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Abstract
Distinguishing cause from effect using observations of a pair of random variables is a core problem
in causal discovery. Most approaches proposed for this task, namely additive noise models (ANM),
are only adequate for quantitative data. We propose a criterion to address the cause-effect problem
with categorical variables (living in sets with no meaningful order), inspired by seeing a conditional
probability mass function (pmf) as a discrete memoryless channel. We select as the most likely
causal direction the one which the conditional pmf is closer to a uniform channel (UC). The rationale
is that, in a UC, as in an ANM, the conditional entropy (of the effect given the cause) is independent
of the cause distribution, in agreement with the principle of independence of cause and mechanism.
Our approach, which we call the uniform channel model (UCM), thus extends the ANM rationale to
categorical variables. To assess how close a conditional pmf (estimated from data) is to a UC, we
use statistical testing, supported by a closed-form estimate of a UC channel. On the theoretical front,
we prove identifiability of the UCM and show its equivalence with a structural causal model with a
low-cardinality exogenous variable. Finally, the proposed method compares favorably with recent
state-of-the-art alternatives in experiments on synthetic, benchmark, and real data.

1. Introduction

Causal inference is a key problem in many areas of science and data analysis (Pearl, 2009). In
principle, distinguishing statistical dependencies from causal relationships requires interventions
(Pearl, 2009; Peters et al., 2017). However, intervening is often impossible (e.g., analyzing past data),
impractical, or unethical (e.g., forcing people to smoke), which has stimulated much research aimed
at inferring causal relationships (causal discovery) from purely observational data (Janzing, 2019;
Mooij et al., 2016; Peters et al., 2017), or mixed observational-interventional data (Faria et al., 2022)

There is a vast literature on methods to learn directed acyclic graphs (DAGs) from data, usually by
inferring conditional independence (CI) properties among variables (Chickering, 2002; Heckerman
and Geiger, 1995; Koller and Friedman, 2010). However, without additional assumptions or criteria,
those methods cannot distinguish different DAGs entailing the same CIs (in the same Markov
equivalence class – MEC). The simplest instance of this problem involves a pair of variables (X,Y ):
purely statistical methods (e.g., maximum likelihood estimation) cannot recover the causal graph
because X → Y and Y → X constitute a MEC, corresponding to the two possible factorizations
of the joint distribution: pX,Y (x, y) = pY |X(y|x) pX(x) = pX|Y (x|y) pY (y). Although there are
several methods that select particular elements of a MEC, they all include additional assumptions
beyond faithfulness1 and, for one reason or another they cannot be used to distinguish between

1. Faithfulness holds if every conditional independence in the joint probability distribution corresponds to a separation
property in the graph (Koller and Friedman, 2010; Sadeghi, 2017).
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X → Y and Y → X , where X and Y are a pair of categorical variables; e.g., they are only
applicable to quantitative data (Park and Raskutti, 2018) or only make sense for more than two
variables (Gao and Aragam, 2021).

Without interventions, choosing an element of a MEC requires additional assumptions about
the underlying data-generating mechanism. For instance, additive noise models (ANM) (Shimizu
et al., 2006; Hoyer et al., 2009; Peters et al., 2011, 2014) assume the effect is a function of the cause
plus a noise term independent of the cause (Y = fY (X) + NY , X ⊥⊥ NY ); if the same doesn’t
hold in the reverse direction, the model is said to be identifiable. ANMs are generically identifiable
(Peters et al., 2011, 2014) in the following sense: if the joint density pX,Y corresponds to an ANM,
the conditional density pY |X(·|x) has identical shape for any x, simply being shifted by fY (x), but
pX|Y (·|y) typically depends on y in a more complicated way. Under the ANM criterion, if such a
model exists in one direction but not the other, the former is selected as the causal direction.

The ANM can be seen as an instance of the principle of independence of cause and mechanism
(ICM) (Janzing et al., 2010, 2012), according to which the cause-effect mechanism (a deterministic
function followed by addition of noise, in an ANM) is independent2 of the cause, thus of its
distribution. The ICM principle has been exploited using different tools to define and assess the
notion of independence: information geometry (Janzing et al., 2012); Kolmogorov complexity (not
computable, but approximable (Li and Vitányi, 2009)) by Janzing et al. (2012) and Mian et al.
(2021); stochastic complexity, via the minimum description length (MDL (Rissanen, 1998)) principle
(Budhathoki and Vreeken, 2017a; Marx and Vreeken, 2019; Tagasovska et al., 2020) or the minimum
message length (Wallace and Boulton, 1968) criterion, by Stegle et al. (2010).

Relatively few methods have been proposed to address the cause-effect problem with categorical
variables. Peters et al. (2011) extended ANMs to the discrete case, but only for variables taking values
in a set equipped with a meaningful order, in which an operation similar to addition (a shift) is defined.
They consider Z (or subsets thereof) for variables without cyclic structure, and Z/nZ with modulo-n
addition, for cyclic variables (e.g., seasons or months of the year). However, purely categorical
variables live in sets with no order, thus no meaningful notion of addition or shift, precluding the
direct use of ANMs. Peters et al. (2011) consider what they call “structureless” sets, but only
with a particular form of the conditional pmf, not generally applicable. Some of the MDL-based
methods mentioned above can be used with categorical variables: Budhathoki and Vreeken (2017a)
proposed CISC (causal inference by stochastic complexity); Cai et al. (2018) proposed HCR (hidden
compact representation), based on BIC (Bayesian information criterion). Liu and Chan (2016) assess
mechanism independence via a distance correlation (DC) between the cause pmf and the conditional
pmf of the effect. Kocaoglu et al. (2017) select the causal direction in which the sum of the marginal
entropy of the cause with that of the exogenous variable in the corresponding structural causal model
(SCM) is minimal. Recently, Ni (2022) addressed the cause-effect problem for categorical variables
by formulating the conditional distribution of the effect given the cause as ordinal regression, with
optimal label permutation, and choosing the direction in which this model has the highest likelihood.

As is standard when focusing on the cause-effect problem, we assume causal sufficiency (i.e.,
absence of unobserved confounders), no selection bias, and no feedback (Mooij et al., 2016). We
propose a new approach to the cause-effect problem for categorical variables, inspired by viewing
the causal mechanism as a communication channel. This view allows extending to the categorical
case a key feature of ANMs: the conditional (differential) entropy of the effect given the cause

2. The term “independent” here does not have a probabilistic sense, but a functional sense: changing the distribution of
the cause does not affect the causal mechanim, and vice-versa.
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is independent1 of the distribution of the cause (Janzing et al., 2012). For categorical variables
(i.e., symbols, in channel terminology), a memoryless channel corresponds to the conditional
probability mass function (pmf) of the output given the input, the channel matrix θX→Y , where
θX→Yx,y = pY |X(y|x) = P[Y = y|X = x]. In a so-called uniform channel (UC (Hamming,
1986)), the rows of this matrix are permutations of each other3, implying (as shown below) that the
conditional entropy H(Y |X) is independent of the distribution of X . Paralleling the ANM rationale,
given a pair of categorical variables (X,Y ), if the conditional pmf in one direction, say of Y given
X , corresponds to a UC and the same is not true in the other direction, then the causal structure is
declared to be X → Y . This criterion, which we refer to as the UCM (uniform channel model) is
supported by an identifiability result proved in this paper: if a joint distribution corresponds to a
UCM in one direction, in general (i.e., with probability 1 under any continuous density on the model
parameters), it does not correspond to a UCM in the reverse direction.

The proposed UCM approach is further supported by the fact (proved below) that if, and only
if, θX→Y corresponds to a UCM, is it possible to write a structural causal model (SCM) (Pearl,
2009) of the form Y = fY (X,UY ), where fY is a deterministic function and UY is an exogenous
random variable, taking values in in the same set as Y and independent of X . The importance of
this independence was recently highlighted by Papineau (2022): “the probabilistic independence of
exogenous terms in (...) structural equations holds the key to causal direction”.

A final question is how to instantiate the UCM principle with a finite amount of data. This
question parallels that of how to estimate the underlying function and noise distribution in an
ANM. Naturally, with a finite dataset, we only have an estimate of the underlying distribution and the
probability that this estimate corresponds exactly to a UCM in one of the two directions is vanishingly
small. Although other ways to address this issue are conceivable, we resort to statistical hypothesis
testing to decide in which direction, if any, the conditional pmf can be considered a UCM. A key
building block of this approach is estimating a channel under the constraint that it is uniform; this is
a problem that, to the best of our knowledge, had not be studied before and for which we derive a
closed-form solution. We also extend the approach to the case where the rows of the channel matrix
are cyclic permutations of each other (a cyclic UCM – CUCM), applicable when the effect variable
has cyclic nature, but in this case the channel estimate has to be obtained iteratively.

The main contributions of this paper are the following:

• A new instantiation, for categorical variables, of the principle of independence of cause and
mechanism: the uniform channel model (UCM) principle.

• A proof of identifiability of the UCM.

• A proof that the joint distribution of a pair of categorical random variables is entailed by an
SCM in which the exogenous noise has the same cardinality as the effect variable if and only
if it corresponds to a UCM.

• An instantiation of the UCM principle using statistical hypothesis testing, supported on a
closed-form estimate of a UCM (which, to the best of our knowledge, is a new result, possibly
of independent interest).

3. A uniform channel is not necessarily a symmetric channel, which requires additionally that all the columns are also
permutations of each other (Cover and Thomas, 2006).
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The paper is organized as follows. Section 2 describes the UCM and presents the corresponding
identifiability theorem and equivalence to an SCM. Section 3 addresses the problem of estimating
uniform and cyclic uniform channels from data. Section 4 describes how the criterion is applied to
observed data. Experimental results are reported in Section 5, and Section 6 concludes the paper.

2. Uniform Channel Models – UCM – for Categorical Variables

This section describes the proposed causal inference principle for categorical variables, after intro-
ducing notation and reviewing the notion of uniform channel. Finally, we prove an identifiability
theorem for the proposed model and show its equivalence with an SCM.

2.1. Categorical Variables and Uniform Channels

Let X ∈ X = {1, ..., |X |} and Y ∈ Y = {1, ..., |Y|} be two categorical random variables (although
their outcomes are shown as integers, no role is played by their order). The joint pmf pX,Y can be
factored in two different ways, pX,Y (x, y) = pY |X(y|x) pX(x) = pX|Y (x|y) pY (y), corresponding
to a Markov equivalence class. IfX ⊥⊥ Y , the joint pmf factors trivially pX,Y (x, y) = pX(x) pY (y).
Let the vector of parameters of the first factorization be denoted as θ = (θX ,θX→Y ), i.e.,

θXx = pX(x) = P[X = x] and θX→Yx,y = pY |X(y|x) = P[Y = y|X = x],

where θX ∈ ∆|X |−1, with ∆m−1 being the probability simplex in Rm. The conditional probabilities
are arranged in a |X | × |Y| row-stochastic matrix θX→Y , with the x-th row denoted as θX→Yx .

Definition 1 (Discrete Memoryless Channel) (Cover and Thomas, 2006; Hamming, 1986) A dis-
crete memoryless channel (DMC) is a probabilistic system with a discrete input alphabet X =
{1, . . . , |X |} and a discrete output alphabet Y = {1, . . . , |Y|}, specified by the conditional proba-
bilities pY |X(y|x), for x ∈ X and y ∈ Y . The adjective “memoryless" means that, given a sequence
of random inputs, the corresponding outputs are conditionally independent.

Definition 2 (Uniform channel (UC)) (Hamming, 1986) A UC is a DMC in which each row of the
conditional probability (channel) matrix θX→Y is a permutation of every other row.

Definition 3 (Cyclic uniform channel (CUC)) A CUC is a UC where each row of the channel
matrix θX→Y is a cyclic permutation of every other row.

Let S|Y| denote the set of all |Y|! permutations of (1, ..., |Y|). In a UC, each row θX→Yx is a
row-specific permutation σx ∈ S|Y| of a common vector γ ∈ ∆|Y|−1, i.e.,

θX→Yx = (γσx(1), . . . , γσx(|Y|)) ⇔ pY |X(y|x) = γσx(y). (1)

In the case of a CUC, σx ∈ C|Y|, the set of all |Y| cyclic permutations of (1, ..., |Y|).
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2.2. Uniform Channel Model – UCM – for Categorical Variables

We propose a new principle to infer the most likely causal direction between two categorical variables
by following the rationale behind ANMs. Recall that the ANM principle for real variables is as
follows: if Y satisfies an ANM Y = fY (X) + NY , where NY ⊥⊥ X (i.e., the exogenous noise
is independent of X), but the same is not true in the reverse direction, then the most likely causal
direction is X → Y . In the ANM for real variables, the conditional probability density function
(pdf) has identical shape for all values of x, simply being shifted by fY (x), i.e., pY |X(y|x) =
pNY (y − fY (x)), where pNY is the pdf of the noise variable NY . Consequently, the conditional
differential entropy h(Y |X) does not depend on the pfd of X , as shown next.

Proposition 4 If real-valued variables X and Y admit an ANM from X to Y , then the conditional
differential entropy h(Y |X) = h(NY ), independently of the distribution of X .

Proof: Using the shift-invariance (a) of differential entropy (Cover and Thomas, 2006),

h(Y |X) = EX,Y [− log pY |X(Y |X)] = EX
[
EY |X [− log pY |X(Y |X)]

]
= EX

[
EY |X [− log pNY (Y − fY (X))]

] (a)
= EX

[
h(NY )

]
= h(NY ). �

For categorical variables, the sets X and Y lack any meaningful order, thus there is no notion
of addition, and an ANM is not directly applicable. However, the conditional entropy invariance
property of ANMs can be preserved by considering the transformation group under which discrete
entropy is invariant: permutations. Consequently, our proposed causal inference principle is:

UCM causal inference principle for categorical variables: given two categorical vari-
ables X and Y , if the conditional pmf θX→Y corresponds to a UCM, but the conditional
pmf θY→X does not, then we infer the causal direction to be X → Y .

Paralleling Proposition 4, the following result is a simple consequence of the invariance of
(discrete) entropy to symbol permutations.

Proposition 5 If θX→Y corresponds to a UC (each row of θX→Y is a permutation of a vector
γ ∈ ∆|Y|−1), then the conditional entropy H(Y |X) = H(γ), independently of pX .

Proof: Due to the permutation-invariance property (a) of entropy (Cover and Thomas, 2006),

H(Y |X) = EX,Y [− log pY |X(Y |X)] = EX
[
EY |X [− log pY |X(Y |X)]

]
= EX

[
EY |X [− log γσX(Y )]

] (a)
= EX

[
H(γ)

]
= H(γ). �

The proposed causal inference problem can be seen as an instance of the independence of
cause and mechanism principle, with independence corresponding to the following property: the
conditional pmf of the effect given the cause has the same collection of probability values, only their
positions depend on the cause. Thus, the conditional uncertainty (entropy) of the effect, given the
cause, is independent of the distribution of the cause.

A relevant fact that provides further support to the proposed principle is that the UCM can be
written as an SCM (Pearl, 2009), as shown in the following proposition.
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Proposition 6 Let X ∈ X and Y ∈ Y be a pair of dependent random variables such that the
conditional pmf θX→Y corresponds to a UCM specified by γ and σ1, ..., σ|X |, as in (1), and the
marginal θX be arbitrary. Then, the joint pmf of X and Y is entailed by the following SCM:

X := UX , Y := fY (X,UY ), (2)

with UX ⊥⊥ UY (independent exogenous variables), UX ∈ X has pmf θX , UY ∈ Y has pmf γ, and
fY : X × Y → Y is a function given by fY (x, u) = τx(u), with τx = σ−1

x (inverse4 permutation of
σx). Conversely, if the conditional pmf θX→Y does not correspond to a UCM, it is impossible to
write an SCM of the form (2), with UY ∈ Y , entailing the joint pmf of X and Y .

Proof: Given x ∈ X , Y = fY (x, U) is a categorical random variable with conditional pmf

pY |X(y|x) = P[Y = y|X = x] = P[UY = τ−1
x (y)] = γσx(y)

(which coincides with (1)), where the second equality stems from the definition of fY and permu-
tations being bijections. Conversely, if the conditional pmf θX→Y does not correspond to a UCM
(neither all its rows are equal to each other, by assumption), depending on what value/category X
takes, the conditional pmf of Y takes different probability values, not just a permutation of a common
pmf, making it impossible to write an SCM of the form (2) with UY ∈ Y independent of UX . �

The restriction of having UY ∈ Y is what makes this result non-trivial. In fact, Kocaoglu et al.
(2017) showed that, given any joint pmf pX,Y , it is possible to write an SCM Y := fY (X,UY ), with
UX ⊥⊥ UY , that induces it and such that UY takes values in a set of cardinality O(|X | |Y|).

Remark 7 If none, or both, of the conditional pmfs, θX→Y and θY→X , correspond to a UCM, the
proposed criterion does not select a causal direction. Of course, in practice, the conditional pmfs
are estimated from a finite dataset, thus there is a very small chance that one of these estimates
corresponds exactly to a UCM. In Section 4, we come back to this issue, proposing statistical tests do
decide if a conditional pmf estimate can be considered to correspond to a UCM. In the following
subsection, we assume that we have an infinite amount of data (equivalently, the true underlying pmf)
and address the identifiability issue in this ideal condition. If this model was not identifiable in this
ideal setting, it would be hard to argue that it could be useful with a finite amount of data.

Remark 8 Our UCM contains as a particular case the model for “structureless" sets proposed by
Peters et al. (2011). Their model assumes a function φ : X → Y and pY |X(y|x) = p, if y = φ(x),
and pY |X(y|x) = (1− p)/(|Y| − 1), if y 6= φ(x). This corresponds to a UC (in fact, a CUC), with

γ =
(
p, (1− p)/(|Y| − 1), ..., (1− p)/(|Y| − 1)

)
and any set of permutations such that σx(y) = 1, for y = f(x). Our UC and CUC models are much
more general, as they do not constrain the conditional pmf to have only two different values.

4. Given a permutation σ ∈ S|Y|, its inverse σ−1 ∈ S|Y| is such that σ−1(σ(i)) = i, for any i = 1, ..., |Y|.

6



DISTINGUISHING CAUSE FROM EFFECT ON CATEGORICAL DATA

2.3. Identifiability

For the proposed criterion to be useful, it should be supported by an identifiability guarantee, i.e.,
that the set of joint probability mass functions pX,Y such that both pY |X and pX|Y correspond to
uniform channels should be as small as possible, ideally have zero Lebesgue measure in the space of
valid parameters, thus zero probability under any continuous density (Peters et al., 2011). Before
stating and proving the general identifiability result, we illustrate it for the case where both variables
are binary: X = Y = {1, 2}. Let pX(1) = θX1 = β and let θX→Y correspond to a UCM (in this
case, simply a binary symmetric channel) with error probability α (Cover and Thomas, 2006):

θX→Y =

[
1− α α
α 1− α

]
.

Of course, a channel matrix where the two rows are equal to (1− α, α) is also a UC, but in that case
X and Y are independent, which is an uninteresting case. The channel in the reverse direction, i.e.,
θY→X , can be easily derived using Bayes law, yielding

θY→X =


(1− α)β

(1− α)β + α(1− β)

α(1− β)

(1− α)β + α(1− β)
αβ

αβ + (1− α)(1− β)

(1− α)(1− β)

αβ + (1− α)(1− β)

 .
Notice that in matrix θY→X , the variable Y indexes rows and X indexes columns, so that it is
row-stochastic as is standard for channel matrices. Matrix θY→X represents a UC if and only if
one (or both) of two conditions are satisfied: the diagonal elements are equal to each other; the
elements in the first column are equal to each other (in which case, X ⊥⊥ Y ). Simple algebraic
manipulation allows showing that this is equivalent to having (α, β) ∈ {(α, β) ∈ [0, 1]2 : α =
0 ∨ α = 1/2 ∨ α = 1 ∨ β = 0 ∨ β = 1/2 ∨ β = 1}, which has zero Lebesgue measure. The
following theorem generalizes this result for arbitrary |X | and |Y|.

Theorem 9 Let X ∈ X and Y ∈ Y be two categorical random variables with a joint pmf such
that the conditional θX→Y corresponds to a UC. Assume also that the marginals have full support5:
pY (y) 6= 0, for any y ∈ Y , and pX(x) 6= 0, for any x ∈ X . Further assume that the rows of the
channel matrix θX→Y are not all equal to each other (i.e., X and Y are not independent6). Then, the
set of parameters such that the reverse channel θY→X is also a UCM has zero Lebesgue measure.

The proof, presented in Appendix A, essentially boils down to showing that the UC condition on
the reverse channel θY→X corresponds to the zero set of a polynomial that is not identically zero,
which thus has zero Lebesgue measure, a classical result from polynomial theory (Federer, 1969).

3. Channel Estimation from Data

This section addresses the problem of estimating channel parameters θX→Y from N independent
and identically distributed samples of (X,Y ) : (x1, y1), ..., (xN , yN ). This will play a key role in

5. There is no loss of generality in this assumption; if there are zeros in the marginals, we simply redefine X or/and Y by
removing the zero-probability elements.

6. If all the rows are equal to each other, then Y ⊥⊥ X; since independence is a symmetrical relationship, the reverse
channel θY→X will also have all its rows equal to each other, thus being a special case of a UC channel.
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translating the causal inference criterion proposed in Section 2 to the realistic scenario where there is
only access to a finite amount of data, rather than perfect knowledge of the joint pmf pX,Y .

Before estimating the channel parameters (conditional pmf), notice that estimating the marginal
pmf θX is trivial: with Nx denoting the number of samples (xi, yi) with xi = x, the maximum
likelihood (ML) estimate of θX is given by

θ̂
X

= arg max
θ∈∆|X|−1

∑
x∈X

Nx log θXx =
(N1

N
, ...,

N|X |

N

)
. (3)

For estimating θX→Y , we consider the following 4 scenarios: (1) arbitrary channel; (2) UCM,
with known permutations; (3) UCM, with unknown permutations; (4) CUCM, with unknown cyclic
permutations. Scenarios 1 and 2 are trivial and considered only as they provide the building blocks
to address scenarios 3 and 4.

3.1. Scenario 1: Arbitrary Channel

LetNx,y be the number of samples (xi, yi) such that xi = x and yi = y. In the absence of constraints
other than each row of θX→Y must be a valid pmf, the ML estimate is

θ̂
X→Y

= arg max
θ∈(∆|Y|−1)|X|

∑
x∈X

∑
y∈Y

Nx,y log θx,y. (4)

Since both the objective function and the constraints in (4) are separable across x = 1, ..., |X |, the
problem is also separable into a collection of problems, each yielding the classical ML estimates

θ̂X→Yx,y = Nx,y/Nx, for (x, y) ∈ X × Y. (5)

3.2. Scenario 2: UCM with Known Permutations

In a UC, each row θX→Yx is as given in (1). If the permutations σ1, . . . , σ|X | are known, the ML
estimate of γ is given by

γ̂ = arg max
γ∈∆|Y|−1

∑
x∈X

∑
y∈Y

Nx,y log γσx(y). (6)

This problem is not separable, as all the rows of the channel matrix share the same probability
values, although with different permutations. Swapping the summation order and using the inverse
permutations τx = σ−1

x to do a change of variable in the sum over Y , problem (6) can be rewritten as

γ̂ = arg max
γ∈∆|Y|−1

∑
z∈Y

log γz
∑
x∈X

Nx,τx(z). (7)

Problem (7) has the same form as (3), the solution being simply

γ̂y =
1

N

∑
x∈X

Nx,τx(y), for y ∈ Y. (8)

Notice that Nx,τx(y) is the number of samples (xi, yi) such that xi = x and yi = τx(y).
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3.3. Scenario 3: UC with Unknown Permutations

In this case, the log-likelihood is maximized, not only w.r.t. γ, but also the permutations. Although, at
first sight, this may look like a very hard problem, as there are (|Y|!)|X | combinations of permutations,
we show next that it can be solved very efficiently. The optimization problem in hand (formulated
w.r.t. the inverse permutations, denoted as τ1, . . . , τ|X | ∈ S|Y|) is

γ̂, τ̂1, . . . , τ̂|X | = arg max
γ ∈ ∆|Y|−1

τ1, ..., τ|X | ∈ S|Y|

L(γ, τ1, ..., τ|X |), (9)

where

L(γ, τ1, ..., τ|X |) =
∑
x∈X

∑
y∈Y

Nx,τx(y) log γy. (10)

The following proposition (proved in Appendix B) provides the solution to this problem.

Proposition 10 A globally optimal solution to the problem specified in (9)–(10) is given as follows.
For x ∈ X , τ̂x is any permutation that sorts {Nx,1, ..., Nx,|Y|} into non-increasing order,

τ̂x is such that Nx,τ̂x(1) ≥ · · · ≥ Nx,τ̂x(|Y|), (11)

and, for y ∈ Y ,

γ̂y =
1

N

∑
x∈X

Nx,τ̂x(y). (12)

The solution in (11)–(12) is a global, but not unique, optimum; in fact, any pmf ξ̂ that is a
permutation of γ̂, i.e., γ̂y = ξ̂ρ(y), where ρ ∈ S|Y|, yields

θ̂X→Yx,y = γ̂σ̂x(y) = ξ̂ρ(σ̂x(y)).

That is, γ is identifiable only up to a permutation, since any permutation of γ̂, combined with the
inverse of that permutation composed with each σx, yields the same conditional pmf estimate θ̂

X→Y
,

thus the same maximum value of the log-likelihood. Finally, notice that the cost of computing this
solution scales as O(|X | |Y| log |Y|), due to the number |X | of sorting operations, each of size |Y|.

3.4. Scenario 4: CUC with Unknown Permutations

The difference between this and the previous case is that the permutations are now cyclic. Thus, the
corresponding optimization problem is identical to (9)–(10), but with the constraint τ1, ..., τ|X | ∈ S|Y|
replaced with τ1, ..., τ|X | ∈ C|Y|, where C|Y| is the set of cyclic permutations of {1, ..., |Y|}.

Although the cardinality of C|Y| is |Y|, much smaller than that of S|Y|, which is |Y|!, this
problem is harder than (9)–(10). Whereas the cost of the exact solution of (9)–(10) scales with
O(|X | |Y| log |Y|), exactly solving this problem by exhaustive search costs O(|Y||X |). It happens
that this problem is a variant of a class of problems known as multireference alignment, which is
known to be NP-hard (Bandeira et al., 2014). Exact solutions are thus out of the question for large
problems. Here, we propose an alternating maximization approach with two steps:

9
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• Given the current permutation estimates τ̂1, ..., τ̂|X |, update γ̂ according to (8), with τx = τ̂x.

• Given the current γ̂, maximize w.r.t. the permutations, which is separable across τ1, ..., τ|X |:

τ̂x = arg max
τ∈C|Y|

|Y|∑
y=1

Nx,τ(y) log γ̂y, for x = 1, ..., |X |. (13)

This maximization is carried out exactly by considering all the |Y| cyclic permutations.

The costs of both steps of this algorithm scale as O(|X | |Y|). Convergence can be proved via the
same approach that is used to prove convergence of the K-means algorithm (Selim and Ismail, 1984),
since both algorithms share a common structure: alternate between exact maximization with respect
to real quantities (cluster centers, in K-means, γ in our algorithms) and an exact combinatorial
optimization (the point-to-cluster assignments in K-means, the cyclic permutations in the proposed
algorithms).

4. Applying the UCM Principle from Data

Applying the proposed causal inference principle amounts to performing hypothesis testing con-
cerning the UC nature of the conditional pmf estimates θ̂

X→Y
and θ̂

Y→X
. This is closely related

to classical tests for two-way contingency tables (Agresti, 2013; Read and Cressie, 1988). Given a
table of counts Nx,y, let the null hypothesis H0 be that these counts can be explained by a UCM in
the X → Y direction. To test this hypothesis, consider the corresponding maximum log-likelihood
(noting that pX,Y (x, y) = P[X = x, Y = y] = θXx γσx(y), for a UCM),

LH0 =
∑
x∈X

∑
y∈Y

Nx,y log
(
θ̂Xx γ̂σ̂x(y)

)
=
∑
x∈X

Nx log θ̂Xx +
∑
x∈X

∑
y∈Y

Nx,y log
(
γ̂σ̂x(y)

)
, (14)

where θ̂
X

, σ̂1, ..., σ̂|X |, and γ̂ are the ML estimates obtained as shown in Section 3.
The alternative hypothesis is that the channel is arbitrary, with maximum log-likelihood

LH̄0
=
∑
x∈X

Nx log θ̂Xx +
∑
x∈X

∑
y∈Y

Nx,y log
(
Nx,y/Nx

)
, (15)

since the ML estimates of the conditional pmf parameters are as given in (5), and the ML estimate of
the marginal θX is the same, regardless of the channel being uniform or not. These models are nested:
a UCM is a particular case of the set of all valid channels, thus it is always true that LH0 ≤ LH̄0

.
The likelihood-ratio statistic (LRS), denoted G2, is then given by

G2
X→Y = 2(LH̄0

− LH0) = 2
∑
x∈X

∑
y∈Y

Nx,y log
( Nx,y

γ̂σ̂x(y)Nx

)
; (16)

notice that γ̂σ̂x(y)Nx is the expected value of Nx,y under the null hypothesis. This is the LRS in the
X → Y direction, which we indicate with the subscript X → Y . The LRS in the reverse direction,
denoted G2

Y→X , is computed in the same way, after swapping the roles of X and Y .
It is well known that G2 is asymptotically χ2-distributed with df = (|X | − 1)(|Y| − 1) degrees

of freedom, yielding the p-value

p = P[χ2
df ≥ G

2] = 1− P[χ2
df < G2],

10
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where P[χ2
df < G2] is the cumulative distribution function of a χ2

df distribution. If p is less than
some significance level (i.e., the test statistic G2 is too large), the null hypothesis is rejected.

Let pX→Y and pY→X be the p−values of the LRS for testing the uniformity of the channels
in both directions, and let α be a significance level for the test (Agresti, 2013; Read and Cressie,
1988), i.e., the null hypothesis is rejected if the p−value is less than α. Having a statistical test of
whether an estimated conditional pmf corresponds to a UCM, we adopt a procedure similar to the
one proposed by Peters et al. (2011).

• If pX→Y ≥ α and pY→X < α, declare X → Y .

• If pX→Y < α and pY→X ≥ α, declare Y → X .

• If pX→Y < α and pY→X < α, declare "undecided: wrong model".

• If pX→Y ≥ α and pY→X ≥ α, declare "undecided: both directions possible".

The fourth case (i.e., the hypotheses that the channel is uniform in both directions cannot be
rejected) is asymptotically improbable, unless X and Y are independent, due to the identifiability
guarantee. Alternatively, to force the method to make a decision between the two causal directions,
one may simply decide for X → Y , if pX→Y > pY→X , and for Y → X , otherwise.

5. Results

We compare the proposed approach, on synthetic, benchmark, and real data, with two state-of-the-art
methods for categorical variables, for which code is publicly available: DC (Liu and Chan, 2016)
(eda.mmci.uni-saarland.de/prj/cisc/, with ε = 0) and HCR (Cai et al., 2018) (a Python
version of the R code available at cran.r-project.org/web/packages/HCR/index.html).
The code for all the experiments will be made available upon acceptance of the manuscript.

In the ML estimates underlying our approach (namely (5) and (8)), to avoid the problem of zero
or vanishing probabilities, we use a small amount (10−3) of additive (a.k.a. Dirichlet) smoothing.

5.1. Identifying the UCM Direction

The first set of experiments is a sanity check, assessing the ability of the proposed criterion to identify
the UCM direction, using synthetic data, with different sample sizes N and different sizes of the
support sets, |X |, and |Y|. For each pair (|X |, |Y|) and eachN , we generate 100 independent datasets
using randomly generated UCMs in the X → Y direction and the results reported for each N are
the corresponding averages. The decision rule is simply to choose X → Y , if pX→Y ≥ pY→X

(equivalently, G2
X→Y ≤ G2

Y→X ), and Y → X (which is wrong), otherwise. The results in Fig. 1
show that the accuracy achieves high values, close to 100%, for N > 500 ∼ 1000, without a clear
effect of the sizes of the support sets or difference between the non-cyclic and the cyclic cases.

5.2. Benchmark Data

We use the 112 pairs in the cause-effect pairs benchmark set (Guyon et al., 2013) where both variables
are categorical and that have as ground truth that either X → Y or Y → X . We set α = 0.05 and
compare UCM with the two methods mentioned above: DC (Liu and Chan, 2016) and HCR (Cai
et al., 2018). Decisions of “undecided” are counted as wrong. The average accuracies of UCM, DC,

11
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Figure 1: Accuracy in selecting the UCM direction, using the proposed criterion, for different sample
and support sizes. Left plot: general UCMs; right plot: cyclic UCMs (CUCM).

and HCR reported in Table 1 shows that UCM outperforms both HCR and DC on this dataset. Notice
that a random decision would yield accuracy equal to 1/3.

Table 1: Average accuracy results on the 112 pairs of the benchmark dataset.

UCM DC HCR
0.61 0.41 0. 47

5.3. Real Data

Finally, we evaluate the UCM method (again with α = 0.05) on real data from the UCI Machine
Learning Repository (Bache and Lichman, 2013). We use pairs of variables from the following
datasets: Adult, Pittsburgh Bridges, Accute Inflamation, Temperature, and Horse Colic. The datasets
and selected pairs, as well as the criteria used to decide what is the ground truth causal direction, are
described in Appendix C. We include only pairs for which a test of independence, at significance
level 0.05 (Agresti, 2013), rejects the null hypothesis of independence. Furthermore, we include only
pairs for which at least one of the three tested methods chooses one of the causal directions. Table 2
shows that the UCM and HCR approaches found the “correct" causal direction in 5 out of 9 pairs,
and DC in 4 pairs. UCM returned only correct decisions or abstained from deciding. This small
number of experiments does now allow for reaching any strong conclusions but suggests that UCM
performs on par, arguably somewhat better, with DC and HCR.

6. Conclusions

We introduced the uniform channel model (UCM) to address the cause-effect problem with categorical
variables. The proposed approach is based on viewing conditional distributions as communication
channels. The UCM can be seen as an ANM-type instantiation of the principle of independence
of cause and mechanism, preserving a key feature of ANM for quantitative data: the conditional
entropy (uncertainty) of the effect given the cause is independent of the cause. The core results of

12
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Table 2: Results on real data. Wrong decisions are shown in red; UWM stands for "undecided:
wrong model". Month is a cyclic variable, thus a CUC was used in the Y → X direction.

Dataset X Y UCM DC HCR

Adult Occupation Income UWM X → Y X → Y
Adult Work Class Income UWM X → Y X → Y

Acute Inflammation Inflam. of urinary bladder Lumbar pain Y → X Inconcl. Inconcl.
Acute Inflammation Inflam. of urinary bladder Nausea Y → X Inconcl. Inconcl.
Acute Inflammation Inflam. of urinary bladder Burning urethra Y → X Inconcl. Inconcl.
Pittsburgh Bridges Material Lanes X → Y Y → X X → Y
Pittsburgh Bridges Purpose Type UWM Y → X X → Y

Temperature Month Temperature X → Y X → Y Y → X
Horse Colic Abdomen Status Surgical Lesion UWM X → Y X → Y

this paper are a proof of the identifiability of the UCM and a proof of its equivalence to a structural
causal model with an exogenous variable of fixed cardinality.

To instantiate the approach on finite data, we used classical statistical tests to decide in which of
the two directions (if any) the conditional distribution is close enough to correspond to a UCM. The
experimental results confirmed the adequacy of the proposed method. By comparing our method
with two other recent methods (DC, by Liu and Chan (2016), and HCR, by Cai et al. (2018)), we
found that UCM outperforms those other methods on benchmark datasets and performs on par with
those methods on real data.

As future work, we will aim to extend the proposed method to handle more than two variables.
For example, closeness to a uniform channel of the conditional distribution of each variable given
its parents can be used in a score-based method. Another direction of research will look at cases
where one variable is categorical and the other is continuous. In fact, we envision a generalization
that subsumes both ANM and the proposed UCM as follows. In the correct causal direction, the
conditional distributions of the effect should be equivariant under some transformation group that
is relevant to its domain: shifts, in the ANM case, permutations, for categorical variables, cyclic
permutations for variables with cyclic structure. If this equivariance holds in the causal direction but
not in the reverse one, we have identificability.
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Appendix A. Proof of Theorem 9

Proof: Let us denote θX = β ∈ ∆|X |−1 and recall that under the UC assumption, matrix θX→Y has
the form

θX→Y =


γσ1(1) γσ1(2) · · · γσ1(|Y|)
γσ2(1) γσ2(2) · · · γσ2(|Y|)

...
...

. . .
...

γσ|X|(1) γσ|X|(2) · · · γσ|X|(|Y|)

 ,
where σ1, ..., σ|X | ∈ S|Y| are permutations and γ = (γ1, ...., γ|Y|) ∈ ∆|Y|−1. The assumption that
the rows of this matrix are not all equal to each other precludes the two following condition from
holding: σ1 = σ2 = · · · = σ|X | and γ = (1, 1, ..., 1)/|Y|.

Using Bayes’ law, it is trivial to obtain the reverse channel, the elements of which are given by

θY→Xy,x = pX|Y (x|y) =
pY |X(y|x) pX(x)

pY (y)
=

γσx(y) βx∑
x′∈X γσx′ (y) βx′

=
ay,x
Ay

, (17)

where ay,x = βxγσx(y) and Ay = pY (y) 6= 0 (by assumption). As in the binary example, using
variables Y and X to index rows and columns, respectively, θY→X is a row-stochastic matrix:

θY→X =

 a1,1/A1 · · · a1,|X |/A1
...

. . .
...

a|Y|,1/A|Y| · · · a|Y|,|X |/A|Y|

 .
For θY→X to correspond to a UC, its rows must be permutations of each other, which is equivalent
to all being permutations of one of them, say the first, without loss of generality. We exclude the
case where these permutations are all equal to identity, since that would correspond to all rows of
θY→X being equal to each other, i.e., X ⊥⊥ Y , which is excluded in the conditions of the theorem.
The condition that all the rows are permutations of the first one can be written formally as

∃(ρ2, ..., ρ|Y|) ∈ L : ∀y ∈ Y \ {1}, ∀x ∈ X , a1,x/A1 = ay,ρy(x)/Ay, (18)

where L = (S|X |)|Y|−1 \ I, with I =
{
ρ2, ..., ρ|Y| : ρ2 = ... = ρ|Y| = ι

}
, and ι is the identity

permutation. In words, L is the set of all (|Y| − 1)-tuples of permutations of |X | elements, except
for the one in which all permutations are identity.

The equality a1,x/A1 = ay,ρy(x)/Ay is equivalent to (a1,xAy − ay,ρy(x)A1)2 = 0, thus the
following equivalence holds:(

∀y ∈ Y \ {1}, ∀x ∈ X , a1,x/A1 = ay,ρy(x)/Ay
)
⇔ Qρ(θ) = 0,

with
Qρ(θ) =

∑
y∈Y\{1}

∑
x∈X

(a1,xAy − ay,ρy(x)A1)2, (19)

where we have written the model parameters compactly as θ = (β,γ) ∈ ∆|X |−1 × ∆|Y|−1 ⊂
R|X | × R|Y|, and denoted ρ = (ρ2, ..., ρ|Y|) ∈ L. A key observation is that Qρ(θ) is a polynomial
in the elements of θ, since the ay,x and the Ay are themselves polynomials (either products of two
elements or sums of products of pairs of elements) as is clear in (17).
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Finally, the existential quantifier in (18) can be re-written using a product, i.e.,(
∃ρ ∈ L : Qρ(θ) = 0

)
⇔ R(θ) = 0, where R(θ) =

∏
ρ∈L

Qρ(θ).

Since R(θ) a product of polynomials, it is itself a polynomial. Consequently, we have shown that the
UC condition in (18) corresponds to having θ as a root of a polynomial.

The rest of the proof relies on a classical result about polynomials (Federer, 1969): let S : Rn →
R be a polynomial that is not identically zero; then, the set S−1(0) = {u ∈ Rn : S(u) = 0} has
zero Labesgue measure in Rn. All that is left to show then is that R(θ) is not identically zero. For
this purpose, we can ignore the valid parameter space ∆|X |−1 ×∆|Y|−1, because if R−1(0) has zero
Lebesgue measure in R|X | × R|Y|, so does the intersection R−1(0) ∩ (∆|X |−1 ×∆|Y|−1). We can
also ignore the condition γ 6= (1, ..., 1)/|Y|, since this is a single point, thus a set of zero measure.

A sufficient and necessary condition for R(θ) not to be identically zero is that none of its factors
Qρ(θ) is identically zero7. To show that no Qρ(θ) is identically zero, let us write it explicitly, using
the definitions of ay,x and Ay in (17):

Qρ(θ) =
∑

y∈Y\{1}

∑
x∈X

(
βxγσx(1)

∑
x′∈X

βx′γσx′ (y) − βρy(x)γσρy(x)(y)

∑
x′∈X

βx′γσx′ (1)

)2
. (20)

Since Qρ(θ) is a sum of non-negative terms, to show that it is not identically zero, it suffices to
show that one of the terms in the sum is strictly positive for some choice of θ. The condition
ρ = (ρ2, ..., ρ|Y|) ∈ L means that at least one of the permutations ρ2, ..., ρ|Y| is not the identity,
which implies that there is at least one pair (x, y) such that ρy(x) 6= x. Let y and x be one such pair.
Choosing γ = (1, ..., 1) and β ∈ ∆|X |−1 such that all components are different from each other
(i 6= j ⇒ βi 6= βj), we have (noticing that

∑
x′∈X βx′ = 1)

Qρ(θ) =
(
βx
∑
x′∈X

βx′ − βρy(x)

∑
x′∈X

βx′
)2

+
∑
y′ 6=y

∑
x′ 6=x

(· · · )2 (21)

=
(
βx − βρy(x)

)2
+ non-negative terms > 0. (22)

In conclusion, since none of the Qρ(θ) polynomials is identically zero, R(θ) is also not identically
zero, consequently its zero set has zero Lebesgue measure. �

Appendix B. Proof of Proposition 10

Proof: Noticing that the permutations that map γ to each row of θY |X are arbitrary, there is no
loss of generality in assuming γ1 ≥ γ2 ≥ · · · ≥ γ|Y|, i.e., γ ∈ K|Y|, the so-called monotone cone
(Best and Chakravarti, 1990). Furthermore, it is more convenient to formulate the problem w.r.t. the
inverse permutations, denoted as τ1, . . . , τ|X | ∈ S|Y|. The problem can thus be written as

γ̂, τ̂1, . . . , τ̂|X | = arg max
γ ∈ (∆|Y|−1 ∩ K|Y|)
τ1, ..., τ|X | ∈ S|Y|

L(γ, τ1, ..., τ|X |), (23)

7. Recall that a product of two polynomials with real coefficients is identically zero only if at least one of the factors is
identically zero. This is a classical result from abstract algebra, which in the language thereof is stated as follows: the
ring of all polynomials in n variables with real coefficients is an integral domain or entire ring, that is, it does not have
divisors of zero (Lang, 2002). The result generalizes trivially, by induction, to products of more than two polynomials.
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where

L(γ, τ1, ..., τ|X |) =
∑
x∈X

∑
y∈Y

Nx,τx(y) log γy. (24)

The assumption γ1 ≥ γ2 ≥ · · · ≥ γ|Y| makes the maximization w.r.t. τ1, ..., τ|X | independent of
the particular values of γ as well as separable into a collection of |X | independent maximizations,

τ̂x = arg max
τx∈S|Y|

∑
y∈Y

Nx,τx(y) log γy, (25)

for x ∈ X . Solving (25) is a simple application of the rearrangement inequality8 (Hardy et al.,
1952). Since log γ1 ≥ log γ2 ≥ · · · ≥ log γ|Y|, the solution τ̂x is any permutation that also sorts
{Nx,1, ..., Nx,|Y|} into non-increasing order:

τ̂x is such that Nx,τ̂x(1) ≥ · · · ≥ Nx,τ̂x(|Y|). (26)

If all the elements of {Nx,1, ..., Nx,|Y|} are different, the optimal permutation is unique; otherwise,
there are several optimal permutations, all achieving the same maximum. The cost of finding
τ̂1, . . . , τ̂|X | is O(|X | |Y| log |Y|), since it requires |X | sorting operations, each with |Y| elements.

Plugging τ̂1, . . . , τ̂|X | back into (9)–(10) and swapping the summation order, yields

γ̂ = arg max
γ∈(∆|Y|−1∩K|Y|)

∑
y∈Y

log γy
∑
x∈X

Nx,τ̂x(y). (27)

This problem is the same as (7), with τ̂x in the place of τx and with the additional constraint γ ∈ K|Y|.
Temporarily ignoring this constraint leads to (see (8)),

γ̂y =
1

N

∑
x∈X

Nx,τ̂x(y), for y ∈ Y. (28)

The fact that Nx,τ̂x(1) ≥ Nx,τ̂x(2) ≥ · · · ≥ Nx,τ̂x(|Y|), for any x ∈ X , implies that γ̂ ∈ K|Y|, without
having to include this constraint. Consequently, problem (9)–(10) has a global solution given by (28)
and (26). �

Appendix C. Detailed Description of the Datasets Used in Section 5.3

Adult - This dataset consists of 48832 records from the census database of the US in 1994. We
consider the following pairs: (occupation, income) and (work class,income). The variable occupation
takes values in the set {admin, armed-force, blue-collar, white-collar, service, sales, professional,
other-occupation}. The variable work class takes categories in {private, self-employed, public
servant, unemployed}. Finally, income is a binary variable taking value in {> 50, ≤ 50}. Following

8. Given any two non-decreasing sequences of n real numbers, x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn,

∀σ ∈ Sn,
n∑
i=1

xσ(i)yi ≤
n∑
i=1

xiyi.
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Budhathoki and Vreeken (2017b), we assume that the ground truth is occupation→ income and
work class→ income.

Pittsburgh Bridges - This dataset contains records about 108 bridges and some of their char-
acteristics. We consider the pairs (purpose, type) and (material,lanes). The variable purpose takes
values in {Walk, Aqueduct, RR, Highway}; variable type takes values in {Wood, Suspen, Simple-T,
Arch, Cantilev, CONT-T}; variable material takes values in {Steel, Iron, Wood}; variable lanes takes
values in {1, 2, 4, 6}. Following Cai et al. (2018), the ground truths assumed are material→ lanes
and purpose→ type.

Acute Inflammations - This dataset consists of 120 patients and whether each patient is experi-
encing a specific symptom, the temperature, and whether he/she suffers from acute inflammations of
the urinary bladder and/or acute nephritis. We consider the binary variables ocurrence of nausea
(Y1), lumbar pain (Y2), and burning of urethra (Y3) (naturally, taking value 1 if the patient has that
symptom, and 0 otherwise). Moreover, X represent the diagnosis inflammation of urinary bladder.
Following Peters et al. (2011), the goal is to model the diagnosis process, thus we expect Yj → X ,
for j = 1, ..., 3. Notice that the variables Xi only correspond to the diagnosis, not necessarily the
truth, otherwise they would be considered the cause, rather than the effect.

The χ2 test did not reject the null hypothesis of independence (at a significance level of 5%)
for the following pairs of variables in this dataset: (Inflammation of urinary bladder, Occurrence
of nausea); (Inflammation of urinary bladder, Burning of urethra); (Nephritis, Micturition pains).
Although, intuitively, we would expected a causal relation between those, the statistical evidence is
not strong enough in favour of their mutual dependency (according to the χ2 test), therefore, these
pairs were discarded from the experiments.

Temperature - This dataset consists of 9162 daily values of temperature measured in Furtwangen
(Germany), with the variable day of the year taking integer values from 1 to 365 (or 366 for leap
years) and temperature in ◦C. Here, we aggregate days associated with each month and take month
→ temperature as the ground truth, as Peters et al. (2011). Notice that month assumes a cyclic
structure.

Horse Colic - This dataset contains 368 medical records of horses. We study the causal relation-
ship between the variable abdomen status, which takes the values in {Normal, Other, Firm feces in
the large intestine, Distended small intestine, Distended large intestine}, and the binary variable
surgical lesion, indicating whether the lesion was surgical or not. As Budhathoki and Vreeken (2018),
we regard abdomen status→ surgical lesion as ground truth.
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