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Abstract

In this work, we show how to combine two popular paradigms for causal discovery from obser-
vational data in the presence of latent confounders in order to arrive at a much more informative
causal model. Building on the seminal constraint-based causal discovery algorithm, FCI, we ex-
ploit the power of direct cause-effect pair identification to uncover new relationships, which can
subsequently be propagated to find even more causal links in the rest of the model. This idea has
been explored before, but until now always under the assumption of no latent confounders. Using
our new causal direction criterion (CDC), we can finally drop this limitation. We derive inference
rules for orienting additional cause-effect relations and show how to minimize the number of tests
during the CDC search. In our experimental evaluations over a range of simulated data sets, the re-
sulting FCI-CDC algorithm increases recall by between 5%-10% compared to vanilla FCI, without
loss in precision.

Keywords: causal discovery, cause-effect inference, additive noise models, latent confounding

1. Introduction

Causal discovery is a popular topic in a wide range of fields such as epidemiology, economics, and
the social sciences because, without understanding the causal structure, one could wrongly interpret
an association as a causal relationship (Pearl, 2009). The nature of an association between variables
can be explained by a causal relationship, a hidden confounder, selection bias, a feedback loop, or
a constraint relation (Goudet et al., 2019). Using causal discovery algorithms, we can learn from
observational data to get a better understanding of the underlying causal structure.

A main class of causal discovery algorithms are constraint-based, in which (conditional) inde-
pendencies between random variables are used to constrain the set of possible causal structures. In
this study, we will build on the seminal constraint-based causal discovery algorithm fast causal in-
ference (FCI) designed by Spirtes et al. (2000); Zhang (2008), which outputs a Markov equivalence
class and does not rely on the causal sufficiency assumption, i.e., it works under the presence of
hidden confounding. Unfortunately, causal graphs in a Markov equivalent class typically contain a
significant number of non-invariant edges, that is, edges that can vary in the members in the equiv-
alence class. For instance, consider the causal structure in Figure 1(a). Its Markov equivalence
class is shown in Figure 1(b), in which the variant (or unknown) edge marks are indicated by circle
marks. Since every member of the equivalence class contains the same conditional independence
information between the corresponding variables, it is impossible to infer more information using
only the conditional independencies (or constraints).
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Figure 1: The graph on the left is a ground truth maximal ancestral graph (MAG) that represents a
causal model, from which we cannot discover all edges using the FCI algorithm, as shown
in the graph in the middle. On the right, the additional orientations indicated by the red
thick edges show what can be gained on top of the FCI algorithm using the additional
orientation rules defined in this study.

One effective way to go beyond the Markov equivalence class is to use cause-effect inference
as a complement to the multivariate causal discovery methods based on conditional independencies
(Guyon et al., 2019). In contrast to the latter, cause-effect inference methods directly focus on
single cause-effect relationships. Cause-effect inference gained a lot of traction at the NeurIPS
2008 Workshop on Causality, which led to the development of many approaches for inferring the
direction of cause-effect pairs such as computing the complexity of marginals and conditionals
(Hoyer et al., 2008; Zhang and Hyvérinen, 2009; Mooij and Janzing, 2010; Blobaum et al., 2018),
assuming independence of causal mechanisms (ICM) or algorithmic independence (Lemeire and
Dirkx, 2006; Janzing and Scholkopf, 2010; Scholkopf et al., 2012; Sgouritsa et al., 2015; Goudet
et al., 2018; Daniusis et al., 2010; Janzing et al., 2012), and supervised learning (Almeida, 2019;
Fonollosa, 2019).

Cause-effect inference methods have already been used successfully to derive multivariate causal
discovery algorithms. For instance, Shimizu et al. (2006) define orientation rules for linear non-
Gaussian acyclic models, which they use to learn the entire causal structure. Hoyer et al. (2008) and
Zhang and Hyvirinen (2009), on the other hand, iteratively search for the causal structure that best
fits to the outcome of their cause-effect inference test, which is defined on additive noise models
and post-nonlinear causal models, respectively. Tillman et al. (2009) use the PC algorithm (Spirtes
et al., 2000), which is analogous to FCI under the assumption of causal sufficiency, together with
an additional cause-effect inference orientation rule defined for local additive noise models. While
all these methods are sound and make optimal use of the information available to find invariant
orientations, they operate under the assumption of causal sufficiency, which severely limits their
applicability to real-world problems, where hidden confounding often cannot be excluded.

Janzing et al. (2009) propose a method for additive noise models to discover either a causal
relationship or a hidden confounder z between the vertices ¢ and j under the assumption that the
relationship of ¢ and j to z is invertible. This assumption may not always be realistic as there
are many real-world non-invertible relationships. In this method, it is impossible to use observed
confounding information to decide on the direction, and this can lead to fewer orientations since it
cannot detect the type of edge if there is a confounder and a causal relationship. For linear non-
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Gaussian models, Shimizu and Bollen (2014); Wiedermann and Li (2018); Maeda and Shimizu
(2022) propose methods to discover causal relationships in the presence of hidden confounders,
where Wiedermann and Li (2018) also discuss adjusting for observed confounders by using the
linearity property. In this study, we can handle both non-invertible relationships and non-linear
Gaussian data.

In a recent paper, Huang et al. (2020) propose CD-NOD, an algorithm wherein they run orien-
tation rules based on a pairwise causal inference test, followed by the same orientation rules used in
the PC algorithm. Their pairwise causal inference test relies on the existence of a context variable
(such as a time domain) to find independent causal mechanisms by conditioning on a suitable de-
confounding set for each pair of variables. For the CD-NOD approach, Huang et al. (2020) assume
pseudo causal sufficiency, i.e., any latent confounder can be described as a function of the context
variable. The CD-NOD represents an important step towards the goal of going beyond the Markov
equivalence class by exploiting non-stationarity in the causal model. However, it is not guaranteed
that latent confounding in real-world data can be properly expressed through such a context variable.

In this study, we show that we can improve on the orientation rule of CD-NOD so that we
can compute the conditional independencies needed for the pairwise causal inference test directly,
without having to use a context variable. This enables us to perform cause-effect inference without
assuming (pseudo) causal sufficiency. To that end, in section 3, we propose the causal direction cri-
terion (CDC), a set of novel orientation rules that are sound in the presence of latent confounders and
are based on an assumption closely related to the ICM postulate for (weakly) additive noise mod-
els. A key insight behind our approach is that, under very reasonable assumptions, we can actually
use (additional) independence tests to recognize when a specific interaction may have unobserved
confounding and when it can not. Here, the main pillars are the use of observed confounding infor-
mation and the more sophisticated approach that orients edges by combining the conclusions of the
independence tests, instead of comparing their outcomes as in Huang et al. (2020). It means that we
no longer have to assume causal sufficiency, but can actually test for it for individual relationships
when needed. We thus refrain from drawing potentially incorrect conclusions when we cannot rule
out the presence of a specific unobserved confounder.

In section 4, we describe how we can extend the FCI algorithm with the orientation rules implied
by the CDC to arrive at the sound FCI-CDC algorithm. Relying on the strengths of both constraint-
based causal discovery and cause-effect inference, we arrive at an algorithm that makes it possible to
go beyond the Markov equivalence class and infer a more informative causal structure. For instance,
given enough data, we are able to recover the causal structure in Figure 1(c), where the red thick
edges represent the additionally oriented edges on top of the FCI algorithm output. In section 5, we
further show empirically that the FCI-CDC algorithm can recover new causal directions that were
impossible to detect when applying the vanilla FCI algorithm. The implementation of the FCI-CDC
algorithm in Python is available at ht tps://github.com/mivadi/FCI-CDC.

2. Preliminaries & Notations

In this study, we denote graphs by calligraphic letters, for instance the maximal ancestral graph
(MAG) G, which is used to describe causal models in the presence of latent confounders, and the
partial ancestral graph (PAG)' P, which contains all invariant edge marks shared by all MAGs in
the same Markov equivalence class. See Richardson and Spirtes (2002); Zhang (2008) for detailed

1. Here, we refer to the maximally informative PAG defined in (Zhang, 2008) simply as PAG.
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definitions. We denote the vertex (or index) set of a graph by I. Standard graphical terms such
as adjacency, parent, ancestor and descendant sets are defined as usual, and denoted by adjg (i),
pag (i), ang(i) and desg(i), respectively, for the vertex i in graph G. In this study, we use the
definition for m-separation in MAGs from Zhang (2008), and denote

m
1Ly
gJ

when ¢ and j are m-separated in G. Furthermore, each ¢ € I corresponds to a random variable X;
and is defined on probability space X;. For Z C I, the joint random variable Xz is defined on the
joint probability space Xz = Hie 4 Xi. We denote X; 1L X; | X7 for two random variables X; and
X conditionally independent given Xz, where ¢, € I and Z C I. In this study, we assume that
we measure variables without measurement error (Scheines and Ramsey, 2016).

Throughout this study, we let G be a MAG with vertex set I, and we let D be the corresponding
canonical DAG (directed acyclic graph) obtained by adding a latent common cause variable for each
bidirected edge to get the augmented vertex set J O I (Richardson and Spirtes, 2002). Finally, we
let X ; be a joint random variable. We suppose that our data can be described as a structural causal
model (SCM) corresponding to D and X ; (as defined in Peters et al. (2017)), i.e.,

Xi = fi(Xpap (i), €i) (1)

for every ¢ € J, where the noise terms ¢; are pairwise independent.
Moreover, given a DAG D/, we call (X, Xoap (1)) & local additive noise model (1ANM) for X
if there exists a function h; so that

Xi = hi(Xpap, (i) + s ?2)

where the independent noise term 7); is additive to hi(XpaD/ (i)), see Tillman et al. (2009). Let W be
the set of IANM s such that (X;, Xy, ;) € W if and only if (X;, X, (5)) is an IANM for X ;. We

call (D, V) a weakly additive noise model (WANM) for X ; if and only if
(i) X is Markov to D?, and

(i) for every (X, Xpa,(;)) € V¥ and for every DAG D’ such that (X, X

papy(j)) 1S an IANM for
Xy andi € pap/(j), then j & pap(i).

Furthermore, as discussed by Tillman et al. (2009), assuming that the data follows a weakly additive
noise model translates to assuming that, if ¢ — j holds, then it is impossible to find a local additive
noise model only in the opposite direction.

Fori € J, Z C J\ {i}, assume that g;(X7) is a function regressing X; on X . The residual
w.r.t. g;(Xz) is computed as follows

R(X;|Xz) == Xi — g:(X2).

In this study, we assume that the regression function is close to the conditional expectation E[X;| X ].

Throughout the paper, we assume faithfulness, the Markov condition, acyclicity, no selection
bias, and that the data follows a weakly additive noise model. Proofs of all theorems can be found
in the appendix.

2. The joint random variable is X; is Markov to D if P(X) = [[;c; P(Xi|Xpapi)) Where P is the probability
measure of X ;.
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3. Causal Direction Criterion

In this section, we introduce a cause-effect inference orientation rule, the causal direction criterion
(CDC) to infer pairwise causal relationships without assuming causal sufficiency. The CDC is
inspired by the orientation procedure described in section 4 of Hoyer et al. (2008) and section 4.2
of Huang et al. (2020), which are similar to the CDC but operate under the assumption of (pseudo)
causal sufficiency.

As shown in Hoyer et al. (2008); Huang et al. (2020), there is asymmetric statistical information
implied by a causal relationship. Thus, when applying the CDC for ¢ and j adjacent in G, we search
for the following asymmetry

Al = j | Z) = R(Xi|Xjpuz) L X5 AR(X | Xpiywz) L X (3)

for a set Z C I, where A(i — j | Z) is a Boolean expressing if the asymmetry in equation (3)
holds. If a set Z satisfies A(i — j | Z), we call it a causal asymmetry set (CAS) for the ordered
pair (7, 7). In equation (3), no context variable is required since we use the residuals directly as
random variables in the independence tests instead of (joint) probabilities conditioned on the context
variable, which is a core difference between the CDC and the causal direction determination rule
defined in Huang et al. (2020).

To decide if 7 is a parent of j, we search for an independence between the residual R(X;| X ;307)
and the random variable X;, and vice versa. In some cases, we will find that both tests output inde-
pendence, e.g., when the causal relationship is unidentifiable. In other cases, we cannot guarantee
to completely remove the dependence, e.g., when we are not able to remove all confounding in-
formation due to hidden confounders. As we assume that there is a weakly additive noise model
(D, W) for X, it is very unlikely to find an asymmetry A(i — j | Z) if i is not a parent of j. This
motivates the following assumption:

Assumption 1 [fj — i ori <> j in G, then there exists no CAS for the ordered pair (i, j).

This is a type of faithfulness assumption and is violated only if we find the asymmetry in the
wrong direction, i.e., when a local additive noise model can be described in an additive noise model
in the wrong direction. This is impossible for a large class of models, and extremely unlikely to
occur by accident in general, as discussed in section 2.

Causal Direction Criterion Let i,j € [ be adjacent in G and Z C I\{i,j}. We define the
following orientation rule:

A7 suchthat A(i — j | Z) = i —j.
Note that, in this case, Z is a CAS for (i,7) in G.

The asymmetry in the CDC is not always identifiable, although crucially this will not lead to
wrong conclusions. Suppose that we have the IANM defined as in equation (2). An 1ANM is not
identifiable if the function h; is linear and the noise 7); is Gaussian, or if h; is constant (Peters et al.,
2017). Almost all other IANMs are identifiable (Zhang and Hyvirinen, 2009; Peters and Biihlmann,
2014). Moreover, one can think of examples of pairs that do not have additive noise by construction
of the causal mechanism. For example, when we cannot construct an h; (X, ()N 7) such that it
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is additive to 7; which can happen if Z is not a causal asymmetry set. In general, the additive
noise model is an approximation of the real underlying process, and the method might not pick
up on the noise if the estimated additive noise is too weak. Fortunately, this will not lead to any
misleading conclusions, since we will find a dependence in both directions, i.e., the CDC does not
trigger. This way, we are more conservative with the additional orientations that we can make, but
we avoid making any wrong orientations if our data does not follow a (local) additive noise model.
See Tillman et al. (2009) for a more detailed discussion. In the following theorem, we prove that
the CDC is sound under our assumptions.

Lemma 1 Suppose that the true causal structure is acyclic and that the random variables measured
by the data satisfy Assumption 1. Then, the CDC is sound.

To explore the possible causal directions between ¢ and j in practice, we test for independence
in equation (3) in both directions, ¢ — j and 5 — ¢, using the kernel conditional independence test
(KCIT) (Zhang et al., 2011). We use a multilayer perceptron as the regression method for computing
the residuals. The multilayer perceptron is a universal approximator (Hornik et al., 1989) that is
capable of obtaining an arbitrary regression function in the large-sample limit.

In order to apply the CDC, we still need to find the CAS Z. For that, we will use the FCI output
PAG to restrict our search space to the following sets:

Definition 2 Let i — j in G. A subset of vertices Z C I is a deconfounding set in G for (i, j) iff
Z C I\desg(j) and Z blocks all paths in G that are into both i and j.

Deconfounding sets are suitable candidates to potentially remove all confounding information
from the residuals, since they block all paths into both ¢ and j. Note that a deconfounding set is not
unique, and can be augmented by non-descendants of j which are not in a path going into both ¢ and
7. Moreover, an adjustment set is also a deconfounding set, but a deconfounding set is not always
an adjustment set (Perkovic et al., 2015), as it may contain vertices on a directed path from ¢ to j.

Assumption 2 [f Z is a CAS for the pair (i, j), then there exists a deconfounding set Z' C Z that
is also a CAS.

Assumption 2 excludes the possibility that the independence in the second term of equation (3)
is found by conditioning on a descendant that exactly cancels out the dependence via unblocked
paths going into both ¢ and j. It also means that for the FCI-CDC algorithm in the next section,
whenever we find a CAS it is guaranteed to be a deconfounding set. Essentially, Assumptions 1
and 2 extend standard faithfulness to the residuals in equation (3): it is not impossible, but highly
unlikely for them to be violated in practice.

In contrast to Hoyer et al. (2008), we do not assume causal sufficiency by allowing to condition
on the deconfounding set in the CDC. However, the principle of the CDC is similar to how Hoyer
et al. (2008) proposed to infer causal directions in ANMs, although the assumptions and implemen-
tations details differ. Hoyer et al. (2008) use the Hilbert-Schmidt independence criterion (Gretton
et al., 2005) for statistical testing and Gaussian process regression for computing the residuals. Us-
ing the KCIT instead of the HSIC allows us to condition on multiple random variables, which is
required when dealing with larger deconfounding sets.

The CDC on its own is a reliable cause-effect inference method, but it really shines when com-
bined with a multivariate causal discovery algorithm. In the following section, we will show how
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we can use the CDC on top of the constraint-based causal inference method FCI to go beyond the
Markov equivalence class and arrive at a more informative causal structure in the presence of latent
confounders.

4. FCI with CDC

In this section, we describe how we use the CDC on top of the FCI algorithm. First, we run the
FCT algorithm to obtain an output PAG P, which represents a Markov equivalence class. We loop
over the edges which are (partially) unoriented and test if they can be oriented using the CDC.
We describe how we can narrow the search space for selecting possible deconfounding sets when
applying the CDC. Once the CDC finds an asymmetry, we orient the respective edge, as well as
possible additional edges. The additional orientations are made by using the Parent Orientation
Rule, which is described below, and the standard FCI orientation rules, as described in Zhang (2008).
Combining a constraint-based causal discovery method and a pairwise causal inference method is
also proposed by Tillman et al. (2009) under the assumption of causal sufficiency. In this study, we
show that with our approach we can relax this assumption.

4.1. Deconfounding Sets in a Markov equivalence class

To test for the CDC between each (partially) oriented pair, we need to select a deconfounding
set. However, given a PAG P for a causal graph G, we cannot always identify deconfounding sets
from P alone. Nevertheless, we will show how to easily identify a set of candidate vertices that
are guaranteed to be contained in a deconfounding set, if one exists. We search through possible
deconfounding sets by increasing the size of the set with possible deconfounding vertices. We use
the principle that, if ¢ — j in a MAG, then a parent set of the effect 7 excluding the cause i is a
deconfounding set for (4, j) (see Lemma 6 in the appendix). The set of possible parents of j in P is
defined as follows

popap(j) := {k € adjp(j) | k —= j. ko= j or k o—o j},

i.e., vertices k adjacent to j oriented as £ — j in some MAG instance M in the equivalence class
represented by P. From Lemma 6 and Corollary 7 in the appendix, it follows that we can limit
our search space to (possible) parents of 7 or 7 in the PAG P that are on an unblocked path going
into both 7 and 5 which does not contain the edge between ¢ and j. In other words, by testing if
z € popap(j) and z is m-connected® to i given Z\{z} in P with j removed, we find that z is in
a possible minimal deconfounding set* for (i, 5). In the special case of a partial orientation jo— j
in P, we can restrict our search space by selecting subsets of the possible parents of j, as shown in
Corollary 8 in the appendix. In addition, we can recognize vertices that are guaranteed to be valid
in any deconfounding set from the possible parents of ¢ or 7, as illustrated in the following lemma.

Lemma 3 Assume i — j in G, and that there exists a deconfounding set Z C pag(j) for (i, j).
Let z € popap(j) in PAG P. Then if either

3. Here m-connected in the PAG P means m-connected in a MAG instance M in the equivalence class represented
by P. Likewise, we define m-separation in a PAG by m-separation in all MAG instances in the equivalence class
represented by P.

4. Huang et al. (2020) define the potential deconfounding set as a set containing all possible but not definite decon-
founding vertices. However, in this study, a possible deconfounding set contains definite and possible deconfounding
vertices.
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(i) i <0z — j, i1 z0> j,ori+ z— jinP, or

(ii) there exist z1,29,...,zr € I with k > 1 such that (i,z, 21, 22, ..., 2k, j) is an unshielded
non-collider path’ into both i and j in P,

then Z U {z} is also a deconfounding set for (i, 7).

Note that, if Lemma 3(i) is satisfied for a vertex z, then z is necessarily a part of every decon-
founding set Z C popap(j). However, this is not the case if Lemma 3(ii) is satisfied, as other
parents of j may already block the unshielded non-collider path. However, in both cases z is con-
tained in a deconfounding set Z C popap(j).

Now, we define the steps to search for a deconfounding set given an incompletely oriented edge
10— j or ¢ o—o j in P. Suppose that M is a MAG instance in the equivalence class represented by
‘P. Note that by definition of the Markov equivalence class, all MAGs in the same equivalence class
have the same m-separations. We will remove all edges adjacent to j in the MAG M and denote
the resulting MAG by M_;.

D1 Let Q; = popap(j).
m

D2 While there exists a z € @); such that z MJ_ i | Q;\{z}: update Q; = Q;\{z}.
—j

D3 Let P; C @ be the subset of vertices z € (); that satisfies Lemma 3(i).

D4 For each Z C Q;\P;:
(i) if the CDC triggers for ¢« — j with deconfounding set P; U Z, orient 7 — j in P and go
to next edge, or
(ii) if the CDC triggers for j — ¢ with deconfounding set P’; U Z and i o—o j in P9, orient
j — 7 in P and go to next edge

Otherwise, if 4 o—o j in P, then repeat D1-D4 for @);.

If there exists a deconfounding set, we can find one by repeatedly applying the CDC on the pair
given the currently selected possible deconfounding set. We will find a CAS’ once an asymmetry
has been found by the CDC.

4.2. FCI-CDC Orientation Rules
Here we describe the FCI-CDC procedure. Besides the orientation of ¢ — j found by applying the

CDC given deconfounding set Z for (i, j), we may orient even more edges with the following rule.

Parent Orientation Rule Let P be a PAG. Suppose that © and j are adjacent in P and share a
(partial) unoriented edge. If we orient i — j after running the CDC on the pair (i, j) given a CAS
Z, then for all z € adjp(j) N Z we orient z — j.

5. See Zhang (2008) for the definition of an unshielded non-collider path.
6. We do not overrule the edge marks oriented by the FCI algorithm.
7. A CAS is not necessarily the smallest possible deconfounding set.
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Note that the parent orientation rule differs from the corresponding orientation rule in Algorithm
3 of Huang et al. (2020), because here we only orient the possible parents towards the effect .

Lemma 4 The parent orientation rule is sound under Assumption 2.

After running the CDC and the parent orientation rule, we will again run rules R1-R4’ and R8-
R10 of the FCI algorithm, as described in Zhang (2008), until no new orientations are made. Here,
R4’ implies that if there is a discriminating path between ¢ and j for k, and k o—o j or ko— j in
the graph, then we orient & — 5. This is a simpler version of R4 from the standard FCI orientation
procedure and is sufficient since the orientations triggered by the second part of R4 are invariant
in all MAGs in the same equivalence class by Proposition 2 (Zhang, 2008). In conclusion, given a
PAG P provided by (oracle) FCI, supposing that for an incompletely oriented edge we have to— j
or ¢ o—o j and a CAS Z, we find that the CDC triggers with implication ¢ — 7. Then, the following
orientation rules apply:

RC1 (CDC) Orient the edge between ¢ and j in P as i — j.
RC2 (parent orientation rule) For all z € adjp(j) N Z, orient z — j.
RC3 (FCI) Propagate standard FCI orientation rules R1-R4’,R8-R10 until exhaustion.

In our implementation, for each incompletely oriented edge, we run RC1 and, if this rule trig-
gers, we also run RC2 and RC3. We call this procedure, in which we first apply the FCI algorithm
and then run the rules RC1-RC3, the FCI-CDC algorithm. The FCI-CDC algorithm outputs an
overcomplete PAG and is sound, as shown below. In the overcomplete PAG, each invariant edge
mark is also present in the MAG of the underlying causal graph, and each variant edge mark is also
present in the corresponding PAG.

Theorem 5 Under Assumptions 1 and 2, and assuming oracle independence test results, the FCI-
CDC algorithm is sound.

We present which additional orientations are found in Figure 1(c) by the rules RC1-RC3 after
running the FCI algorithm. The edge A — B is first discovered after testing the CDC on the pair
(A, B) with deconfounding set { D} and applying rule RC1. The parent orientation rule will orient
the edges D — B. Then by running RC3, we find B — E. By testing the CDC for the pair (F, C'),
we find the causal relationships /' — C'. Finally, RC3 discovers the causal relationship C' — E.
Note that by running the CDC on the pair (A, D), we will not discover the orientation of the edge
as the CDC cannot establish bidirected edges.

4.3. Conservative FCI-CDC

The results above assume oracle information, i.e., a perfect independence test with infinite sam-
ple sizes. In practice, with finite data, mistakes are likely to be made, both during the traditional
FCI stage as well as in the subsequent CDC stage, possibly leading to incorrect orientations and
propagation thereof. One way of trying to guard against incorrect orientations in the CDC stage is
to exploit redundant available information and to avoid making orientations when possible incon-
sistencies are encountered, similar to the ideas behind conservative PC/FCI. One straightforward
approach is to continue the CDC search among the possible candidates after an asymmetry is found
by the CDC to check for conflicting asymmetries, i.e., asymmetries that imply the orientation in the
other direction, and to only orient if no inconsistencies are found.
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5. Results

In this section, we showcase the performance of the CDC and of the FCI-CDC algorithm. We do
not compare against methods like CD-NOD because they are not designed to handle (the same kind
of) hidden confounders, and that is why we focus on the added benefits over vanilla FCI. We try to
assess how much we can gain from the CDC and how reliable the extra information is.

In our simulation studies, given a DAG D, we generate data of the form

Xi = [i(Xpap@)) T € 4

where the operator f; is randomly generated by a Gaussian Process (GP) with Gaussian kernel in-
cluding a linear term. The noise ¢; is randomly generated from the uniform distribution ¢/ ([—1, —€]U
[€,1]) (e = 0.01), or from a heteroskedastic Gaussian distribution with variance sampled from the
uniform distribution ¢/([0.01, 2]) for each data point and causal relationship. We standardized all
data through

,  X; —mean(X;)

X! =
¢ Std(XZ)

before running the algorithms.

5.1. Improvements of FCI-CDC over FCI

We study what can be gained in performance using the CDC on top of the FCI algorithm. To this
end, we generate random MAGs with latent confounders and no cycles. The average node degree
over all MAGs is 3.5, and around 20% of all edges are bidirected. The data is generated as in
equation (4) given the underlying canonical DAGs that are constructed by adding a latent common
cause variable for each bidirected edge in the MAGs. We compare all predicted edge marks with
the edge marks in the ground truth MAGs. Recall and precision are computed by aggregating the
predictions of all edge marks in all graphs, see appendix B for the details. We observe that if the
data size increases for MAGs with 10 vertices, the recall of the FCI-CDC algorithm significantly
increases, as shown in Figure 2. Moreover, the precision remains essentially the same for both the
FCI algorithm and the FCI-CDC algorithm. Figure 3 illustrates that the performance of both the
FCI and the FCI-CDC algorithm remains stable when the number of vertices increases.

In order to illustrate what can be gained from the CDC, we ran the FCI algorithm with oracle
conditional independence information. When adding the CDC on top, we considered the CDC with
oracle causal relationship information, the vanilla CDC using finite-sample data, and the conser-
vative CDC, respectively (Figure 4(a)). Our experiments are done on 100 generated MAGs, in a
similar setting as before, with 10 vertices and 400 data points per data set. Note that the oracle CDC
cannot predict bidirected edges, so some orientations remain unknown. For the vanilla CDC and the
conservative CDC, we split the predicted edge marks per orientation rule RC1, RC2 and RC3, see
Figure 4(b). Interestingly enough, there is only a small difference between the conservative CDC
and the vanilla CDC. We observe that rules RC1 and RC3 are responsible for many correct orien-
tations, whereas the rule RC2 (the parent orientation rule) does not get triggered that often. This
happens because deconfounding sets for vertices sharing a partial unoriented edge rarely appear in
PAGs, and because some deconfounding sets contain already oriented parents.
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Figure 2: Average precision and recall of all edge marks across 100 generated graphs, each with 10
vertices, as a function of the number of data points for the FCI algorithm and the FCI-
CDC algorithm. The bands correspond to 95% confidence intervals, obtained through

bootstrapping.
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Figure 3: Average precision and recall of all edge marks across 100 generated graphs, each with 400
data points, as a function of the number of vertices for the FCI algorithm and the FCI-
CDC algorithm. The bands correspond to 95% confidence intervals, obtained through
bootstrapping.

5.2. Deconfounding improves the performance of the CDC

We show how effective the CDC is by exploring the effects of conditioning on observed con-
founders. We generated 400 data sets with a causal relationship (¢ — 7) and 400 data sets with
a hidden confounder and no causal relationship (¢ <+ 7). In each data set, we also include one ob-
served confounder, which the CDC can use as a possible deconfounding set. Each data set contains
400 data points.
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(a) Comparison of the oracle, vanilla and conser- (b) Proportions of the predictions done by the
vative in proportions of predicted edge marks. orientation rules RC1, RC2 and RC3 for the
vanilla CDC and the conservative CDC on top

of the FCI algorithm.

Figure 4: The outputs of the FCI-CDC algorithm on 100 sets of 400 data points generated from
graphs with 10 vertices. We ran the FCI algorithm with oracle conditional independence
information, and the CDC with oracle causal relationship information, the vanilla version,
and the conservative version.

In Table 1, we compare the results of the CDC with and without regressing on the deconfounding
set. On data sets with a causal relationship, regressing on the deconfounding set helps to increase
the number of true predictions (correct direction). Even without deconfounding, the CDC picks
up on a potential asymmetry in the data and often guesses the right direction, where in theory for
infinite data it should only give back unknowns. The CDC without deconfounding has a recall of
0.25 and a precision of 0.58, and the CDC with deconfounding has a recall of 0.47 and a precision
of 0.67. This suggest that, with deconfounding, the CDC manages to make much fewer mistakes
when choosing a direction. Because of sampling error, the CDC with deconfounding makes slightly
more mistakes on the data sets with a hidden confounder, essentially because after deconfounding
the effect of the hidden confounding is weaker than before.

In order to test the performance of the CDC under non-ideal settings, we did a sensitivity anal-
ysis. We generated pairs in the same setting as before, but only with linear interactions between the
random variables and all noise terms have a heteroskedastic Gaussian distribution. Without decon-
founding, we have a recall of 0.11 and a precision of 0.46. If we run the CDC with deconfounding,
we obtain a recall of 0.30 and a precision of 0.66. Hence, the overall performance of the CDC with
deconfounding is better than without deconfounding if we have linear Gaussian data. In comparison
to the other experiments, the CDC with deconfounding has a similar precision for linear Gaussian
data, this can be explained by that the linear Gaussian relationship is not as pure anymore in the
residuals or after normalizing the data.

6. Conclusion

In this study, we introduced the causal direction criterion (CDC) for extending causal discovery
algorithms (such as FCI) beyond the Markov equivalence class in the presence of latent confounders.
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Table 1: For each of the two graphs above the tables, 400 data sets have been generated of 400 data
points each. The graph on the left-hand side contains a causal relationship, the one on the
right-hand side a hidden confounder. All graphs contain a deconfounding set of size one,
that the CDC can either ignore (left columns) or make use of (right columns). The rows
correspond to the predictions of the CDC. Conditioning on a deconfounding set helps the
CDC to make more accurate predictions.

(@) (b)
(k) without with (k) without with
o‘o deconfounding | deconfounding Tz deconfounding | deconfounding

— 99 189 — 72 93
— 26 24 — 73 78
? 275 187 ? 255 229

We saw that exploiting deconfounding information in CDC enabled us to distinguish between the
effect of observed and latent confounders in a graphical structure, as shown in Table 1. The FCI-
CDC algorithm, the extension to the FCI algorithm proposed in this paper, outputs an overcomplete
PAG in which significantly more orientations are unraveled relative to the FCI algorithm (see Figure
4). We illustrated how we can apply the CDC using the notion of deconfounding sets, and how
we can select a deconfounding set using information available in a PAG. The FCI-CDC algorithm
achieves significantly better recall than the FCI algorithm for larger numbers of data points, as
shown in Figure 2. In conclusion, the FCI-CDC algorithm has the potential to unravel more causal
relationships than the FCI algorithm, which makes it an important advancement in the field of causal
inference where we have to handle the potential presence of hidden confounders.

For future research, it would be interesting to extend CDC to capture residuals of non-additive
noise models, possibly motivated by the post-nonlinear causal models (Zhang and Hyvirinen, 2009).
This would be a relevant extension, considering that cause-effect pairs in reality may have many
hidden mediators in between, but then cannot be properly represented by additive noise models
because these are not closed under marginalization (Peters et al., 2017, p. 138). Besides that, as
we did not aim for completeness in this study, it would be coherent to explore the steps towards
completeness in future work. Another interesting future direction would be an extension to a causal
model with feedback loops.
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Appendix A. Theorems

We assume faithfulness, the Markov condition, acyclicity, no selection bias and that the data follows
a weakly additive noise model.

Lemma 1 Suppose that the true causal structure is acyclic and that the random variables measured
by the data satisfy Assumption 1. Then, the CDC is sound.

Proof Suppose that there exists an Z C I'\{i, j} such that A(i — j | Z). Then, by Assumption 1,
we find that j — ¢ and ¢ <> j are not in G. By assumption, ¢ and j are adjacent, hence i — j in G.
|

For the following lemma, let G be the ground truth MAG with corresponding PAG P.

Lemma 3 Assume i — j in G, and that there exists a deconfounding set Z C pag(j) for (i, j). Let
z € popap(j) in PAG P. Then if either

(i) 10z — J, 14 20> j,0ri < z— jinP, or

(ii) there exist z1,22, ...,z € I with k > 1 such that (i,z, z1, 22, ..., 2k, j) is an unshielded
non-collider path® into both i and j in P,

then Z U {z} is also a deconfounding set for (i, j).

Proof Note that for both (i) and (ii), in the MAG @ it holds that z € I \ desg(j), which means that
conditioning on z cannot unblock any paths from ¢ to j. Hence, given that Z blocks all paths into
both 7 and j, then Z U {z} also blocks all paths into both 7 and j. [

Lemma 4 The parent orientation rule is sound under Assumption 2.

Proof Suppose that we find ¢« — j with deconfounding set Z by applying CDC. For each z € Z
adjacent to j, if there is an edge j — z or j <+ z in the true causal graph, then either z is no ancestor
of 7, or the true causal graph will contain a cycle. This is a contradiction with the definition of the
deconfounding set and with the acyclicity assumption, respectively. Hence, we should orient the
edges as z — j foreach z € Z. |

8. See Zhang (2008) for the definition of an unshielded non-collider path.
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Theorem 5 Under Assumptions 1 and 2, and assuming oracle independence test results, the FCI-
CDC algorithm is sound.

Proof Lemmas 1 and 4 show that RC1 and RC2 are sound. Furthermore, FCI is sound, and the
orientation rules R1-R4 and R8-10 are sound. Note that in all MAG instances M in the equivalence
class represented by the output PAG P of the FCI algorithm, the colliders on discriminating paths in
all graphs are invariant by Proposition 2 in (Zhang, 2008). Therefore, orientation rule R4’ is sound
when applying it only on (overcomplete) PAGs. Hence, the orientation rule RC3 is sound. This
shows that the complete procedure FCI-CDC is sound. |

In Proposition 6.41, Peters et al. (2017) show that if ¢ — j in a directed acyclic graph G, and
there exists an adjustment set Z for (4, j), then pag(j) \ {4}, is also an adjustment set. We can show
similar results for deconfounding sets in MAGs.

Lemma 6 Ifi — jina MAG G, and there exists a deconfounding set Z for (i, j), then pag(j)\{i},
is also a deconfounding set.

Proof Note that pag(j) \ {7} C I\ desg(j). Suppose that there is a path into both 7 and j. Then
this path is of the form
1 =k x—x Lok [ gL

When [ — j, then [ € pag(j) \ {¢} and, by including it in the deconfounding set, we block the
path between ¢ and j. Otherwise, if [ <+ 7 , [ can be either be a collider or non-collider on the path.
If [ is a collider on the path, then the path is blocked since no parent of j can be a descendant of [
(ancestrality violation). If [ is a non-collider on the path, then either [ is an ancestor of ¢, or there is a
collider on the subpath between [ and . In the first case, we find that [ is also ancestor of j because
1 — 7, which is again an ancestrality violation. In the second case, we have to consider the closest
collider to [, let us denote this collider by c. Note that, since c is the closest collider, then [ has to
be ancestor of ¢, otherwise there must be another collider closer to [. We now show that ¢ blocks
the path between 7 and j. If either c or one of its descendants were in the parent set of ¢, then that
would form an almost directed cycle containing [ and j and going through c, which is yet another
ancestrality violation.

Hence, paths into both ¢ and j are blocked by the parents of j excluding i. This proves that
pag(j) \ {i} is a deconfounding set. [ |

Corollary 7 A deconfounding set Z for (i, j) is minimal if and only if every z € Z blocks a path
into both i and j that is not blocked by any k € Z \ {z}.

Proof (=) Suppose that Z is a minimal deconfounding set for (i, j), i.e., there is no strict subset
of Z that is a deconfounding set. Hence, Z \ {z} is no deconfounding set for (4, j). This implies
that there exists a path into both 7 and j that is blocked by z and is not blocked by any k € Z \ {z}.
(<) Suppose that Z is a deconfounding set for (7, j), and every z € Z blocks a path into both ¢ and
Jj that is not blocked by any k € Z \ {z}. Let Z' be a strict subset of Z. Then, each z € Z \ Z’
blocks a path p into both 7 and j which is not blocked by any k € Z’. Therefore, Z’ cannot be a
deconfounding set. Hence, Z is a minimal deconfounding set. |

17



VAN DIEPEN BUCUR HESKES CLAASSEN

Corollary 8 If io— j in PAG P, and there is a deconfounding set for (i, j), then there exists a
subset Z C popap(j) in P that is a deconfounding set for (i, j).

Proof Note that, if there exists a deconfounding set for (i, 5) and io— j in P, then i — j in the
ground truth MAG §. Note that pag(j) is a deconfounding set for (i, j) and pag(j) € popap(j).
Hence, there exists a subset Z C popap(j) in P that is a deconfounding set for (i, 7). [

Appendix B. Metrics

In this appendix, we illustrate how we defined the metrics to measure the performance for the CDC
and the FCI-CDC algorithm.

B.1. CDC

For the CDC, we need to compare the predicted pairwise relationships to the ground truth pairwise
relationships. Note that there are three classes we can predict, namely a causal relationship in either
direction or an unknown direction. Therefore, we consider an alternate way to define the correct
and incorrect predicted classes.

We consider the situations wherein we have a causal relationship or a hidden confounder (and
no causal relationship), i.e., the ground truth classes are causal relationships / right arrows’ i — j
and hidden confounders ¢ <+ j. The predicted outcome classes are causal relationships in both
directions (right arrows ¢ — j, left arrows ¢ <— 7) and hidden confounders i <> j. In Figure 5, we
illustrate how the true (T) and false (F), right arrows (R), left arrows (L) and hidden confounders (C)
outcomes are defined. For instance, TR is a true predicted right arrow, and FRc is the false predicted
right arrow when the ground truth is a hidden confounder (or bidirected edge). The elements in the
inner circle in Figure 5 are called retrieved (TR, FR(), and the elements in the left slice are called
relevant (FCr, FLgr, TR). We define the recall of the directions ¢ — j as the number of ‘true
positive’ divided by the relevant elements:

TR
TR + FCR + FLgr )

®)

and the precision of the directions ¢ — j as the number of ‘true positive’ divided by the retrieved
elements:
TR

TR + FR¢' ©

B.2. FCI-CDC

To measure the performance of the FCI algorithm and the FCI-CDC algorithm, we compare the
predicted graphs to the ground truth MAGs. Note that the predicted graphs for both algorithms have
the same skeleton. For all edges occurring in both the predicted graphs and ground truth MAGs, we
define the following three classes:

(i) the true positives correspond to the correctly predicted edge marks,

9. By convention, we say that the ground truth causal relationship is ¢ — j, so the correct orientations are the arrows
towards the right and the incorrect orientations are the arrows towards the left.
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i—j iej

Figure 5: In this diagram we defined true (T) and false (F), right arrow ¢ — j (R), left arrow i «— j
(L) and hidden confounder ¢ <+ j (C). The diagram is divided into two parts, of which
the left slice has ¢ — j as ground truth, and the right slice has ¢ ++ j as ground truth. For
instance, we write TR for the true predicted right arrows ¢ — j, and we write FR¢ for the
false predicted right arrows that are hidden confounders.

(ii) the false positives correspond to the incorrectly predicted edge marks that are not predicted to
be unknown, and

(iii) the false negatives correspond to the edge marks that are predicted incorrectly or as unknown.

Using these classes we can compute the precision and recall as usual.
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