that both 〈Y ← y∗〉(X = x′) ∈ C and
〈Y ← y∗〉(X = x′′) ∈ C, then FX is undefined. It easily follows that (M,u) |= 〈Y ← y〉(X =
x). Otherwise, for all y∗ ∈ R(Y ), there is at most one x′ such that 〈Y ← y∗〉(X = x′) ∈ C,
so x has to be the unique value x′ ∈ R(X) such that 〈Y ← y〉(X = x′) ∈ C; therefore, by
construction, FX(u,y) = x. It again follows that (M,u) |= 〈Y ← y〉(X = x).

For the opposite direction, suppose that (M,u) |= 〈Y ← y〉(X = x). Then (M,u) |= 〈Y ←
y, X ← x〉true , so 〈Y ← y, X ← x〉true ∈ C by the induction hypothesis, and either (1)
FX(u,y) = x or (2) FX is undefined. In case (1), by construction, 〈Y ← y〉(X = x) ∈ C. In
case (2), there must be two values x′ and x′′ in R(X) and some value y∗ ∈ R(Y ) such that such
that 〈Y ← y∗〉(X = x′) ∈ C and 〈Y ← y∗〉(X = x′′) ∈ C. Since 〈Y ← y, X ← x〉true ∈ C,
by D9′, 〈Y ← y〉(X = x) ∈ C, as desired.

The inductive step proceeds just as in (Halpern, 2000), using D3 and D5; we omit the details
here.

4.2. Soundness

We now prove the soundness of AX+,d. Given M = (S,F , C) ∈ MSc , we want to show that all
the axioms are valid in M . The argument for D0-D5, D7, and D8 is much like that given in (Galles
and Pearl, 1998; Halpern, 2000); we leave the details to the reader.

For D9′, observe that without constraints, D9 is sound because for each u, there is a unique
solution v to the equations in FY←y if Y consists of all but one endogenous variable. With con-
straints, there may not be a solution at all (so the first conjunct of D9 is not sound), and there may
be many solutions if FX is undefined. If (M,u,v) |= (〈Y ← y〉(X = x) ∧ 〈Y ← y〉(X =
x′) ∧ 〈Y ← y, X ← x′′〉true), (with x 6= x′), then there are at least two solutions to the equations
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(x and x′), so FX must be undefined. That means that if (u,y∗, x′′) ∈ C, which must be the case if
(M,u) |= 〈Y ← y∗, X ← x′′〉true , then (M,u,y) |= 〈Y ← y∗〉(X = x′′), as desired.

For D9′′, suppose that (M,u) |= ∧x∈R(X)〈Y ← y, X ← x〉true . We want to show that
(M,u) |= 〈Y ← y〉true . Suppose that FX is defined and FX(u,y) = x. Let v be such that
v |= Y = y ∧ X = x. Since (M,u) |= 〈Y ← y, X ← x〉true , and v is the unique state such
that (u,v) satisfies the equations in FY←y,X←x, it must be the case that (u,v) ∈ C and satisfies
the equations in FY←y. Thus, (M,u) |= 〈Y ← y〉true , as desired. On the other hand, if FX is
undefined, since (M,u) |= ∧x∈R(X)〈Y ← y, X ← x〉true , it must be the case that (u,y, x) ∈ C
for all x ∈ R(X), and (u,y, x) satisfies all the equations in FY←y, so (M,u) |=

∧
x∈R(X)〈Y ←

y〉(X = x), and hence (M,u) |= 〈Y ← y〉true ,
Finally, for DSC, suppose that (M,u) |= [disc(X),Y ← y]ϕ. Then (M−X ,u) |= [Y ← y]ϕ.

So for all (u,v) ∈ C such that (u,v) satisfies the equations in F−X,Y←y, we have that v |= ϕ.
We claim that, for all x ∈ R(X), we have that (M,u) |= [X ← x,Y ← y]ϕ. For suppose
that (u,v) ∈ C and (u,v) satisfies the equations in FX←x,Y←y. Then (u,v) clearly satisfies the
equations in F−X,Y←y, so v |= ϕ. The result follows.

Conversely, suppose that (M,u) |=
∧

x∈R(X)[X ← x,Y ← y]ϕ. We want to show that
(M,u) |= [disc(X),Y ← y]ϕ. Suppose that (u,v) ∈ C and (u,v) satisfies the equations in
F−X,Y←y. There must be some x ∈ R(X) such that v |= X = x. It follows that (u,v) satisfies
the equations in FX←x,Y←y. Since (M,u) |= [X ← x,Y ← y]ϕ, we must have that v |= ϕ.
Since this is the case for all (u,v) ∈ C such that (u,v) satisfies the equations in F−X,Y←y, it
follows that (M,u) |= [disc(X),Y ← y]ϕ, as desired.

5. Discussion and Related Work

We have introduced an approach for allowing non-causal constraints in causal models. We believe
that our approach will have applications well beyond those that we have discussed. We mention just
some of them here that we hope to address in future work.

First, there has been recent work on representing causal models at different levels of abstraction
(Beckers and Halpern, 2019; Rubenstein et al., 2017). Representing that a (standard) causal model
MH (intuitively, the high-level model) is an abstraction of ML (the low-level model) is done using
an abstraction function that relates the values of variables in ML to those in MH . Models with
constraints can easily capture abstraction. Concretely, given a function τ : R(VL) → R(VH) such
that the causal model MH is a τ -abstraction of causal model ML, we can construct a model with
constraints M that simply combines ML and MH (both the signatures and the equations), and let
the constraints C consist of all extended states (uL, τU (uL),vL, τ(vL)).

The work on abstraction has two features that are not directly captured by this map. First, they
include a set of allowed interventions. Intuitively, disallowed interventions are not meaningful or
cannot be performed. Disallowed interventions in a causal model with constraints can be viewed as
ones that do not have a solution. However, it seems useful to have a more systematic understanding
of the set of interventions that are meaningful and will give rise to solutions. Second, abstractions
have been generalized to the approximate case, so that the solutions to the equations in both causal
models may deviate slightly from the abstraction relation (Beckers et al., 2019). As such a situation
seems more realistic in practice, it would be good to generalize causal models with constraints in
a similar manner. One way of doing so would be to consider a metric dV(·, ·) on the range of
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endogenous variables R(V) and consider as solutions of the model all extended states (u,v) that
are within α of some (u′,v′) ∈ C. This could then be combined with a probability distribution over
R(U), allowing the tools for approximate abstraction to be carried over to models with constraints.

Second, causal discovery algorithms are usually limited to learning a causal model using just a
single dataset. There has been interesting work on generalizing causal discovery algorithms to over-
come this limitation, meaning they can take advantage of various datasets using different variables,
greatly improving accuracy (Tillman and Eberhardt, 2014; Huang et al., 2020). This work has not
yet considered non-causal relationships between variables. A natural step to take is to modify these
algorithms so that they can exploit the constraints between variables appearing in different datasets,
and learn a causal model with constraints.

Third, it is worth examining the relative expressive power of our approach and that of Blom et
al. (2019). As we said, they also allow non-causally related variables. They in fact allow a more
general class of constraints, ones that are active only under certain interventions. However, we allow
disconnection (i.e., the disc() operation), which allows us to remove causal constraints. As we saw
in our examples, disconnection plays a critical role; in particular, as Example 3 shows, it allows
us to specify how we want to implement an intervention on a particular variable in a way that we
believe is quite useful in practice. There is no analog of this in the framework of Blom et al. It
would be useful to get a deeper understanding of the connection between the two approaches.

We conclude with a brief comparison of causal models with constraints to the GSEMs (gener-
alized structural equations models) of Peters and Halpern (2021). GSEMs are more expressive than
causal models with constraints (at least, if all variables have finite range); they can simply express
the effect of an intervention in a given context directly, by having a function F that takes as input
a context u and an intervention I , and returns a set of states (intuitively, the set of states that might
result by performing intervention I in context u). Thus, given a causal model with constraints M ,
we can define a GSEM M ′ that agrees with M on all formulas in L(S) (which suffices, given that
we can replace all occurrences of the disc operator using the DSC axiom if all variables have finite
range). However, causal models with constraints allow us to describe constraints directly, which
makes them more practical for many applications.
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