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Abstract
We show how to extend the integer programming (IP) approach to score-based causal discovery
by including pricing. Pricing allows the addition of new IP variables during solving, rather than
requiring them all to be present initially. The dual values of acyclicity constraints allow this addition
to be done in a principled way. We have extended the GOBNILP algorithm to effect a branch-price-
and-cut method for DAG learning. Empirical results show that implementing a delayed pricing
approach can be beneficial. The current pricing algorithm in GOBNILP is slow, so further work
on fast pricing is required.
Keywords: Causal discovery, integer linear programming, pricing

1. Introduction

We consider score-based approaches to causal discovery. In the score-based approach each causal
model has a score—determined by the observed data, and perhaps prior knowledge—and the goal
is to find whichever causal model has the best score. Typical scores include posterior probability
and log-likelihood with some suitable complexity penalty. The problem of causal discovery thus
reduces to an optimisation problem.

The principal problem with this approach is that the resulting optimisation problem can be NP-
hard. For example, Chickering et al. (2004) showed that Bayesian network learning (i.e. causal
discovery assuming causal sufficiency) is NP-hard even with ‘large’ samples. Assuming P , NP
this means that solving the causal discovery optimisation problem exactly (i.e. finding a provably
globally optimal solution) is impractical in the general case. As a result most approaches to causal
discovery are inexact (sometimes called heuristic): a search for high-scoring causal models is con-
ducted and the best-scoring model is returned, but there is no guarantee that a better-scoring model
does not exist. Many inexact methods use local search.

In addition to the integer programming score-based approach considered here, there are very
many approaches to causal discovery. For a good review please consult Drton and Maathuis (2017)
which covers both score-based and constraint-based learning (where conditional independence con-
straints are inferred from data and graphical models consistent with these constraints are found).

The great advantage of resorting to inexact methods is that it is often possible in practice to
find high-scoring models quickly even when learning from large datasets. However, when exact
learning is possible it is clearly preferable; the goal of this paper is to explore whether a particular
method—pricing—can extend the applicability of exact learning.
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MINIMISE
∑
i∈P

J⊆P\{i}

ci←J xi←J (1)

SUBJECT TO: ∑
J⊆P\{i}

xi←J = 1 i ∈ P (2)∑
i∈C

∑
J⊆P\{i}
J∩C,∅

xi←J ≤ |C| − 1 C ⊆ P, |C| ≥ 2 (3)

xi←J ∈ {0, 1}, i ∈ P, J ⊆ P \ {i} (4)

Figure 1: Integer program for score-based BNSL with a decomposable cost

2. Bayesian network structure learning using integer programming

We will focus on learning DAGs under the assumption of causal sufficiency, postponing discussion
of other casual discovery tasks until Section 7. This problem is often called Bayesian network
structure learning and we will abbreviate it to BNSL throughout. We will formulate BNSL as a
minimisation problem, so the goal is to find a DAG of minimal cost, rather than maximal score. Let
P be the random variables observed in the data which correspond to the vertices of candidate DAGs.
We will assume that the cost is decomposable. A decomposable cost is one which is a sum of local
costs, one for each BN variable, where the local cost for each BN variable i ∈ P is determined by
the choice of parents J ⊆ P \ {i} for that variable. BN variable j is a parent of BN variable i iff there
is a directed edge i← j in the DAG in which case i is called a child of j.

Let xi←J be the binary variable indicating that BN variable i has parent set J. The xi←J will
be called family variables since they indicate the choice of parents for a particular BN (child) vari-
able. Clearly any directed graph has a unique encoding as a zero-one vector indexed by the family
variables. Denote the local cost for i having parents J by ci←J . Each ci←J can be computed from
the data we are learning from. If a cost is decomposable it follows that the cost for any DAG is∑

ci←J xi←J where the xi←J encode the DAG.
Let x denote both the vector of all xi←J family variables and also particular values of x—where

the context will make clear which is meant. Finding an x which minimises
∑

ci←J xi←J does not
solve the BNSL problem since typically such an x will not represent a DAG. It is necessary to
add constraints to ensure that the only feasible values of x are those which represent DAGs. One
suitable set of constraints is given in Fig 1 where score-based BNSL with a decomposable score
is represented as an integer linear program, or integer program (IP) for short. Fig 1 represents
an IP since the objective function is linear and constraints are either linear (2,3) or are integrality
constraints (4). For a good introduction to the theory and practice of integer programming Wolsey
(1998) is recommended.

In the IP in Fig 1 the equations (2) ensure that exactly one parent set J is selected for each
BN variable i, so that each feasible x at least represents a directed graph. Next note that for
C ⊆ P, |C| ≥ 2 if there is a cycle with vertices C then each i ∈ C has a parent in C and we
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have
∑

i∈C
∑

J⊆P\{i},J∩C,∅ xi←J = |C|, so the inequalities (3) are sufficient to ensure that only acyclic
directed graphs are feasible. These inequalities (in a different formulation) were introduced by
Jaakkola et al. (2010) under the name cluster constraints.

3. Solving the BNSL linear relaxation

Exact optimisation has two tasks. If we are, as here, minimising, then just like inexact optimisation
it aims to find solutions with low cost. But unlike inexact optimisation it also computes a lower
bound on the objective of an optimal solution. When we have a solution whose objective value
equals this lower bound then we know that it is a globally optimal solution.

The best solution found at any point in the solving process is known as the incumbent and in
modern IP solvers incumbents are found by all sorts of heuristic algorithms. The current version
of the IP solver SCIP (Bestuzheva et al., 2021) has no fewer than 58 heuristic algorithms available
for this purpose! Note that, in principle, any DAG learning algorithm could be used by an IP solver
to provide an initial incumbent DAG, the task of the IP solver being then to search for yet better
incumbents and to compute lower bounds in the hope of establishing optimality.

Lower bounds on optimal objective values are provided by solving relaxations of the original
problem. A relaxation is produced by removing some constraints and solving the resulting problem
to optimality. The objective value of an optimal solution of the relaxed problem provides the desired
lower bound: it will always be no worse (i.e. not greater than) than the objective value of an optimal
solution to the original problem, precisely because the former is a less constrained version of the
latter. It is, of course, crucial that this optimal solving can be performed quickly. In addition, it is
preferable if the relaxation is tight, so that the lower bound it provides is close to the true optimal
objective value.

For an IP problem the standard approach is to solve its linear relaxation where integrality con-
straints are removed, thus producing a linear program (LP). LPs can be solved to optimality in
polynomial time, although in practice they are quickly solved by the simplex algorithm which has
worst-case exponential time. The linear relaxation of our BNSL IP (Fig 1) just replaces xi←J ∈ {0, 1}
with xi←J ∈ [0, 1].

However, solving this linear relaxation is non-trivial since there are 2p− p−1 cluster constraints
(where p = |P|) and p2p−1 family variables. So unless p is small, constructing and solving an LP
with all family variables and all cluster constraints present is impractical. Cussens (2011) addressed
the too-many-cluster-constraints problem by adding these constraints as cutting planes. An initial
LP is created with only a small set C of cluster constraints. This LP is solved and then a search
is conducted for cutting planes—cluster constraints not satisfied by the solution to this LP. The set
C of cluster constraints is then updated to include these cutting planes and the resulting new LP
solved, and a new search for cutting planes is conducted. This iterative approach is continued until
no cutting planes can be found or the linear relaxation provides a sufficiently good bound. Note
that each cluster constraint C ∈ C defines a facet, it is a maximally tight inequality of the convex
hull of zero-one vectors encoding DAGs (Cussens et al., 2017a,b). This is why they provide tight
linear relaxations and why it is worth the effort to find them even though cycles can be ruled out
with merely a quadratic number of linear constraints (Cussens, 2010).

Although the problem of finding these cutting planes is NP-hard (Cussens et al., 2017b), this
has proved a reasonable approach to producing tight linear relaxations if there are not too many
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family variables. The key contribution of this paper is to investigate the use of pricing to iteratively
introduce family variables, when adding all of them initially is impractical.

3.1. Pricing-in variables

To understand how pricing can be inserted into the cutting plane approach for BNSL one needs to
consider the dual of the linear program that is solved at each stage. Let C be the current set of
cluster constraints. Reformulate the inequalities (3) as the lower bounds: −

∑
i∈C
∑

J⊆P\{i}
J∩C,∅

xi←J ≥

−(|C| − 1). Consider multiplying the equations (2) by coefficients λi and the lower-bound version
of the inequalities (3) by λC where C ∈ C, λC ≥ 0, then the sum of resulting inequalities is a valid
inequality ∑

i∈P
J⊆P\{i}

di←J xi←J ≥
∑
i∈P

λi −
∑
C∈C

λC(|C| − 1)

where di←J = λi −
∑

C∈C,i∈C,C∩J,∅ λC . (Each equation (2) can be viewed as the pair of inequalities∑
J⊆P\{i} xi←J ≥ 1 and

∑
J⊆P\{i} −xi←J ≥ −1, with associated non-negative multipliers λ+i and λ−i , and

where λi = λ
+
i − λ

−
i .) If ∀i, J : ci←J ≥ di←J then

∑
i∈P λi −

∑
C∈C λC(|C| − 1) is a lower bound on

the objective. The dual of the linear program is just the problem of finding values for the λi and the
λC which lead to the greatest such lower bound by maximising

∑
i∈P λi −

∑
C∈C λC(|C| − 1) subject

to ∀i, J : ci←J ≥ di←J , ∀C ∈ C, λC ≥ 0. By the strong duality of linear programming the objective
values of the solutions to the dual and the original (primal) linear program are equal (assuming both
have a solution).

Let λ∗ be the solution to the dual linear program. Note that any reasonable LP solver will
compute λ∗ in the course of solving the primal LP, a separate optimisation process is not required.
Suppose that instead of including all family variables, only a subset V are in the LP, thus most
probably not allowing an optimal solution to the (primal) LP. Let xi←J be a family variable not inV
whose local cost ci←J is low enough so that ci←J < d∗i←J = λ

∗
i −
∑

C∈C,i∈C,C∩J,∅ λ
∗
C . Then if one were

to add xi←J to V, the new dual linear program thus produced would have an additional constraint
ci←J ≥ di←J = λi −

∑
C∈C,i∈C,C∩J,∅ λC which the earlier solution λ∗ does not satisfy. The addition of

the variable xi←J to the primal LP thus adds a cutting plane to the dual LP which renders the dual
solution λ∗ no longer feasible.

Pricing is the process of finding and adding new variables xi←J which render the current dual
solution infeasible. Typically, adding such variables to the primal LP will result in an LP solution
with a lower objective value. If no such variables can be found then it follows that the LP has
been solved to optimality even though only a subset of IP variables have been used. All potential
variables which are not included in the LP are implicitly set to 0 in this optimal solution.

The condition ci←J < λ
∗
i −
∑

C∈C,i∈C,C∩J,∅ λ
∗
C is equivalent to ci←J − λ

∗
i +
∑

C∈C,i∈C,C∩J,∅ λ
∗
C < 0.

ci←J − λ
∗
i +
∑

C∈C,i∈C,C∩J,∅ λ
∗
C is called the reduced cost for xi←J . The goal of pricing is to find

variables which, given the current dual values λ∗i , λ
∗
C , have negative reduced cost. If such variables

are found they are added toV producing a new LP whose dual is solved leading to new dual values
and a new pricing problem. Note that a new variable must be added to all constraints where it has
non-zero coefficient. So xi←J must be added to the constraint

∑
J⊆P\{i} xi←J = 1 as well as to any

cluster constraint whose cluster C has i ∈ C, J ∩ C , ∅. In this way new variables are added to the
problem in pricing rounds.

The least any pricing method must deliver is, on each pricing round, to find at least one variable
with negative reduced cost or establish that no such variable exists. One simple pricing strategy is,
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MINIMISEJ z = ci←J − λ
∗
i +

∑
C∈C,i∈C
C∩J,∅

λ∗C

SUBJECT TO z < 0

Figure 2: Pricing problem for BN variable i where C is the current set of clusters and λ∗i and λ∗C are
the current dual values for the constraints.

MINIMISEJ z = n logσ2
i←J + Λ

2|J| +
∑

C∈C,i∈C
C∩J,∅

λ∗C

SUBJECT TO z < λ∗i

Figure 3: Gaussian ℓ0 pricing problem for BN variable i where C is the current set of clusters and
λ∗i and λ∗C are the current dual values for the constraints.

for each i ∈ P, to find a parent set J, if any, whose reduced cost is most negative (so that at most p
variables are added in any pricing round). The pricing problem using this approach is show in Fig 2.

3.2. Pricing for BNSL: a worked example

We will illustrate pricing when the BN score is the Gaussian ℓ0-penalised maximum likelihood
score for scoring Gaussian DAGs (van de Geer and Bühlmann, 2013). The ℓ0-penalised maximum
likelihood score is a decomposable score and the local cost for variable i having parents J is:

ci←J = L(i, J) + Λ2|J| (5)

where
L(i, J) = (n/2)[log(2π) + 1 + logσ2

i←J] (6)

and where n is the size of the data, nσ2
i←J is the sum of squared residuals resulting from OLS

regression using variables J to predict variable i and Λ2 is the tuning parameter for the ℓ0 penalty
Λ2|J|.

After removing the constant terms log(2π) + 1 and rescaling Λ2 we end up with a simplified
cost which when plugged into the pricing problem shown in Fig 2 and then rearranging leads to the
pricing problem specific to Gaussian ℓ0-penalised maximum likelihood shown in Fig 3. Note that
λ∗i is independent of J and so has been removed from the objective in Fig 3.

We now illustrate the price-and-cut method to solve a linear relaxation using the gaussian.test
dataset from the BNLEARN R package (Scutari, 2010). This dataset consists of n = 5000 samples
generated from a Gaussian distribution defined by choosing parameters for the 7-node DAG shown
in Fig 4. The parameters can be found in the script gaussian.test.R (available from BN-
LEARN) which was used to generate the sample. The ℓ0 tuning parameter Λ2 was set to 1. Full de-
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1 5 7

23 4 6

Figure 4: DAG used to generate gaussian.test dataset

tails can be found in Appendix A. The results can be reproduced by cloning commit b04ff3f from the
pricing branch of the pygobnilp repo https://bitbucket.org/jamescussens/
pygobnilp. Just type python testpricing.py at the command line.

We start with an initial LP (LP 1) where we only have family variables for empty parent sets:
V = {xi←∅ : i = 1, . . . , 7} and C = ∅, so the only constraints are the p = 7 linear constraints (2).
There is only one feasible solution to this LP, which is thus also optimal: all 7 of the variables are
set to 1.

Solving the 7 Gaussian ℓ0 pricing problems (Fig 3) for i = 1, . . . , 7 using the dual values
associated with this optimal solution finds the following family variables with minimal reduced
cost: x1←{2,3,4,5,6,7}, x2←{1,3,4}, x3←{1,2}, x4←{1,2,5,6,7}, x5←{1,4,6,7}, x6←{1,3,4,5,7} and x7←{1,3,4,5,6}. These
variables have costs −466.13, −1921.01, 3718.43, 1238.48, 6507.84, 7076.24 and 4800.51 respec-
tively and reduced costs of −7581.44, −14564.78, −12624.79, −13440.29, −4026.65, −9132.33
and −5718.30, respectively. Since at this point there is no penalty for cycles these are, inevitably,
just the parent sets with minimal cost for each i ∈ P, with the reduced cost quantifying how much
better these parent sets are than the empty parent set. As expected, each minimal cost parent set
approximates the Markov blanket of the child variable in the true data-generating BN (Fig 4). For
i = 1, 2, 3, 4, 5 exactly the Markov blanket is returned, for i = 6, 7 the parent 3 is added to the
Markov blanket, which is probably a result of having a low value (i.e. 1) for Λ2. Adding these
7 variables (so that now there is a total of 14 variables), resolving the dual LP and pricing again
produces no new variables. So we have an optimal solution to the LP with no acyclicity constraints.

At this point a cutting plane algorithm is run. The particular cutting plane method chosen for
this illustrative example limits the number of cutting planes to 20 and 20 are indeed found. Once
these 20 cuts are added we have a new LP (LP 2) which must be solved to optimality using pricing.
It turns out that 7 pricing rounds are required to solve this LP introducing 4,4,5,4,3,1 and 0 family
variables respectively. This interleaved process of pricing and cutting is continued until no new cuts
can be found. The process is summarised in Table 1. Eventually we obtain a value of 45301 for the
solution to the linear relaxation of IP shown in Fig 1. This is achieved using only 52 family variables
and 60 cluster constraints, even though there are 7 × 26 = 448 family variables and 27 − 7 = 121
cluster constraints available. Running the cutting plane algorithm again but this time with all 448
family variables included and thus no need for pricing produces exactly the same objective value
for the linear relaxation.

4. Branch-price-and-cut for BNSL

Pricing allows us to solve linear relaxations without explicitly introducing all possible IP variables.
But linear relaxations merely provide bounds on IP solutions. Almost always the solution to the
linear relaxation of the BNSL IP (Fig 1) will contain non-integer values and thus violate the inte-
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LP |C| |V| Rounds Obj
1 0 14 7,0 20954
2 20 35 4,4,5,4,3,1,0 38006
3 40 50 4,5,3,2,1,0 43158
4 60 52 2,0 45301

Table 1: Cut-and-price for the gaussian.test dataset. Each of the 4 progressively tighter linear
relaxations solved to optimality using pricing.

grality constraints (4). To make further progress it is necessary to branch: pick a variable (typically
one that is non-integer in the linear relaxation solution) and create two subproblems: one with that
variable set to 0 and one with that variable set to 1. (All IP variables will be binary.)

Each subproblem thus created is an IP and it is useful to solve its linear relaxation—and we
do this using pricing. So pricing is used at every node of the branch-and-bound tree used to solve
the IP. Cuts may or may not be added: doing so tightens the linear relaxation thus providing better
(local) bounds but also takes time.

Instead of branching on family variables xi←J , we create new binary arrow variables xi← j to
branch on since this produces a more balanced search tree. xi← j = 1 iff there is an arrow from
parent j to child i. Arrow and family variables satisfy the constraints xi← j =

∑
J: j∈J xi←J . In any

node of the branch-and-bound tree there will be forbidden (xi← j = 0) and obligatory (xi← j = 1)
arrows. The pricing algorithm for each node is thus (easily) altered to only look for new family
variables which are consistent with the set of forbidden and obligatory arrows at that node.

Suppose we are at a node where xi← j = 1 and x j←k = 1 then, due to acyclicity we cannot
have xk←i = 1 so xk←i should immediately be fixed to 0. To facilitate such propagations a third
kind of binary variable is introduced: partial order variables xif j, where there is such a variable
for each ordered pair i, j ∈ P, where i , j. These variables satisfy the following constraints:
∀i, j ∈ P : xi← j ≤ xif j, ∀i, j ∈ P : xif j + x jfi ≤ 1 and ∀i, j, k ∈ P : xif j + x jfk − xifk ≤ 1. In
this way the partial order variables represent a partial order consistent with the ordering induced by
the arrow variables and thus permit the desired propagation.

We now have the required ingredients for solving the BNSL IP: pricing to solve large linear
relaxations, cutting to produce linear relaxations that provide good bounds and branching since
linear relaxations alone are not enough to solve an IP. However to effectively solve large BNSL IP
problems some additional steps are required.

Firstly, we need to ensure that unnecessary lower and upper bounds on variables do not appear
as constraints in any linear relaxation, since if they do they will have associated dual values which
will complicate the pricing algorithm. We will be using the SCIP system (Bestuzheva et al., 2021)
since it provides support for pricing, cutting and branching. SCIP allows one to declare lower and
upper variable bounds to be lazy which prevents the bound appearing in the LP. Here we set the
upper bound (i.e. 1) for family variables to be lazy (since they are implied by the constraints (2) in
Fig 1), and both the lower and upper bounds of arrow variables to be lazy.

Secondly, we need to represent the constraints between family, arrow and partial order variables
appropriately. In any node of the branch-and-bound tree where xi← j = 1 we clearly want all family
variables where child i lacks j as a parent to be ruled out and similarly when xi← j = 0 all parent
sets for i containing j should go. If we represent these constraints as general linear constraints
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MINIMISEJ z = ci←J −
∑
j∈J

λ∗i← j +
∑

C∈C,i∈C
C∩J,∅

λ∗C

SUBJECT TO z < λ∗i

Figure 5: Pricing problem for BN variable i where C is the current set of clusters and λ∗i , λ∗i← j and
λ∗C are the current dual values for the constraints.

we will not get these propagations. Since new variables can be created by pricing and then added
to existing constraints only propagations that remain valid no matter how the constraint is thus
altered can be permitted. In our actual implementation the constraint xi← j =

∑
J: j∈J xi←J is replaced

by two set partitioning constraints
∑

J: j∈J xi←J + ¬xi← j = 1 and
∑

J: j<J xi←J + xi← j = 1. A set
partitioning constraint states that exactly one of a set of binary variables has value 1. Since SCIP
is explicitly informed that these are set partitioning constraints it knows that only binary variables
with coefficient 1 will be added. From this it follows that SCIP can legitimately (and does!) rule
out all family variables for child i lacking j as soon as xi← j = 1 and similarly those containing j as
soon as ¬xi← j = 1 (i.e. xi← j = 0). Such propagations are valid irrespective of whether pricing adds
new IP variables to the set partitioning constraints. For similar reasons the constraint xi← j ≤ xif j

is actually posted as a set packing constraint xi← j + ¬xif j ≤ 1.
Thirdly we do not want constraints that only exist to allow propagations to be included in any

linear relaxation. Doing so creates extra dual values for the pricer to deal with and moreover makes
the linear relaxation LP unnecessarily bigger (and thus slower to solve). For this reason all con-
straints involving partial order variables and the constraint

∑
J: j<J xi←J + xi← j = 1 are not included

in linear relaxations. This is done in SCIP by setting the constraints’ initial and separate flag ap-
propriately when the constraint is added to the problem. Note that this means partial order variables
are not in any LP.

Fourthly, even though the constraints xif j + x jfi ≤ 1 and xif j + x jfk − xifk ≤ 1 are not in the
LP there are many of them. So instead of adding these constraints we create a single partial order
constraint containing all partial order variables. This is done by using a slightly altered version
of the ‘LOP’ linear ordering constraint handler (written by March Pfetsch) that is supplied as an
example with the SCIP system. The end result is that we get the propagations we want.

Fifthly, for each arrow i← j, the constraints
∑

J: j∈J xi←J + ¬xi← j = 1 are present in the LP and
thus have associated dual values which must be taken in account when pricing. Let λ∗i← j be the dual
value for

∑
J: j∈J xi←J + ¬xi← j = 1. The pricing problems in Figs 2 and 3 can accommodate arrow

dual values by adding −
∑

j∈J λ
∗
i← j to the objective. Fig 5 is the pricing problem with dual values for

the arrow constraints included.

5. Optimisations

The preceding sections have outlined the basic branch-price-and-cut approach. We now move on to
consider optimisations, beginning with a look at how to restrict the set of candidate family variables
for pricing-in. Suppose we have some candidate parent set J for some BN child i which we know is
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not required for an optimal DAG, so the constraint xi←J = 0 is valid. It follows that such a family
variable xi←J should not be added by pricing, even if it has negative reduced cost in some linear
relaxation.

Fortunately, there are typically many such family variables that can be excluded. Let J be called
a potentially optimal parent set (POP) for i if: ∀J′ ⊊ J : ci←J < ci←J′ , i.e. all of J’s proper subsets
have strictly higher cost. If J is not a POP for i then it follows that there is an optimal DAG with
xi←J = 0 since if we had a DAG where J were the parent set for i then we could replace J with a
proper subset J′ with ci←J ≥ ci←J′ and create a DAG whose cost is no higher. So we could safely
add the following constraints to the IP for BNSL (Fig 1):

∀i ∈ P, J ⊆ P \ {i} : ∃J′ ⊊ J : ci←J ≥ ci←J′ → xi←J = 0 (7)

However, directly adding the constraints (7) by considering each i ∈ P, J ⊆ P \ {i}, J′ ⊊ J is
clearly impracticable for all but the smallest problems, so a more sophisticated approach is required.
In the standard (without-pricing) version of GOBNILP only POP family variables (up to some pre-
defined cardinality limit) are included in the problem. When we allow pricing then we want (i) to
avoid pricing-in known non-POPs and (ii) to exploit the restriction to POPs to speed up the pricing
algorithm.

Consider now the example given in Section 3.2. In the first round of pricing we found minimal
cost parent sets for each child variable. For example, it was found that a minimal cost parent set for
child 3 was {1, 2} with a cost of 3718 (rounded to nearest integer). We will assume throughout that
if J and J′ are both minimal costs parent sets and J′ ⊊ J then J is not the returned minimal cost
parent set. With this assumption, it follows that {1, 2} is a POP for child 3. More importantly, since
{1, 2} has minimal cost, there are no POPs for child 3 in the set interval {J : {1, 2} ⊊ J ⊆ P \ {3}}
which has cardinality 26 − 4 = 60. So for child 3 we have ‘got lucky’: not only have we identified
a POP, we have also identified a large number of non-POPs and thirdly we know that if 1 and 2 can
be made parents of 3 without creating a cycle then {1, 2} should be chosen as the parent set for 3.
To formalise this last point, let xif j denote that j is an ancestor of i. It follows that whenever 3 is
a non-ancestor of both 1 and 2 then, since we are only concerned with finding an optimal DAG, we
can just fix the parent set of 3 to be {1, 2}:

¬x1f3 ∧ ¬x2f3 → x3←{1,2} = 1 (8)

Call constraints such as (8) best-parent-set constraints.
Since identifying low cardinality minimal cost parent sets can be so useful it also worth finding

minimal cost parent sets where the set of allowed parents is reduced. Returning again to the example
in Section 3.2 we see that the minimal cost parent set for 7 is {1, 3, 4, 5, 6} with a cost of 4800.
However, if we disallow 6 as a parent it turns out that the minimal cost parent set is the empty set
with a cost of 10518. (This is no surprise since in the data-generating DAG (Fig 4) 7 is d-separated
from all other BN variables conditional on any set not containing 6.) This means there are no POPs
for child 7 in the set interval {J : {} ⊊ J ⊆ P \ {6, 7}}. The relevant best-parent-set constraint is
x6f7 → x7←{} = 1.

A procedure for finding set intervals of non-POPs is given in Appendix B. The basic idea is
to find minimal cost parent sets when given subsets of parents are disallowed and to record the
associated set intervals of non-POPs. The pricer can then exclude parent sets in these non-POP
intervals from its search for negative reduced cost family variables.

9
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Another simple optimisation is to simply do less pricing by precomputing the local costs for all
potentially optimal parent sets (POPs) up to some predetermined cardinality limit k. This can speed
up later pricing since we can add a constraint to indicate that all necessary parent sets of size up to k
have already been found. Another optimisation adds cutting planes additional to cluster constraints
in the form of k-cluster constraints (Cussens, 2011). These tighten the linear relaxations and only
slightly complicate the pricing algorithm.

A last optimisation concerns how pricing and cutting are interleaved. In the standard approach
to price-and-cut, pricing is used to solve each of a series of linear programs to optimality. Once
each LP is solved a cutting plane algorithm is run to produce a new LP which is a tighter linear
relaxation. This is the method used in the example outlined in Section 3.2 and described in detail
in Appendix A. It is also how the SCIP solver expects price-and-cut to be implemented. But why
spend time solving an LP to optimality if it will soon be replaced by a tighter relaxation due to the
addition of cutting planes? Based on this argument GOBNILP allows the user to delay pricing. In
this approach pricing is only run once the cutting plane algorithm can find no new cutting planes.

Above we have listed a number of optimisations specific to pricing. When using a Gaussian ℓ0
objective there is another useful optimisation that can be used whether or not we are pricing. If Λ2,
the ℓ0 penalty, were set to 0 then clearly every complete DAG would be optimal with a common
cost, which we will denote L∗. So we have the following inequality which is valid no matter what
value of Λ2 is actually being used: ∑

i∈P
J⊆P\{i}

L(i, J)xi←J ≥ L∗ (9)

This has proved to be a useful inequality for getting a lower bound in the normal case where Λ2 > 0
since its coefficients only differ from those of the objective by Λ2|J|. Since this inequality is in each
linear relaxation, pricing has to take its dual value into account, which is easily done.

6. Does it work?

The preceding sections have outlined an integer programming approach to learning DAGs under
causal sufficiency where potential parent sets for individual random variables are introduced in the
course of the learning (=optimisation). The issue is whether this an effective approach for this sort
of causal discovery.

The short answer is that it is possible to learn optimal DAGs using pricing (together with cutting
and branching), but the time it takes to do this depends crucially on how quickly the pricing problem
(Fig 5) can be solved and how many IP variables have to be ‘priced-in’ to solve each of the many
linear relaxations that arise. Note that (typically) several pricing rounds will be run for every node in
the IP search tree to ensure the linear relaxation for that node is solved to optimality. Consider, for
example, the Gaussian ℓ0 pricing problem (shown, with dual values for ‘arrow constraints’ omitted,
in Fig 3). One strategy for solving this problem is to encode it in such a way that an existing solver
can solve it. This is the approach we take: the encoding as a non-convex constrained optimisation
problem is given in Fig 6, the solver we use is SCIP. In Fig 6 each binary variable y j indicates that j
is in the new parent set for i. The β j are linear regression coefficients, Xi is the vector of observed
values for random variable i in the data, X−i is the data matrix of all variables other than i and S
is the matrix X⊤

−iX−i. The variable xσ2 represents squared error (when predicting random variable

10
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MINIMISE z = nxlogσ2 +
∑

j∈P\{i}

(Λ2 − λ∗i← j)y j +
∑
C∈C

λ∗CyC (10)

SUBJECT TO
∑

j∈P\{i}

γ2
j + c ≤ nxσ2 (11)

log xσ2 ≤ xlogσ2 (12)

γ = S 1/2β − S −1/2X⊤
−iXi (13)

(β j, 1 − y j) : SOS-1 j ∈ P \ {i} (14)

yC =
∨
j∈C

y j C ∈ C (15)

z < λ∗i

xσ2 ∈ R+ xlogσ2 , γ j, β j ∈ R y j, yC ∈ {0, 1}

Figure 6: Gaussian ℓ0 pricing for BN variable i as nonlinear constrained optimisation.

i in a linear regression model with coefficients β j) and xlogσ2 is the log of that squared error. The
‘SOS-1’ constraints state that y j = 0 → β j = 0. Intermediate variables γ j have been introduced
so that the constraint between linear regression coefficients and squared error can be expressed as
the second-order cone constraint (11). This has been shown (empirically) to lead to faster solving
than expressing this relationship directly. A binary variable yC ,C ∈ C indicates that the parent
set intersects with the cluster C in which case the associated ‘dual penalty’ λ∗C is included in the
objective value (10). yC = 1 if and only if a parent is a member of C (15). Constraints for ruling
out ‘non-POP set intervals’ (see Section 5) are easily added to Fig 6. If we wish to exclude all
{J : J ⊆ J ⊆ J} then the constraint

∑
j∈J ¬y j +

∑
j∈P\J y j ≥ 1 is added.

For the 7 BN variable gaussian.test dataset used in Section 3.2 it takes just under 3 min-
utes to find a guaranteed optimal DAG using pricing (pricing not delayed, all POPs up to size 2
precomputed, without identifying intervals of non-POPs). If pricing is delayed, then the time is
reduced to just under 2 minutes, so in this case delaying pricing brought some advantage. If we
now identify intervals of non-POPs by considering disallowed parent sets of size at most one, then
solving comes down to 48 seconds. However pricing is not required for such a small example and
GOBNILP-without-pricing learns an optimal DAG for this dataset in under a second! (All experi-
ments conducted with Gaussian BIC scoring with no parent set size limit using GOBNILP commit
2495e79 (neat branch) on a single core of a 15 Gb RAM, 2.7GHz CPU laptop. SCIP used CPLEX
to solve LP relaxations.)

To test the usefulness of pricing on a harder problem, a dataset with 20 random variables and
100 datapoints was generated from a known true Gaussian DAG. (This was done using a routine
included with the NOTEARS (Zheng et al., 2018) software.) If pricing is not used, solving takes
327 seconds (31 seconds to generate 6634 local costs, 84 seconds to find an optimal DAG and a
further 212 seconds to prove that this DAG is indeed optimal). On this particular dataset using
pricing always performs worse than not using pricing - no variant of pricing has been able to solve
the problem to optimality, although reasonably good incumbents and lower bounds are produced.
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The general point, which these two problems exemplify, is that pricing should only be used
when necessary. This is principally because, at least in the case of the non-convex pricing problem
shown in Fig 6, pricing is expensive—when pricing is used it takes up almost all of the solving time.
If pricing is not used then not only is no time spent pricing-in new variables but the IP solver can take
advantage of the knowledge that no new IP variables will be introduced. Moreover, if there is no
pricing then the solver is free to add in any cutting planes (additional to the cluster constraints) that
it finds useful to add. The SCIP system has many ‘separators’ which add cutting planes, including
e.g. separators for adding zero-half cuts and Gomory cuts (see Bestuzheva et al. (2021) for details).
In contrast, when pricing we cannot allow this since we need to keep track of all cuts to account for
their dual values and to know whether new priced-in variables should be added to them.

However, there are cases where pricing is necessary to make any progress. For example, a
10,000 datapoint dataset with 25 random variables was generated from a known true Gaussian
DAG. When GOBNILP without pricing attempted to learn from this dataset it ran out of memory
while attempting to create the IP since the number of initial IP variables was too great. This problem
disappears when pricing is used since only a small number of initial family variables need be found.
Using pricing on this dataset (no matter which variant of pricing) an incumbent DAG and lower
bound are found in a few seconds where the ‘gap’ between these two is only 0.06%, so, using
pricing, we have quickly found a DAG close to optimal, instead of running out of memory and not
returning any DAG. However, getting this gap down to 0% (i.e. finding a provably optimal DAG)
has so far not proved possible.

7. Discussion

We have a working implementation—an extended version of GOBNILP(commit 2495e79 at https:
//bitbucket.org/jamescussens/gobnilp)—that allows new candidate parent sets to be
created during the solving/learning process via pricing. This is done in a principled way by consid-
ering reduced costs for these candidate parent sets which take into account the dual values associated
with constraints ensuring acyclicity. We have shown, unsurprisingly, that fast pricing is required for
fast learning and shown that, perhaps less obviously, delaying pricing can bring benefits.

Although we view this contribution as a useful first step in extending score-based causal dis-
covery, it is clear that there is some way to go before this approach is a state-of-the-art method.
Some of the necessary work concerns the details of implementation and some is more algorithmic:
designing fast pricing algorithms for a range of popular scores for causal model learning.

In this paper we have focused exclusively on DAG learning with the assumption of causal suf-
ficiency. However, it is actually score-based learning of more complex causal models, e.g. those
with latent variables where pricing can be of most benefit. For example, Chen et al. (2021) showed
how to encode BIC score-based learning of ancestral acyclic directed mixed graphs (ADMGs) as
an IP problem. But ADMG learning requires even more IP variables than DAG learning: one for
every candidate district. It would be interesting to investigate the feasibility of pricing in candidate
districts while learning the ADMG.
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Appendix A. Pricing for BNSL: a worked example in detail

This section contains full details of the Gaussian ℓ0-penalised maximum likelihood pricing example
summarised in Section 3.2. The objectives here are given in terms of scores rather than costs and
are not rounded to the nearest integer. So, for example, the objective for the first LP (which has
no cluster constraints) is shown here to have an optimal solution with objective value of −20954.37
rather than 20954 as given in Section 3.2. Similarly, the two values given for a priced-in family
variable are its local score and its reduced local score. Note that for priced-in variables the reduced
local score is always positive (i.e. the reduced cost is always negative).

Now to explain the following table in more detail. Vi is the set of family variables introduced in
pricing round i − 1 with the initial family variables denotedV1. Ci are the clusters associated with
the cluster constraint cutting planes introduced in separation round i. Separation rounds are thus
called since the cutting planes found in a separation round separate the current LP solution from the
convex hull of integer solutions. Each section in the table with title LP specifies a linear program
with variablesV and with cluster constraints given by some set of clusters C. Included is the primal
solution to the LP after the text “Solution is”, the objective value and the solution to the dual of the
LP (after the text “Dual values”). The dual values λ∗i for i = 1, . . . , 7 are given, in order, after the
text “λ∗i =”. These are the dual values associated with the equations (2) in Fig 1. Dual values λ∗C for
cluster constraints are also given, except those which have value 0 are omitted.

After each LP section there is a section Pricing which shows which new variables, if any, were
added to the LP to get a better LP solution. Each priced-in variable is given with its local score
and reduced local score. If a pricing round ends with no new variables to add it follows that the LP
has been solved to optimality and so a separation round is done to find cuts to add to the LP. The
clusters associated with these cuts are in the sections with title Separation. The process (known as
the price-and-cut loop) ends when no cutting planes can be found.

V1 = x1←{}, x2←{}, xC←{}, x4←{}, x5←{}, x6←{}, x7←{}
LP. C = ∅. V = V1 . Solution is x1←{} = 1, x2←{} = 1, x3←{} = 1, x4←{} = 1, x5←{} = 1,

x6←{} = 1, x7←{} = 1. Objective is −88043.06. Dual values: λ∗i = −7115.31, −12643.78, −16343.24,
−14678.79, −10534.51, −16208.60, −10518.84.
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Pricing. New variables: V2 = (x1←{2,3,4,5,6,7}, 466.13, 7581.44), (x2←{1,3,4}, 1921.01, 14564.78),
(x3←{1,2},−3718.43, 12624.79), (x4←{1,2,5,6,7},−1238.48, 13440.29), (x5←{1,4,6,7},−6507.84, 4026.65),
(x6←{1,3,4,5,7},−7076.24, 9132.33), (x7←{1,3,4,5,6},−4800.51, 5718.30).
LP. C = ∅. V =

⋃̇2
i=1Vi. Solution is x1←{2,3,5,6,4,7} = 1, x2←{1,3,4} = 1, x3←{1,2} = 1, x4←{1,2,5,6,7} =

1, x5←{1,4,6,7} = 1, x6←{1,3,4,5,7} = 1, x7←{1,3,4,5,6} = 1. Objective is −20954.37. Dual values: λ∗i =
466.13, 1921.01, −3718.43, −1238.48, −6507.84, −7076.24, −4800.51.
Pricing. New variables: None
Separation. New clusters: C1 = {1, 2}, {2, 4}, {4, 5}, {1, 3}, {1, 4}, {5, 6}, {1, 5}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 5, 6}, {2, 3, 4, 5}, {1, 2, 4, 5}, {2, 4, 7}, {1, 3, 4, 5}.
LP. C = C1. V =

⋃̇2
i=1Vi. Solution is x1←∅ = 1, x2←∅ = 1, x3←{1,2} = 1, x4←{1,2,5,6,7} = 1, x5←∅ = 1,

x6←{1,3,4,5,7} = 1, x7←{1,3,4,5,6} = 1. Objective is −47127.29. Dual values: λ∗i = −7115.31, −12643.78,
−12424.37, −14678.78, −10534.51, −11102.91, −4800.51. λ∗

{2,4} = 13440.30, λ∗
{1,3} = 7581.45,

λ∗
{5,6} = 4026.66, λ∗

{2,3} = 1124.49.
Pricing. New variables: V3 = (x1←{4,5,6,7},−3071.68, 4043.62), (x2←{1,3,5,6,7}, 97.25, 11616.53),
(x3←{4,5,6,7},−7713.50, 4710.86), (x4←{1,3,5,6,7},−3060.54, 11618.23).
LP. C = C1. V =

⋃̇3
i=1Vi. Solution is x1←∅ = 1/2, x2←∅ = 1/2, x4←∅ = 1/2, x5←∅ = 1,

x1←{2,3,4,5,6,7} = 1/2, x2←{1,3,4} = 1/2 x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x6←{1,3,4,5,7} = 1,
x7←{1,3,4,5,6} = 1, x3←{4,5,6,7} = 1/2. Objective is −44771.85. Dual values: λ∗i = −7115.31,
−12643.78, −14105.73, −14678.78, −10534.51, −11102.91, −4800.51, λ∗

{1,2} = 2355.43, λ∗
{2,4} =

1822.05, λ∗
{1,4} = 5226.01, λ∗

{5,6} = 4026.66, λ∗
{2,3} = 3995.07, λ∗

{2,3,4} = 6392.23.
Pricing. New variables: V4 = (x1←{2,3,5,6,7}, 418.10, 5177.97), (x2←{1,5,6,7},−5192.93, 5095.39),
(x3←{1,5,6,7},−9010.62, 5095.10), (x4←{2,3,5,6,7},−1287.31, 5177.17).
LP. C = C1. V =

⋃̇4
i=1Vi. Solution is x1←∅ = 1/2, x2←∅ = 1/2, x4←∅ = 1/2, x5←∅ = 1,

x1←{2,3,4,5,6,7} = 1/2, x2←{1,3,4} = 1/2 x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x6←{1,3,4,5,7} = 1,
x7←{1,3,4,5,6} = 1, x3←{4,5,6,7} = 1/2. Objective is −44771.85. Dual values: λ∗i = −7115.31,
−12643.784, −14188.30, −14678.78, −10534.51, −11102.91, −9895.92, λ∗

{1,2} = 2355.43, λ∗
{2,4} =

1822.05 λ∗
{1,4} = 48.03, λ∗

{5,6} = 4026.66, λ∗
{2,3} = 3995.07, λ∗

{1,3,4} = 5177.98, λ∗
{2,3,4} = 1296.82,

λ∗
{2,4,7} = 5095.40.

Pricing. New variables: V5 = (x1←{2,5,6,7},−3304.52, 1455.33), (x2←{4}, 503.85, 4933.34),
(x3←{5,6,7},−9273.27, 4915.02), (x4←{2,5,6,7},−1471.23, 4993.26), (x7←{1,3,5,6},−5361.48, 4534.43).
LP. C = C1. V =

⋃̇5
i=1Vi. Solution is x1←∅ = 1/2, x2←∅ = 1/2, x5←∅ = 1, x2←{1,3,4} = 1/2,

x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x6←{1,3,4,5,7} = 1, x7←{1,3,4,5,6} = 1/2, x4←{1,3,5,6,7} = 1/2,
x1←{2,3,5,6,7} = 1/2, x3←{5,6,7} = 1/2, x7←{1,3,5,6} = 1/2. Objective value is −40047.12. Dual
values: λ∗i = −7115.31, −12643.78, −9273.27, −14678.78, −10534.51, −10858.29, −5361.48,
λ∗
{1,2} = 1417.15, λ∗

{2,4} = 1822.05, λ∗
{4,5} = 244.62, λ∗

{1,3} = 453.24, λ∗
{1,4} = 48.03, λ∗

{5,6} = 3782.04,
λ∗
{1,2,4} = 5663.02, λ∗

{2,3,4} = 5101.60, λ∗
{2,4,7} = 560.96.

Pricing. New variables: V6 = (x1←{3,4,5,6,7},−495.90, 455.10), (x2←{5,6,7},−8632.31, 3450.49),
(x4←{5,6,7},−10605.66, 3267.53), (x5←{1,2,6,7},−6729.11, 23.33).
LP. C = C1. V =

⋃̇6
i=1Vi. Solution is x1←∅ = 1/2, x1←2,3,5,6,7 = 1/2, x2←5,6,7 = 1/2, x2←1,3,4 =

1/2, x3←1,2 = 1/2, x3←5,6,7 = 1/2, x4←1,2,5,6,7 = 1/2, x4←1,3,5,6,7 = 1/2, x5←∅ = 1, x6←1,3,4,5,7 =

1, x7←1,3,5,6 = 1. Objective is −38321.86. Dual values: λ∗i = −7115.31, −9193.27, −9273.27,
−11204.93, −10534.51, −10881.64, −5361.48, λ∗

{1,2} = 962.04, λ∗
{2,4} = 1822.05, λ∗

{4,5} = 221.27,
λ∗
{1,3} = 2178.49, λ∗

{1,4} = 48.03, λ∗
{5,6} = 3805.39, λ∗

{2,3} = 455.11, λ∗
{1,2,4} = 4392.88, λ∗

{2,3,4} =

2921.23, λ∗
{2,4,7} = 560.96.
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Pricing. New variables: V7 = (x1←{5,6,7},−6743.90, 371.39), (x2←{1,3,5,6},−202.07, 259.92),
(x4←{1,3,6},−3634.97, 207.79).
LP. C = C1. V =

⋃̇7
i=1Vi. Solution is x1←{2,3,5,6,7} = 1/2, x1←{5,6,7} = 1/2, x2←{5,6,7} = 1/2,

x2←{1,3,5,6} = 1/2. x3←{1,2} = 1/2, x3←{5,6,7} = 1/2, x4←{1,2,5,6,7} = 1, x5←∅ = 1, x6←{1,3,4,5,7} = 1,
x7←{1,3,4,5,6} = 1/2, x7←{1,3,5,6} = 1/2, Objective is −38006.19. Dual values: λ∗i = −6743.90,
−9193.27, −9273.27, −11204.93, −10534.51, −10881.64, −5361.48, λ∗

{1,2} = 962.04, λ∗
{2,4} =

1614.25, λ∗
{4,5} = 221.27, λ∗

{1,3} = 1862.82, λ∗
{1,4} = 48.03, λ∗

{5,6} = 3805.39, λ∗
{2,3} = 507.23,

λ∗
{1,2,4} = 4337.14, λ∗

{2,3,4} = 3184.78, λ∗
{2,4,7} = 560.96.

Pricing. New variables: V8 = (x4←{2,3,6,7},−1460.31, 47.46),
LP. C = C1. V =

⋃̇8
i=1Vi. Solution is x1←{5,6,7} = 1/2, x1←{2,3,5,6,7} = 1/2, x2←{5,6,7} = 1/2,

x2←{1,3,5,6} = 1/2. x3←{1,2} = 1/2, x3←{5,6,7} = 1/2, x4←{1,2,5,6,7} = 1, x5←∅ = 1, x6←{1,3,4,5,7} = 1,
x7←{1,3,4,5,6} = 1/2, x7←{1,3,5,6} = 1/2, Objective is −38006.19 Dual values λ∗i = −6743.90, −9193.27,
−9273.27, −11157.45, −10534.51, −10929.12, −5361.48, λ∗

{1,2} = 962.04, λ∗
{2,4} = 1661.73, λ∗

{4,5,} =

173.79, λ∗
{1,3} = 1862.8, λ∗

{1,4} = 48.03, λ∗
{5,6} = 3852.87, λ∗

{2,3} = 554.71, λ∗
{1,2,4} = 4337.14,

λ∗
{2,3,4} = 3137.30, λ∗

{2,4,7} = 560.96.
Pricing. New variables: None.
Separation. New clusters: C2 = {1, 7}, {2, 3, 7}, {6, 7}, {1, 2, 7}, {2, 6, 7}, {1, 3, 7}, {1, 2, 3, 7}, {4, 6, 7},
{1, 4, 7}, {2, 4, 6, 7}, {1, 2, 4, 7}, {1, 3, 4, 7}, {2, 3, 4, 7}, {1, 2, 3, 4, 7}, {1, 4, 6, 7}, {4, 6}, {1, 3, 4, 6, 7},
{1, 4, 6}, {1, 2, 4, 6, 7}, {2, 4, 6}.
LP. C =

⋃̇2
i=1Ci. V =

⋃̇8
i=1Vi. Solution is x1←∅ = 1/2, x1←{2,3,4,5,6,7} = 1/2, x2←{1,3,4} = 1/2,

x2←{4} = 1/2, x3←{1,2} = 1/2 x3←{5,6,7} = 1/2, x4←∅ = 1/2, x4←{1,3,5,6,7} = 1/2 x5←∅ = 1/2,
x5←{1,4,6,7} = 1/2 x6←∅ = 1/2, x6←{1,3,4,5,7} = 1/2 x7←∅ = 1/2, x7←{1,3,4,5,6} = 1/2. Objective
value −45300.94 Dual values: λ∗i = −7115.31, −10683.44, −11023.37, −14678.78, −10534.51,
−16208.59, −10518.83, λ∗

{1,2} = 962.04, λ∗
{4,2} = 1822.05, λ∗

{5,4} = 221.27, λ∗
{1,3} = 2016.53, λ∗

{4,1} =

0.55, λ∗
{5,6} = 3805.39, λ∗

{2,3} = 455.11, λ∗
{4,1,2} = 4230.91, λ∗

{4,2,3} = 3083.20, λ∗
{4,7,2} = 301.03,

λ∗
{1,7} = 371.40, λ∗

{6,7} = 3295.78, λ∗
{4,7,2,3} = 1750.09, λ∗

{4,6} = 2031.167.
Pricing. New variables: V9 = (x1←{5,6},−6845.99, 269.30), (x2←{5,6},−10383.55, 299.87),
(x4←{2},−1531.14, 1960.32), (x6←{1,2},−13663.57, 2545.00).
LP. C =

⋃̇2
i=1Ci. V =

⋃̇9
i=1Vi. Solution is x1←∅ = 1/2, x1←{2,3,4,5,6,7} = 1/2, x2←∅ = 1/2,

x2←{1,3,4} = 1/2, x3←{1,2} = 1/2, x3←{5,6,7} = 1/2, x4←{1,3,5,6,7} = 1/2, x4←{2} = 1/2, x5←∅ = 1/2,
x5←{1,4,6,7} = 1/2, x6←∅ = 1/2, x6←{1,3,4,5,7} = 1/2, x7←{1,3,4,5,6} = 1/2, x7←∅ = 1/2. Objective
value is -45300.94. Dual values: λ∗i = −7115.31, −12643.78, −10438.69, −14678.78, −10534.51,
−16208.59, −10518.83, λ∗

{1,2} = 962.04, λ∗
{4,2} = 1822.05, λ∗

{4,5,} = 221.27, λ∗
{1,3} = 1431.85, λ∗

{1,4} =

0.55, λ∗
{5,6} = 3536.07, λ∗

{1,5} = 269.31, λ∗
{2,3} = 455.11, λ∗

{1,2,4} = 3646.24, λ∗
{2,3,4} = 3667.87,

λ∗
{2,4,7} = 301.03, λ∗

{1,7} = 1271.44, λ∗
{6,7} = 2980.42, λ∗

{2,3,4,7} = 1165.42, λ∗
{4,6} = 70.82, λ∗

{2,4,6} =

2545.01.
Pricing. New variables: V10 = (x1←{6,2,3},−61.03, 1014.12), (x2←{1,3},−237.38, 2509.69),
(x4←{1,3},−3690.99, 2507.68), (x6←{1,3},−13691.81, 2516.76), x7←{2,3,5,6,4},−5316.08, 755.86).
LP. C =

⋃̇2
i=1Ci. V =

⋃̇10
i=1Vi. Solution is x1←∅ = 1/4, x1←{2,3,4,5,6,7} = 1/2, x1←{5,6,7} = 1/4,

x2←∅ = 1/4, x2←{1,3} = 1/2, x2←{5,6,7} = 1/4, x3←{1,2} = 1/2, x3←{5,6,7} = 1/2, x4←{1,2,5,6,7} = 1/4,
x4←{2} = 3/4, x5←∅ = 3/4, x5←{1,4,6,7} = 1/4, x6←{1,3,4,5,7} = 3/4, x6←{1,3} = 1/4 x7←∅ = 3/4,
x7←{1,3,4,5,6} = 1/4, Objective is −43970.52. Dual values: λ∗i = −7115.31, −12643.78, −12804.34,
−14678.78, −10534.51, −13961.12, −10518.83, λ∗

{1,2} = 962.04, λ∗
{4,2} = 1822.05, λ∗

{1,3} = 1944.77,
λ∗
{5,6} = 2246.83, λ∗

{2,3} = 599.17, λ∗
{4,1,2} = 4303.22, λ∗

{4,2,3} = 3010.89, λ∗
{5,4,2,3} = 1779.82, λ∗

{1,7} =

102.09, λ∗
{6,7} = 3864.98, λ∗

{4,7,2,3} = 1751.24, λ∗
{4,6} = 23.34, λ∗

{4,1,6} = 269.31, λ∗
{4,6,2} = 480.39.
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Pricing. New variables: V11 = (x2←{6},−10741.98, 1421.39), (x4←{6},−12755.05, 1150.66),
(x6←{3},−13734.11, 227.00).
LP. C =

⋃̇2
i=1Ci. V =

⋃̇11
i=1Vi. Solution is x1←∅ = 1/2, x5←∅ = 1/2, x7←∅ = 1/2, x1←{2,3,4,5,6,7} =

1/2, x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x5←{1,4,6,7} = 1/2, x6←{1,3,4,5,7} = 1/2, x7←{1,3,4,5,6} = 1/2,
x3←{5,6,7} = 1/2, x4←{2} = 1/2, x2←{1,3} = 1/2, x6←{1,3} = 1/2, x2←{6} = 1/2, Objective is −43259.82.
λ∗i = −7115.31, −11078.32, −12030.71, −13113.32, −10534.51, −13734.11, −10518.83, λ∗

{1,2} =

962.04, λ∗
{4,2} = 1822.05, λ∗

{5,4} = 221.27, λ∗
{1,3} = 2020.17, λ∗

{4,1} = 0.55, λ∗
{5,6} = 3219.95, λ∗

{2,3} =

455.11, λ∗
{4,1,2} = 3813.80, λ∗

{4,2,3} = 3079.55, λ∗
{5,1,3} = 227.01, λ∗

{5,4,2,3} = 358.42, λ∗
{1,7} = 515.56,

λ∗
{6,7} = 3030.75, λ∗

{4,7,2,3} = 2172.00, λ∗
{4,6} = 28.52, λ∗

{4,1,6} = 42.30, λ∗
{4,6,2} = 336.33.

Pricing. New variables: V12 = (x1←{6},−6869.54, 203.45), (x4←{1,2,6,7},−1459.12, 0.62).
LP. C =

⋃̇2
i=1Ci. V =

⋃̇12
i=1Vi. Solution is x5←∅ = 1/2, x7←∅ = 1/2, x1←{2,3,4,5,6,7} = 1/2,

x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x5←{1,4,6,7} = 1/2, x6←{1,3,4,5,7} = 1/2, x7←{1,3,4,5,6} = 1/2,
x3←{5,6,7} = 1/2, x4←{2} = 1/2, x2←{1,3} = 1/2, x2←{6} = 1/2, x6←{3} = 1/2, x1←{6} = 1/2, Ob-
jective is −43158.09. Dual values λ∗i = −6940.37, −11078.32, −12002.83, −13113.32, −10534.51,
−13762.64, −10518.83, λ∗

{1,2} = 962.04, λ∗
{4,2} = 1822.05, λ∗

{5,4} = 220.63, λ∗
{1,3} = 2093.38, λ∗

{4,1} =

1.19, λ∗
{5,6} = 3424.05, λ∗

{2,3} = 455.11, λ∗
{4,1,2} = 3739.95, λ∗

{4,2,3} = 3006.34, λ∗
{5,1,3} = 23.54,

λ∗
{5,4,2,3} = 358.42, λ∗

{1,7} = 515.56, λ∗
{6,7} = 2855.17, λ∗

{4,7,2,3} = 2319.05, λ∗
{3,6,4,1,7} = 28.52,

λ∗
{4,1,6} = 42.30, λ∗

{4,6,2} = 336.33.
Pricing. New variables: V13 = (x1←{2,3,5,6},−47.52, 3.08).
LP. C =

⋃̇2
i=1Ci. V =

⋃̇13
i=1Vi. Solution is x5←∅ = 1/2, x7←∅ = 1/2, x1←{2,3,4,5,6,7} = 1/2,

x3←{1,2} = 1/2, x4←{1,2,5,6,7} = 1/2, x5←{1,4,6,7} = 1/2, x6←{1,3,4,5,7} = 1/2, x7←{1,3,4,5,6} = 1/2,
x3←{5,6,7} = 1/2, x4←{2} = 1/2, x2←{1,3} = 1/2, x2←{6} = 1/2, x6←{3} = 1/2, x1←{6} = 1/2, Objective
is −43158.09. Dual values: −6940.37, −11078.32, −12005.92, −13113.32, −10534.51, −13762.64,
−10518.83, λ∗

{1,2} = 962.04, λ∗
{4,2} = 1822.05, λ∗

{5,4} = 220.63, λ∗
{1,3} = 2096.47, λ∗

{4,1} = 1.19,
λ∗
{5,6} = 3424.05, λ∗

{2,3} = 455.11, λ∗
{4,1,2} = 3739.95, λ∗

{4,2,3} = 3003.25, λ∗
{5,1,3} = 23.54, λ∗

{5,4,2,3} =

358.42, λ∗
{1,7} = 512.47, λ∗

{6,7} = 2855.17, λ∗
{4,7,2,3} = 2322.14, λ∗

{3,6,4,1,7} = 28.52, λ∗
{4,1,6} = 42.30,

λ∗
{4,6,2} = 336.33.

Pricing. New variables: None
Separation. New clusters: C3 = {2, 3, 6}, {1, 3, 6}, {2, 3, 4, 6}, {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 6}, {1, 2, 6},
{3, 6}, {1, 2, 4, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 6, 7}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 3, 6, 7}, {1, 2, 3, 5, 6}, {2, 3, 6, 7},
{2, 3, 5, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 6, 7}.
LP. C =

⋃̇3
i=1Ci. V =

⋃̇13
i=1Vi. Solution is x1←∅ = 1/2, x4←∅ = 1/2, x5←∅ = 1/2, x6←∅ = 1/2,

x7←∅ = 1/2, x1←{2,3,4,5,6,7} = 1/2, x2←{1,3,4} = 1/2, x3←{1,2} = 1/2, x5←{1,4,6,7} = 1/2, x6←{1,3,4,5,7} =

1/2, x7←{1,3,4,5,6} = 1/2, x4←{1,3,5,6,7} = 1/2, x2←{4} = 1/2, x3←{5,6,7} = 1/2. Objective is -45300.94.
Dual values: −7115.31, −12643.78, −13942.09, −14678.78, −10534.51, −16208.59, −10518.83,
λ∗
{1,2} = 962.04, λ∗

{4,2} = 1822.05, λ∗
{5,4} = 220.63, λ∗

{1,3} = 2190.82, λ∗
{4,1} = 1.19, λ∗

{5,6} = 3806.03,
λ∗
{2,3} = 455.11, λ∗

{4,1,2} = 3645.60, λ∗
{4,2,3} = 2908.90, λ∗

{4,7,2} = 301.03, λ∗
{1,7} = 512.47, λ∗

{6,7} =

2710.47, λ∗
{4,7,2,3} = 2194.34, λ∗

{4,6} = 70.82, λ∗
{6,1,3} = 198.77, λ∗

{4,6,2,3} = 2275.69, λ∗
{1,6} = 70.54.

Pricing. New variables: V14 = (x1←{2,3},−106.68, 11.36). (x6←{2,3},−13710.19, 23.91).
LP. C =

⋃̇3
i=1Ci. V =

⋃̇14
i=1Vi. Solution is x1←∅ = 1/2, x5←∅ = 1/2, x6←∅ = 1/2, x7←∅ =

1/2, x1←{2,3,4,5,6,7} = 1/2, x2←{1,3,4} = 1/2, x3←{1,2} = 1/2, x5←{1,4,6,7} = 1/2, x6←{1,3,4,5,7} = 1/2,
x7←{1,3,4,5,6} = 1/2, x4←{1,3,5,6,7} = 1/2, x3←{5,6,7} = 1/2, x4←{2} = 1/2, x2←∅ = 1/2, Objective value
is −45300.93. −7115.31, −12643.76, −13942.09, −14678.76, −10534.51, −16208.59, −10518.83,
λ∗
{1,2} = 962.04, λ∗

{4,2} = 1822.05, λ∗
{5,4} = 220.63, λ∗

{1,3} = 2190.83, λ∗
{4,1} = 1.19, λ∗

{5,6} = 3806.03,
λ∗
{2,3} = 455.11, λ∗

{4,1,2} = 3645.59, λ∗
{4,2,3} = 2908.89, λ∗

{4,7,2} = 301.03, λ∗
{1,7} = 512.47, λ∗

{6,7} =
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2710.47, λ∗
{4,7,2,3} = 2194.34, λ∗

{4,6} = 70.82, λ∗
{4,6,2} = 23.92, λ∗

{6,1,3} = 222.69, λ∗
{4,6,2,3} = 2251.77,

λ∗
{1,6} = 46.61.

Pricing. New variables: None
Separation. New clusters: None

Appendix B. Identifying intervals of non-POPs

In the example given in Section 3.2 we find that the minimal cost parent set for child 7 is {1, 3, 4, 5, 6}
with a cost of 4800, if 6 is disallowed as a parent then the empty set has minimal cost (cost is 10518),
and if 4 and 5 (but not 6) are disallowed then {1, 2, 6} has minimal cost (cost is 8036). The relevant
best-parent-set constraints are as follows:

¬x1f7 ∧ ¬x3f7 ∧ ¬x4f7 ∧ ¬x5f7 ∧ ¬x6f7 → x7←{1,3,4,5,6} = 1 (16)

x6f7 → x7←{} = 1 (17)

x4f7 ∧ x5f7 ∧ ¬x1f7 ∧ ¬x2f7 ∧ ¬x6f7 → x7←{1,2,6} = 1 (18)

We now consider how to generate best-parent-set constraints in a systematic way. Let us repre-
sent each best-parent-set constraint as a triple (disallowed parents, minimal cost parent set, cost of
minimal cost parent set), so the three constraints (16)–(18) are represented as:

(∅, {1, 3, 4, 5, 6}, 4800) (19)

({6}, ∅, 10518) (20)

({4, 5}, {1, 2, 6}, 8036) (21)

We assume we have access to a function mincost which takes a set of disallowed parents
D and returns the triple (D, B, c) where B is the minimal cost (i.e. ‘best’) parent set and c is the
minimal cost. So for example from (18) we have mincost({4, 5}) = ({4, 5}, {1, 2, 6}, 8036). Note
that if D has a subset D′ with mincost(D′) = (D′, B′, c′) and it so happens that D ∩ B′ = ∅ then
mincost(D) = (D, B′, c′), since any extra disallowed parents in D \ D′ are not present in the best
parent set B′, so if they are disallowed we still get B′ as best parent set. Based upon this simple
observation, Algorithm 1 generates a set of triples T such that for any D ⊆ P \ {i} there is exactly
one (D′, B′, c′) ∈ T such that D′ ⊆ D and D∩B′ = ∅ and so mincost(D) is available as (D, B′, c′).
Fig 7 shows the set of triples output by Algorithm 1 when run for child 7 using the data described
in Section 3.2.

18



BRANCH-PRICE-AND-CUT FOR CAUSAL DISCOVERY

(∅, {1, 3, 4, 5, 6}, 4800)

({1}, {2, 3, 4, 5, 6}, 5316)

({3}, {1, 2, 4, 5, 6}, 4801)

({4}, {1, 2, 5, 6}, 5062)

({5}, {1, 3, 4, 6}, 7991)

({6}, ∅ 10518)

({1, 2}, {3, 4, 5, 6}, 5612)

({1, 3}, {4, 5, 6}, 7990)

({1, 4}, {2, 3, 5, 6}, 5527)

({1, 5}, {2, 3, 4, 6}, 8078)

({2, 3}, {1, 4, 5, 6}, 4801)

({2, 4}, {1, 3, 5, 6}, 5361)

({3, 5}, {1, 4, 6}, 7991)

({4, 5}, {1, 2, 6}, 8036)

({1, 2, 4}, {3, 5, 6}, 5722)

({1, 2, 5}, {3, 4, 6}, 8139)

({1, 3, 4}, {2, 5, 6}, 8027)

({1, 3, 5}, {4, 6}, 8839)

({1, 4, 5}, {2, 3, 6}, 8122)

({2, 3, 4}, {1, 5, 6}, 9677)

({2, 4, 5}, {1, 3, 6}, 8089)

({1, 2, 3, 4}, {5, 6}, 9779)

({1, 2, 4, 5}, {3, 6}, 8161)

({1, 3, 4, 5}, {2, 6}, 8858)

({2, 3, 4, 5}, {1, 6}, 9793)

({1, 2, 3, 4, 5}, {6}, 9872)

Figure 7: Example output of Algorithm 1
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1 T ← {mincost(∅)}
2 F ← T
3 while F , ∅ do
4 F′ ← ∅
5 foreach (D̃, B̃, c̃) ∈ F do
6 foreach d ∈ B̃ do
7 D← D̃ ∪ {d}
8 if ∃(D, B, c) ∈ F′ then
9 continue // mincost(D) already computed

end
10 if ∃(D′, B′, c′) ∈ T : D′ ⊊ D ∧ D ∩ B′ = ∅ then
11 continue // mincost(D) = (D, B′, c′) already available

end
12 F′ ← F′ ∪ {mincost(D)}

end
end

13 T ← T ∪ F′

14 F ← F′

end
15 return T

Algorithm 1: Finding triples representing minimal cost parent sets subject to some parents being
disallowed.
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