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Abstract
Understanding and quantifying cause and effect is an important problem in many domains. The
generally-agreed solution to this problem is to perform a randomised controlled trial. However, even
when randomised controlled trials can be performed, they usually have relatively short duration’s
due to cost considerations. This makes learning long-term causal effects a very challenging task
in practice, since the long-term outcome is only observed after a long delay. In this paper, we
study the identification and estimation of long-term treatment effects when both experimental and
observational data are available. Previous work provided an estimation strategy to determine long-
term causal effects from such data regimes. However, this strategy only works if one assumes there
are no unobserved confounders in the observational data. In this paper, we specifically address the
challenging case where unmeasured confounders are present in the observational data. Our long-term
causal effect estimator is obtained by combining regression residuals with short-term experimental
outcomes in a specific manner to create an instrumental variable, which is then used to quantify
the long-term causal effect through instrumental variable regression. We prove this estimator is
unbiased, and analytically study its variance. In the context of the front-door causal structure, this
provides a new causal estimator, which may be of independent interest. Finally, we empirically test
our approach on synthetic-data, as well as real-data from the International Stroke Trial. Relevant
source code and documentation has been made freely available in our online repository.
Keywords: Long-term causal effects, latent confounding, linear Structural Causal Models

1. Introduction

Quantifying cause and effect relationships is of fundamental importance in many fields, from
medicine to economics (Richens et al. (2020); Gilligan-Lee (2020)). The gold standard solution to
this problem is to conduct randomised controlled trials, or A/B tests. However, in many situations,
such trials cannot be performed; they could be unethical, too expensive, or just technologically
infeasible. However, even when randomised controlled trials can be performed, they usually have
relatively short durations due to cost considerations. For example, online A/B tests in industry
usually last for only a few weeks (Gupta et al., 2019). This makes learning long-term causal effects
a very challenging task in practice, since long-term outcomes are often observed only after a long
delay. Often short-term outcomes are different to long-term ones (Kohavi et al., 2012), and, as many
decision-makers are interested in long-term outcomes, this is a crucial problem to address. For
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instance, technology companies are interested in understanding the impact of deploying a feature on
long-term retention (Chandar et al., 2022), economists are interested in long-term outcomes of job
training programs (Athey et al., 2019), and doctors are interested in the long-term impacts of medical
interventions, such as treatments for stroke (Carolei, 1997).

In contrast to experimental data, observational data are often easier and cheaper to acquire,
so they are more likely to include long-term outcome observations. Previous work by Athey et al.
(2019) devised a method to estimate long-term causal effects by combining observational long-term
data and short-term experimental data. However, this strategy only works if one assumes there are
no unobserved confounders in the observational data. Nevertheless, observational data are very
susceptible to unmeasured confounding, which can lead to severely biased treatment effect estimates.
Can we combine these short-term experiments with observational data to estimate long-term causal
effects when latent confounders are present in observational data?

In this paper, we address this problem and study the identification and estimation of long-
term treatment effects when both short-term experimental data and observational data with latent
confounders are available. We initially work with linear structural equation models. Our long-term
causal effect estimator is obtained by combining regression residuals with short-term experimental
data in a specific manner to create an instrumental variable, which is then used to quantify the long-
term causal effect through instrumental variable regression. We prove that this estimator is unbiased,
and analytically study its variance. When applied in the front-door causal structure, this strategy
provides a new causal estimator, which may be of independent interest. We extend this estimator
from linear structural causal models to the partially linear structural models routinely studied in
economics (Chernozhukov et al., 2016) and prove unbiasedness still holds under mild assumptions.
Finally, we empirically test our long-term causal effect estimator, demonstrating accurate estimation
of long-term effects on synthetic data, as well as real data from the International Stroke Trial.

Although long-term effect estimation is our primary focus, the estimator and methods described
can be applied to any single-stage causal effect. In this context, they can be interpreted as a novel
strategy that combines Front-Door and Instrument Variables to estimate causal effects in the presence
of unobserved confounders.

In summary, our main contributions are:

1. An algorithm for estimating long-term causal effects unbiasedly from both short-term experi-
ments and observational data with latent confounders in linear structural causal models. This
approach allows for continuous treatment variables—hence can deal with treatment dosages.

2. An analytical study of the variance of this estimator.

3. An extension of our estimator from linear structural causal models to partially linear structural
models and a proof that unbiasedness still holds under a weak assumption.

4. An empirical demonstration of our long-term causal effect estimator on synthetic and real data.

Relevant source code and documentation has been made freely available in our online repository.

2. Related work

Estimating long-term causal effects The estimation of long-term causal effects from short-term
experiments and observational data was initiated by Athey et al. (2019). The authors of that work
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devised a method to estimate such quantities by making use of short-term mediators, or surrogates, of
the treatment. Their estimation strategy was comprised of two parts: first, they use the experimental
data to determine the impact of the treatment on the surrogates, and then combined this impact
with a predictive causal model that used the observational data to predict the impact of a change in
the surrogates on the long-term outcome. This allowed them to predict the impact of the treatment
on the long-term outcome directly at the end of the short-term experiment. However, this strategy
only works if one assumes there are no unobserved confounders in the observational data. Recent
work by Cheng et al. (2021) has expanded this approach with tools from machine learning, by
learning efficient representations of the surrogates—again requiring there to be no unobserved
confounders. More recent work by Imbens et al. (2022) has explored estimating long-term causal
effects when unobserved confounders are present. These authors utilised results from the proximal
causal inference literature, see Tchetgen et al. (2020) for an overview of these results, in their
estimation strategy. However, to make use of these results, the authors have to assume existence
of three sequential mediators between the treatment and long-term outcome, and that these satisfy
completeness conditions that, informally, require any variation in the latent confounders is captured
by variation in the mediators. Our results, on the other hand, provide long-term treatment effect
estimators that are unbiased even in the presence of latent confounders that do not require such
sequential mediators that are strong proxies for the latent confounders.

Combining experimental and observational data Beyond using observational data and short-term
experimental data to estimate long-term causal effects, previous work has explored other advantages
of combining observational and experimental data. Indeed, Bareinboim and Pearl (2016) have
investigated non-parametric identifiability of causal effects using both observational and experimental
data, and how one can utilise such data regimes to transport causal effects learned in one data to
another, in a paradigm they refer to as “data fusion.” Moreover, Jeunen et al. (2022) has shown
that one can learn to disentangle the effects of multiple, simultaneously-applied interventions by
combining observational data with experimental data from joint interventions. Lastly, Ilse et al.
(2021) demonstrated the most efficient way to combine observational and experimental data to learn
certain causal effects. They showed they could significantly reduce the number of samples from the
experimental data required to achieve a desired estimation accuracy.

Linear structural causal models Many previous authors have worked in the linear structural causal
model formalism. Indeed, Shimizu et al. (2006) has shown that one can recover causal structure given
just observational data if one assumes an underlying linear structural causal model with non-Gaussian
noise. Gupta et al. (2021) has utilised this formalism to derive closed form expressions for the bias
and variance of treatment effect estimators when both observed confounders and mediators are
present. Cinelli et al. (2019) has derived closed-form expressions for the treatment effect bias when
there are unobserved confounders in the dataset under investigation. Lastly, Zhang et al. (2022) has
explored what conditions lead to bias when estimating causal effects from non-IID data, and how can
we remove such bias given certain assumptions.

3. Methods

This section is structured as follows. We first define linear structural causal models with Gaussian
noise, the class of models we will mainly be working with in this paper. As a warm up to our
main problem, we first explore long-term effect estimation when latent confounding influences the
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Figure 1: Causal graph with mediator confounded by latent W .

short-term treatment and long-term outcome, but does not influence the mediator. We note that this
confounding may represent a single cause which persists through both short-term and long-term
timescales. The causal structure in this particular case corresponds to the front-door structure studied
in Pearl (2009). In this case, we derive—to our knowledge—a novel causal effect estimator for the
front-door criterion, which may be of independent interest. This estimator is biased when latent
confounding is present between the treatment and long-term outcome. However, the way the bias
manifests is instructive, and suggests a way to adapt this estimation strategy to make it unbiased in
this case. We prove that the estimator based on this strategy is indeed unbiased in the presence of
latent confounding, and analytically study its variance. Finally, we extend this estimator from linear
structural causal models to partial linear structural models, and prove that its bias is small in the
presence of latent confounding if the treatment is strongly correlated with the latent confounder.

3.1. Setting up the problem

Motivated by the desire to unbiasedly combine short-term experimental data with long-term observa-
tional data, we define the following linear Gaussian structural causal model, which we will refer to
as the linear confounded-mediator model (CMM):

Wi = uWi , Xi = dWi + uXi , Mi = cXi + ϵWi + uMi , Yi = aMi + bWi + uYi , (1)

where index i runs over samples. Here, X ,M ,Y ,W are respectively the treatment, short-term mediator,
long-term outcome, and latent confounder. The causal structure for this model is depicted in Figure 1.
* For the observed variables X ,M ,Y , the uNi are independent Gaussian noise terms with zero mean:
uNi ∼ N (0, σ2

uN ) for node N ∈ {X,M, Y }. The term uWi in the latent confounder structural
equation is also an independent Gaussian noise term, but it has non-zero mean µuW ̸= 0: uWi ∼
N (µuW , σ2

uW ).
The framework having been defined, the typically desired treatment effect is ac. But, as we

assume that c can be estimated unbiasedly from experimental data, our goal is to estimate a given c
and an observational dataset of samples from (X,M, Y ). That is, we ask to what extent it is possible
to transfer knowledge of causation before a mediator to knowledge of causation after that mediator,
in the presence of unobserved confounding on that mediator. For example, we could take c to have
been conclusively estimated via an A/B test, while a is inaccessible to such experimentation due to its
long timescale. This question also naturally arises in the context of chains of NM mediator variables,

*. In this work we assume the causal structure follows Figure 1. To gain confidence in this assumption, one could employ
causal discovery algorithms, see Lee and Spekkens (2017); Dhir and Lee (2020); Gilligan-Lee et al. (2022) for more
information on these algorithms.
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where the statistician hopes to propagate knowledge of an early mediation stage ‘down the chain’.
Although we focus on scalar-valued variables throughout, an extension of this methodology to vector-
valued W and M would be straightforward, only requiring an expansion of the covariance-matrix
formalism outlined in Appendix A and interpreting ϵ as matrix-valued.

3.2. Warm-up: a mediator without confounding

With ϵ = 0 the CMM in Figure 1 is the standard mediator—or front-door—model, treated thoroughly
in the linear setting by Gupta et al. (2021). It is well-known that so long as mediator M is not directly
confounded, a may be unbiasedly estimated by the front-door criterion estimator (FDC):

âFDC = P (Y |do(M)) =
∑
X

P (Y |M,X)P (X) =
(X.X)(M.Y )− (X.M)(X.Y )

(X.X)(M.M)− (X.M)2
, (2)

where we have used A.B as a shorthand for sample-space inner product
∑

iAi · Bi. Note that no
knowledge of c is needed. Indeed c can be unbiasedly estimated by regressing M on X here.

We now give an alternative derivation of the FDC in terms of instrumental variables, a review of
which is given in Pearl (2009). Essentially, an instrument for a causal arrow a : M → Y is a variable
I such that a nonzero arrow f : I → M exists, and I is uncorrelated with any other causes of Y ,
such as W or uY in the CMM.

Consider the ordinary least squares (OLS) regression of M on X , which trivially produces
an unbiased estimator ĉ = M.X

X.X . Naively rearranging the structural equation, the residual of this
estimator appears to be noise uM . Constructing the true residual, we see that this still holds once all
covariances are accounted for,

Rc ≡M − OLS[M |X]X, (3)

following from independence of uM from uX and uW , the terminal causes of X . For the same
reason, this residual Rc = uM is a valid instrument for a : M → Y , as seen by constructing the
relevant instrumental estimator:

âRc =
OLS[Y |Rc]

OLS[M |Rc]
. (4)

The above expression may be phrased entirely in terms of observed variables by making the substitu-
tion uM 7→M − M.X

X.X X . Simplifying, we arrive at âRc = âFDC. Hence, our instrumental-inspired
estimator is unbiased and equal to the previously known estimator that follows from the front-door
criterion. We will refer to Res[M |X] corresponding to c : X →M more generally as the c-residual
Rc. To our knowledge, this construction of the FDC via an instrumental estimator has not appeared
in the literature, and we will refer to it as the Instrumental FDC (IFDC).

3.3. The Instrumental FDC for confounded mediators

A causal arrow ϵ : W → M violates the conditions for the FDC. Our reason for introducing the
IFDC is that it facilitates a natural extension of the FDC to the confounded mediator model, and
more generally to any model with pathway X →M → Y as a subgraph. The IFDC estimator can be
presumed biased since W and M are no longer d-separated after conditioning on X . Expressions for
the IFDC biases on a (and corresponding OLS bias on c) are derived in Appendix B and are given by:

Bias[ĉOLS] =
dϵσ2

uW

d2σ2
uW

+ σ2
uX

Bias[âRc ] =
bϵσ2

uW
σ2
uX

ϵ2σ2
uW

σ2
uX

+ σ2
uM

(σ2
uX

+ d2σ2
uW

)
(5)
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The bias on c vanishes if d≫ ϵ or σ2
uX
≫ σ2

uW
, while the bias on a vanishes if ϵ≫ b, σ2

uM
≫ bϵ

d2
σ2
uX

,
or σ2

uM
≫ bϵσ2

uW
. From the structural equations, we might naively expect residual Res[M |X] =

uM − ϵ
duX , and therefore explain the bias on âRc by the lack of independence between uX and X .

However, computing the correlations of the residual with X and W in full reveals a surprise:

E[Cov(Rc, X)] = E[M.X − M.X

X.X
X.X] = 0 (6)

E[Cov(Rc,W )] =
ϵ

d2(N − 1)

(
σ2
uX

+ E
[
(X.uX)2

X.X

])
> 0 (7)

This is a lesson in not relying too heavily on the intuition of structural equations for confounding
variables: the bias on âRc in fact arises entirely from correlation between Rc and W . In the following
we will see that the residual instrument can be modified to retain unbiasedness if c is known.

3.4. The ϵ/d-improved IFDC

We propose that the most direct route to propagate improved knowledge of c forward, in order
to improve the IFDC estimator for a, is via intermediate knowledge of the quantity ϵ

d . Ratios are
desirable targets for estimation because they are insensitive to correlated biases on their numerator
and denominator, and this particular ratio naively manifests in Rc as controlling the size of the biasing
uX term. We have identified several strategies for constructing estimators for ϵ

d , with a ratio estimator
based on X = dW + uX and the residual M − cX ∼ ϵW + uM proving the most successful:

(̂ ϵ
d

)
=

M − cX

X̄
(8)

where Ā denotes the sample mean
∑

i(Ai)/N . This estimator is unbiased in the limit of large
samples, as µuW ̸= 0 and µuX = µuM = 0. It is possible that superior estimators exist, but we find
the ratio estimator to be adequate for our purposes.

The “ ϵ
d -improved” residual is then defined as the portion of M which is leftover after removing

all causal contributions from X , both via direct path c and backdoor path ϵ/d:

RR = Rc −
(̂ ϵ
d

)
X = M −

(
c+

(̂ ϵ
d

))
X. (9)

This construction leaves a door open to joint estimation of c and ϵ
d from the prior stage in the model,

in the sense that only the sum is needed and biases of opposite sign could destructively interfere, but
we do not explore this further. The resultant instrumental estimator for a takes the form:

âRR
=

RR.Y

RR.M
=

M.Y −
(
c+

(̂
ϵ
d

))
X.Y

M.M −
(
c+

(̂
ϵ
d

))
X.M

. (10)

For convenience in application by the reader, we express our estimation strategy in algorithmic form:
In the next section we show this strategy unbiasedly estimates the causal effect of M on Y .
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Algorithm 1 ϵ
d -improved Instrumental FDC Estimator

Input: Short-term experimental dataset E = {X,M}, observational dataset O = {X,M, Y }
Output: Estimator for causal effect of M on Y .

1: From E , estimate causal effect of X on M : c.
2: Using samples from O, regress M on X and compute residual: Rc

3: Using samples from O, compute sample mean of M − cX and X and take their ratio: ϵ/d.
4: Compute Rc − ϵ

dX and denote it by RR.
5: Use RR in instrumental variable regression to estimate the causal effect of M on Y .

3.5. Unbiasedness and variance for the ϵ/d-improved IFDC

Although we will argue via approximations and simulations that âRR
= RR.Y /RR.M is unbiased

(except at its pole), it is more straightforward to show that the ratio of estimators E(RR.Y )/E(RR.M)
is unbiased. This uncorrelated-ratio approximation is justified by the fact that it holds exactly for the
IFDC, even in the presence of latent confounding, and is further discussed in Appendix B.

Evaluating algebraically by the methods outlined in Appendix A one obtains:

E
[
M.Y −

(
c+

ϵ

d

)
X.Y

]
= a

(
σ2
uM
−

cϵσ2
uX

d

)
, (11)

E
[
M.M −

(
c+

ϵ

d

)
X.M

]
= σ2

uM
−

cϵσ2
uX

d
, (12)

and so we can observe that âRR
is unbiased to the extent that the uncorrelated-ratio approximation

holds. There is one exception: a unique value of ϵ
d = 1

c exists (assuming homoscedasticity of the
noise terms for simplicity) for which the numerator and denominator simultaneously approach 0,
and at which the bias is therefore unbounded. For finite sample sizes, one expects that this pole will
be centered in a region of finite width where the estimator performs poorly, but that this region will
contract to a delta function as N →∞. In summary, we have the following:

Proposition 1 In linear CMMs, the causal effect a : M → Y can be unbiasedly estimated by
computing the following ratio of expectations:

E
[
Rc.Y −

(
ϵ
d

)
X.Y

]
E
[
Rc.M −

(
ϵ
d

)
X.M

] = E
[
M.Y −

(
c+ ϵ

d

)
X.Y

]
E
[
M.M −

(
c+ ϵ

d

)
X.M

] = a.

Proof The result follows from application of (11) and (12). Further details appear in Appendix B

Although the presence of this isolated pole in the bias is not an overwhelming obstacle, it is practically
inconvenient if samples are limited and one’s system happens to fall in the wrong region of parameter
space. Fortunately, there is one more tool at hand. In the case of a longer chain of mediators,
more precisely if there exists a prior instrument on arrow a : X → M (which we will denote
g : V → X), it is no longer necessary for c to be provided by an existing experiment. Instead, it may
be estimated instrumentally by ĉ = M.V

X.V , while the ϵ
d -improved IFDC can be built from an adjusted

prior-instrument residual:

RV = Res(M |X)−
(̂ ϵ
d

)
Res(X|V ). (13)
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The instrumental estimator âRR
remains unbiased other than at a pole; but this pole is located at

ϵ
d = 1

c(g2+1)
, again assuming homoscedasticity of the noise terms. The practical consequence is that,

if the practitioner has access to both a prior instrument and experimental data (or a low-variance
estimation of c from a previous link in the chain), they may choose whichever form of the IFDC is
more suited to their value of ϵ/d, which will be known. Given sufficiently strong prior causation
g, the two poles are well-separated. However, even if only one of these is available, with sufficient
samples the bias even arbitrarily near to a pole will approach 0.

Making use of the known variance properties of instrumental estimators, we construct an approx-
imate expression for the asymptotic variance of âRR

(details in Appendix B),

V∞(âRR
) =

b2σ2
uW

σ2
uX

+ σ2
uY

(d2σ2
uW

+ σ2
uX

)

(d2σ2
uw

+ σ2
uX

)
·

σ2
uM

+ ϵ2

d2
σ2
uX

(σ2
uM
− cϵ

d σ
2
uX

)2

= V∞(âFDC) ·
1 + ϵ2

d2
σ2
uX

σ2
uM(

1− cϵ
d

σ2
uX

σ2
uM

)2 (14)

which demonstrates that in general the improved estimator variance need not dramatically exceed
that for the typical FDC, except near the bias pole ϵ

d = 1
c . Similarly, as treatment noise σ2

uX
→ 0,

V∞(âRR
)→ V∞(âFDC); this is equivalent to the situation where d≫ ϵ such that the treatment X

is very strongly coupled to the confounder W . As mediator noise σ2
uM
→ 0, the variance vanishes,

for the intuitive reason that weighted confounder ϵW is then exactly known on a per-sample basis.

3.6. Performance of improved estimators in a partial linear CMM

We now assess to what extent the developed estimators remain unbiased when the causal effects
d : W → X and ϵ : W → M are permitted to be nonlinear. That is, we consider update to the
confounded mediator model: X = d(W ) + uX ,M = c.X + ϵ(W ) + uM . This is an example of a
partial linear causal model, which we term the partial linear CMM. We will take functions d(W ) and
ϵ(W ) to be polynomial-valued, requiring further that d(W ) is invertible such that backdoor path
ϵ ◦ d−1 : X →M is well-defined. Let us write:

d(W ) =
∞∑
k=1

dk
W k

k!
, ϵ(W ) =

∞∑
k=1

ϵk
W k

k!
. (15)

It is possible to define algebraic conditions on coefficients dk in the form of inequalities between
the eigenvalues of the Hermite matrix of d′(W ), such that d′(W ) > 0 ∀W (permitting d′(W ) = 0 at
isolated points) such that d(W ) is invertible if and only if the algebraic conditions are satisfied.

It is well-known (Abramowitz et al., 1988) that the power series of an inverse function up to
order n may be computed iteratively from the coefficients of the original power series up to order
n. We note however that each finite order in the original function induces nonzero terms to infinite
polynomial order in the inverse function, which could be included say to order m to improve precision.
Taking m = n, we quote the series expansion for ϵ ◦ d−1,

ϵ ◦ d−1(X) =
ϵ1
d1

X +
d1ϵ2 − d2ϵ1

d31
X2 +

d21ϵ3 + 2d22ϵ1 − d1d3ϵ1 − 2d1d2ϵ2
d51

X3 +O(X4), (16)

which also enjoys the key property that only coefficients order-by-order in d and ϵ are needed.
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We now investigate if the instrumental estimator âRR
, introduced in the linear case in the previous

section and defined in the nonlinear case below, is biased:

RR = M − cX − ϵ ◦ d−1(X). (17)

Again, the justification for this estimation approach is that RR should be uncorrelated with confounder
W , and therefore a good instrument for a : M → Y , so long as it is possible to produce unbiased or
low-bias estimates of c and of the coefficients of ϵ ◦ d−1.

In the non-linear case, how does one compute ϵ ◦ d−1(X)? The residual from regressing M on
X is naively given by R = uM + ϵ ◦ d−1(X − uX) by means of the backdoor path through W .
Expanding the series representation from (16), we see that samplewise R→ uM + ϵ ◦ d−1(X) as
uX → 0, which corresponds to σ2

ux
→ 0. That is, to the case where X is strongly correlated with W .

Therefore, in this case, by polynomial regression of R on X , it is theoretically possible to extract
all coefficients of ϵ ◦ d−1 to a desired order. We note that this method is much less sample-efficient
than the ratio-based estimator for ϵ/d which we identified in the linear case. Now, in the case where
σ2
ux
→ 0, where X is strongly correlated with W , can we prove our estimation approach is unbiased?
With RR well-defined, taking advantage of the structural equations, the bias on the instrumental

estimator âRR
may then be computed as:

Bias [âRR
] = E

[ (
uM + ϵ ◦ d−1(X − uX)− ϵ ◦ d−1(X)

)
.Y

(uM + ϵ ◦ d−1(X − uX)− ϵ ◦ d−1(X)) .M
− a

]

= a

(
σ2
uM

+ σ2
uX

P1(σ
2
uX

, σ2
uW

)

σ2
uM

+ σ2
uX

P2(σ2
uX

, σ2
uW

)

)
− a, (18)

where as in previous subsections, we have made use of the uncorrelated-ratio approximation to obtain
an asymptotic bias estimate. P1,2 are generic polynomials, and are computed algebraically by Isserlis’
Theorem for higher-order moments. It is clear that this bias approaches 0 as X becomes increasingly
correlated with W , yielding:

Proposition 2 In the partial linear CMM (15), Bias [âRR
]→ 0 as σ2

uX
/σ2

uM
→ 0.

Proof The result follows from (18).

The assumption that X is highly correlated with the latent confounder W is not too strong. Indeed,
the fact that X and W are causes of M means that the confounding bias W introduces between M
and Y cannot naively be removed using back-door adjustment.

4. Experiments

To empirically test our estimator in linear and partially-linear CMMs, we perform several experiments
and measure prediction bias both as a function of confounding ϵ and of the noise variances σ2 ≡
{σ2

uX
, σ2

uM
, σ2

uY
, σ2

uW
}. We first test on two synthetic datasets, one with linear data generation

functions, and another with nonlinear data generation. To test in a more realistic setting, we create a
semi-synthetic experiment using real data from the International Stroke Trial Carolei (1997). Initially,
all couplings are assumed linear and are set to 1 unless otherwise specified, and noises assumed zero-
mean homoscedastic Gaussian, with the exception of µW = 1. We will then relax the assumption of

9
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linearity on d and ϵ, and finally relax the assumption of Gaussianity on both W and X by generating
semi-synthetic data from the International Stroke Trial dataset Carolei (1997). In all cases, we use
the IFDC as baseline.

Relevant source code and documentation has been made freely available in our online repository.

4.1. Linear synthetic experiments

First, we simulate the CMM and compare the performances of the IFDC and the ϵ/d-improved IFDC
in estimating a. A 30× 3 grid over ϵ and σ2 is specified, and at each point in parameter space, 106

model samples are generated. A sample draw consists of first performing a random Gaussian draw
from N (µ, σ2) for each noise component uN , where µ = 1 for N = W and otherwise µ = 0, and
second propagating this data through the structural equations (1) with a = b = c = d = 1. These
samples are divided into 100 runs, from which the mean and variance of â may be computed for
each estimator. The results are shown in Figure 2, with the IFDC shown in the left column and
the ϵ/d-improved IFDC in the right column. The bias and variances properties for both estimators
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Figure 2: Experimental IFDC (left) and ϵ/d-improved IFDC (right) biases (top) and variances
(bottom) for a linear Gaussian model, plotted over 0 < ϵ < 2.0 and for σ2 ∈ {0.1, 0.5, 1.0}. The
plots show our estimator, the ϵ/d-improved IFDC, is unbiased away from the pole at ϵ/d = 1/c, but
the IFDC has high bias.

conform to our theoretical expectations. The nonzero bias from (5) is seen in the top left, with bias as
ϵ for small ϵ and as 1/ϵ for large ϵ, while vanishingly small variance at this sample quantity is seen
in the bottom left. For the improved estimator, the top right plot confirms unbiasedness throughout
the ϵ-domain except at pole value ϵ = 1, as predicted by (12), and reflected in the diverging variance
precisely at this value on the bottom right. As mentioned in Section 3, the width of this bias pole can
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be improved with further samples, or alternatively can be translated by the introduction of a prior
instrumental variable to a : X →M

4.2. Nonlinear synthetic experiments

We now assess our perturbative approach to cubic-order nonlinearities in the coupling functions
d and ϵ. A 6 × 5 grid over the quadratic and cubic polynomial coefficients is specified and at
each point in parameter space, 105 model samples are generated and divided into 100 runs. We
set σ2 = 0.3 to ensure convergence, and ϵ = 2 to avoid the bias pole for the improved estimator.
The results are shown in Figure 3 for cubic-polynomial d and linear ϵ, and in Figure 4 for linear
d and cubic-polynomial ϵ, with the IFDC shown in the left column and the ϵ/d-improved IFDC
in the right column. For both nonlinear experiments, the > 0.35 bias of the IFDC is drastically
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Figure 3: Experimental IFDC (left) and ϵ/d-improved IFDC (right) biases for cubic-polynomial
d and linear ϵ, plotted over −0.5 < d2 < 0.5 and for 0 < d3 < 0.5. In the non-linear case, our
estimator, the ϵ/d-improved IFDC, has very low bias, but the IFDC has high bias (note that differing
vertical scales have been employed to emphasize the trend).
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Figure 4: Experimental IFDC (left) and ϵ/d-improved IFDC (right) biases for linear d and cubic-
polynomial ϵ, plotted over −1.0 < e2 < 1.0 and for −0.4 < e3 < 0.4. Our estimator, the
ϵ/d-improved IFDC, has very low bias, but the IFDC has high bias (note that differing vertical scales
have been employed to emphasize the trend).

outperformed by the improved estimator with biases largely of magnitude < 0.05. However, the
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IFDC enjoys significantly more stability against both quadratic and cubic nonlinearities, in fact
appearing essentially insensitive to d2 and d3, compared with the improved estimator.

For the improved estimators, the dependence on acquired bias on the polynomial coefficients
largely agrees with our theoretical analysis in Section 3. Comparing the right plot of Figure 3 with
Figure 7, we see confirmation both of the positive bias trend with d2 and of the negative bias trend
with d3. There are, however, quantitative differences, where the perturbative approach overpredicts
the bias by a factor of 5− 10, suggesting that a more evolved approach than Taylor expansion could
be required to fully understand the consequences of nonlinearities in d.

Comparing the right plot of Figure 4 with Figure 8, we again see confirmation both of the weak
dependence of bias on e2 and of the signed bias trend with e3. Quantitatively, the match between
theory and experiment is much stronger here, confirming the convergence of the ϵ polynomial
expansion. For large, positive e3, the numerical estimator begins to fail due to large variance, and
more samples would be required to resolve this parameter region, but it is clear that beyond e3 ∼ 0.4
the improved estimator bias begins to surpass that of the original IFDC. In general we expect that
higher-order nonlinearities would cause the estimator to fail more rapidly, although it is possible it
might exceed expectations for specific nonlinear scenarios.

4.3. International Stroke Trial semi-synthetic experiments

To assess the performance of our estimators on more realistic data, we make use of the International
Stroke Trial (IST) database (Carolei, 1997), a collection of stroke treatment and 14-day/6-month
outcome data for 19, 345 individual patients. We take W = AGE and X = RSBP , the systolic
blood pressure at randomisation, both normalized to lie in [0, 1]. We specify linear causal effects for
c, a, b, and ϵ and construct M and Y by propagation through the structural equations (1) for each
IST sample, including Gaussian random noise with variance σ2. However, d is not specified as it is
manifest in the data with strength and linearity unknown.

For simulation, a 20× 3 grid over ϵ and σ2 is specified, and at each point in parameter space, 200
runs are generated using the same full set of 19, 345 IST samples, but with independently-sampled
noises uM and uY . The bias results are shown in Figure 5, with the IFDC plotted with dashed lines
and the ϵ/d-improved IFDC with solid. Our improved estimator attains a generic improvement
over the original IFDC for all ϵ ∈ [0, 3] and σ2 ∈ [0.1, 1], ranging between 20 − 40% decrease
in bias. This application is only a proof of concept, and these positive results indicate that further
improvement could likely be achieved by more fully taking account of the non-Gaussianity of X and
W and the nonlinearity of d : X →W .

5. Conclusion

In this paper, we studied estimation of long-term treatment effects when both experimental and obser-
vational data were available. Specifically, we addressed the case where unmeasured confounders are
present in the observational data. Our long-term causal effect estimator was obtained by combining
regression residuals with short-term experimental outcomes in a specific manner to create an instru-
mental variable, which was then used to quantify the long-term causal effect through instrumental
variable regression. We initially worked in the linear structural causal model framework, proved
this estimator is unbiased, and studied its variance. We then extended this estimator to partially
linear structural models and proved unbiasedness still holds under a mild assumption. Finally, we
empirically tested our long-term causal effect estimator on synthetic data, as well as real data from the
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Figure 5: Experimental IFDC (dashed) and ϵ/d-improved IFDC (solid) biases for synthetic IST data
as described in the text, plotted over 0 < ϵ < 3.0 and with σ2 ∈ {0.1, 0.5, 1.0}. In all cases, our
estimator, the ϵ/d-improved IFDC, has smaller bias than the baseline estimator.

International Stroke Trial—demonstrating accurate estimation. Although long-term effect estimation
was our primary focus, the estimator and methods described could be applied to any single-stage
causal effect with a nonzero-mean confounding variable; we therefore encourage that our results be
interpreted within the much broader context of front-door and IV estimation methods.
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Appendix A. Covariance Algebra

In order to extend the derivations in Gupta et al. (2021) to cases with confounded mediators, multiple
mediators, and pre-treatment covariates, it is necessary to introduce some new technology. Many key
results including bias and variance for FDC-type estimators and covariance between estimators, all
necessary to the estimation of the total causal effect, rely on essentially two steps. First, the desired
expectation value is expanded using smoothing, also known as the law of total expectation or the
tower rule:

E[X] =
∑
x

∑
y

x·P[X = x, Y = y] =
∑
y

[∑
x

x ·P[X = x | Y = y]

]
·P[Y = y] = E[E[X | Y ]],

(19)
where X and Y are random variables (r.v.s) defined on the same probability space, and the expansion
may be performed multiple times. In our application, X is replaced by the desired expectation value,
and a set of conditioners {Y } are chosen so that the denominator (and as many numerator terms as
possible) are fixed under {Y }. These fixed terms simplify by symmetry in some cases, and in more
complex cases reduce to known distributions such as the Inverse-Wishart.
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Second, the unfixed terms must be evaluated. Frequently these are of the form E[u, Y ], where u
is some noise r.v. in the causal graph which is neither fixed by Y nor independent from it. Linearity
in a Gaussian-noise graphical model implies that any two node or noise r.v.s are bivariate normal,
and indeed that any N node or noise r.v.s are N -multivariate normal. This is hugely advantageous,
because conditioning acts on a linear projection on a space of multivariate normal r.v.s.

For example, suppose X and Y have a bivariate normal distribution:

(X,Y ) ∼ N
(
µ =

(
µX

µY

)
,Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
, (20)

where ρ is the correlation between u and Y . Projection implies the following conditional expectations
among u and Y :

E[X | Y ] = µX + ρ
σX
σY

(Y − µY ),

E[Y | X] = µY + ρ
σY
σX

(X − µX),

V[X | Y ] = σ2
X(1− ρ2),

V[Y | X] = σ2
Y (1− ρ2). (21)

(22)

As a sanity check, we can see that both variances vanish if ρ = 1, and retain their independent values if
ρ = 0. ρ must be evaluated directly, which is straightforward in a linear Gaussian model; for instance,
if Y = αX + U with X ⊥⊥ U , cov[X,Y ] = α · cov[X,X] = ασ2

X , implying ρ = cov[X,Y ]
σXσY

= ασX
σY

.
This reproduces the well-known result that the conditional expectation of one of a set of summands
on their sum is proportional to the ratio of their variances.

The above result is frequently sufficient, however it is too strict for our use case. We will need
to be able to compute conditional moments of the form E[

∏
l ui(l) | Yj ], where the product may

include repeated or distinct noises, but the set Yj must be distinct (and sometimes may be reducible).
To achieve this, we combine two tools: the general conditional projection for Gaussian families in
terms of Schur complements, to easily handle a vector of conditioned r.v.s; and Isserlis’ theorem for
higher-order moments to handle arbitrarily complicated products of noises, so long as all r.v.s are
zero-mean.

Following Taboga (2021), the multivariate Gaussian conditional moments are: suppose vector-
valued r.v. X is k-multivariate normal with distribution X ∼ N (µ,Σ). Then for any partition
a+ b = k, where we define

X =

(
Xa

Xb

)
, µ =

(
µa

µb

)
,Σ =

(
Σa ΣT

ab

Σab Σb

)
, (23)

the vector-valued conditional mean is

E[Xa | Xb] = µa +ΣT
abΣ

−1
b (Xb − µb) (24)

and the matrix-valued conditional variance is

V[Xa | Xb] = Σa − ΣT
abΣ

−1
b Σab. (25)
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Note that in the above conditional mean, only the bilinear survives if µa = µb = 0, as in our
applications. Also, the term Σa − ΣT

abΣ
−1
b Σab is known as the Schur complement of block Σb in Σ.

Without needing to rearrange the covariance matrix, V[Xb | Xa] can be found simply by taking the
Schur complement of block Σa.

The complete partition above is excessive in most cases. If we only desire the expected mean for
a single variable Xi ∈ Xa, for instance, the matrix equation becomes:

E[Xi | Xb] = [µa]i + [ΣT
ab]ij [Σ

−1
b ]jk[Xb − µb]k (26)

where i, j, k are matrix indices and summations are assumed to be entire. What was a full a × a
matrix multiplication is now a vector bilinear. Similarly, if we only desire a particular covariance
cov[Xi, Xj ] for Xi, Xj ∈ Xa, the matrix equation becomes:

cov[Xi, Xj | Xb] = [Σa]ij − [ΣT
ab]im[Σ−1

b ]mn[Σab]nj (27)

where i, j,m, n are matrix indices, and again we have arrived at a vector bilinear.

Appendix B. Proofs of Estimator Biases and Variances

In this section we describe the construction of four residual-based instrumental estimators for a. Two
of them will be shown to be unbiased except for some zero-measure choices of structural parameters,
which will be characterised.

B.1. Estimators and their Biases

First let us recall the structural equations for the CM model,

Wi = uWi , Xi = dWi + uXi , Mi = cXi + ϵWi + uMi , Yi = aMi + bWi + uYi , (28)

where all variables except the confounder W and noises u are taken to be observable. The motivation

X M Y

W

uM

Figure 6: Causal graph with mediator confounded by latent W and mediator noise term uM .

for this approach is the observation that noise variable uM , were it measurable, would be an acceptable
instrument for a, as shown in Figure 6. The simplest approximation of uM is to regress M on X
and take residual Rc as an instrument. As discussed in the text, we could not expect Rc to deliver
an unbiased instrumental estimator for a, as the regression of M on X absorbs the backdoor path
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X ←W →M . However it is instructive to compute the bias of the estimator by applying the law of
total expectation conditioned on X and M :

Bias[âRc ] = E[E[âRc − a|X,M ]]

= − b

d
E
[
E
[
M.(uX −X)X.X −M.XX.(uX −X)

M.MX.X − (M.X)2

∣∣∣∣X,M

]]
= − b

d
E
[
M.E[uX |X,M ]X.X −M.XX.E[uX |X,M ]

M.MX.X − (M.X)2

]
=

bϵσ2
uW

σ2
uX

ϵ2σ2
uW

σ2
uX

+ σ2
uM

(σ2
uX

+ d2σ2
uW

)
(29)

In the first line, the law of total expectation is applied, conditioned on X and M so as to isolate the
numerator. In going from the first line to the second line, the independence of uY from X,M has
been applied, and in the final expression the conditional expectation E[uX |X,M ] has been calculated
as shown in Appendix A. Assuming homoscedasticity of the noise terms, this simplifies to

Bias[âRc ] =
bϵ

1 + d2 + ϵ2
. (30)

One notable property of this bias is that it vanishes in the limit of both small and large ϵ, with
global maximum bias of ± b√

4+2d2
at ϵ = ± b

2
√
1+d2

at ϵ = ±
√
1 + d2, as demonstrated in Figure 2.

Not all estimators allow for this reduction strategy; in particular, the conditional expectations of
the noise terms must combine just such that the denominator is cancelled and the expectation
expression becomes that of a scalar. In such cases, we will proceed by estimating the numerator and
denominator separately and treating the expectation of the ratio as well-approximated by the ratio of
these expectations. For example, âRc has the following numerator and denominator expectations,
derived by simple independence between noise terms and the fact that E[ui.ui] = σ2

ui
:

E[X.XM.Y −X.YM.X] = ϵ(b+ aϵ)σ2
uW

(
g2σ2

uV
+ σ2

uX

)
+ aσ2

uM

(
g2σ2

uV
+ σ2

uX
+ d2σ2

uW

)
;

(31)

E[X.XM.M − (X.M)2] = ϵ2σ2
uW

(
g2σ2

uV
+ σ2

uX

)
+ aσ2

uM

(
g2σ2

uV
+ σ2

uX
+ d2σ2

uW

)
. (32)

The ratio of these expectations, less a, delivers exactly the bias calculated in (29), which tells us that
the numerator and denominator r.v.s are independent for this front-door estimator. In general this
equivalence will fail due to correlations between the numerator and denominator, but we will assume
the correlations to be weak as a useful first approximation.

We can now define and analyse the improved residuals which take advantage of prior-stage
information about c : X →M and form the key results of this work. First, we take inspiration from
the linear structural equations for the confounded mediator model, which suggest that the residual on
M after regression on x should have the form uM − ϵ

duX . Taking the more general case of a prior
instrument g : V → X in the CM model, we may arrive at this same linear structural quantity by the
unique linear combination of residuals between V , X , and M which removes unobserved data W ,
giving:

RV = Res[M,X]− ϵ

d
Res[X,V ] ∼ uM −

ϵ

d
uX (33)
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where ratio ϵ
d is shown in Section 3 to be unbiasedly estimable so long as confounder W acquires

some nonzero mean. Subsequently, we construct an instrumental estimator for a:

âRV
=

RV .Y

RV .M
=

V.V V.X(M.Y − ϵ
dX.Y ) + (V.X)2V.Y − ϵ

dV.V V.MX.Y

V.V V.X(M.M − ϵ
dX.M) + (V.X)2V.M − ϵ

dV.V V.MX.M
. (34)

Some simplification is achieved by applying the Law of Total Expectation conditioned over V,X,M ,
but the result is a nontrivial integral over these three heavily-correlated random vectors (in sample
space):

Bias[âRV
] = E

[
bσ2

uW

σ2
uM

(
d2σ2

uW
+ σ2

uX

)
+ ϵ2σ2

uW
σ2
uX[

V.V V.X(M.M − ϵ

d
X.M) + (V.X)2V.M − ϵ

d
V.V V.MX.M

]−1

(
dV.V M.XV.X

(
dσ2

uM
− cϵσ2

uX

)
− ϵV.V V.X

(
X.X

(
dσ2

uM
− cϵσ2

uX

)
+ σ2

uX
(dM.M − ϵX.M)

)
− dV.V V.M

(
X.X

(
dσ2

uM
− cϵσ2

uX

)
+ ϵX.Mσ2

uX

)
+ ϵ(V.X)3

(
dσ2

uM
− cϵσ2

uX

)
+ ϵ2V.Mσ2

uX
(V.X)2

)]
(35)

We do not yet know how to evaluate the above integral, except numerically. Instead, we can evaluate
the expectations of the numerator and denominator:

E
[
V.V V.X(M.Y − ϵ

d
X.Y ) + (V.X)2V.Y − ϵ

d
V.V V.MX.Y

]
= a

(
σ2
uM
−

cϵ(g2σ2
uV

+ σ2
uX

)

d

)
;

(36)

E
[
V.V V.X(M.M − ϵ

d
X.M) + (V.X)2V.M − ϵ

d
V.V V.MX.M

]
= σ2

uM
−

cϵ(g2σ2
uV

+ σ2
uX

)

d
.

(37)
In contrast to our results on Bias[âRc ], the uncorrelated-ratio approximation suggests Bias[âRV

] ≃
0. This only exactly holds if the integral in (35) evaluates to 0, but is promising nonetheless. An
intermediate possibility is that (35) approaches 0 as Nsamp → ∞, but has a slow dependence on
Nsamp.

It is worth noting that âRV
could have been constructed another way; naively from the structural

equations, Res[M,V ] ∼ ϵW + uM just as Res[M,X] does. We might even expect Res[M,V ] to
experience less bias, since V is not confounded by W . However, repeating the above analysis in the
uncorrelated-ratio approximation gives a nonzero result,

Bias[âRV
] ≃

bcdσ2
uW

σ2
uM

+ cd(cd+ ϵ)σ2
uW

+ c(cd−ϵ)
d σ2

uX

, (38)

and so we have discarded this route.
It is straightforward to simplify estimator âRV

and its corresponding residual to obtain the
improved estimator âRR

explored in-depth in the text. One simply sets g = 0 to remove prior
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instrument V , and redefines the residual with c presumed to be provided from an oracle:

RR = M − (c+
ϵ

d
)X ∼ uM . (39)

Importantly, this construction leaves the door open to joint estimation of c and ϵ
d from the prior stage

in the model, in the sense that only the sum is needed and biases of opposite sign could destructively
interfere. The resultant instrumental estimator for a is simple,

âRR
=

RR.Y

RR.M
=

M.Y −
(
c+ ϵ

d

)
X.Y

M.M −
(
c+ ϵ

d

)
X.M

. (40)

Like âRV
, the full bias is not (yet) reducible beyond a high-dimensional integral,

Bias[âRR
] = E[

bσ2
uW

σ2
uM

(
d2σ2

uW
+ σ2

uX

)
+ ϵ2σ2

uW
σ2
uX

ϵσ2
uX

M.M + (dσ2
uM
− ϵ(2c+ ϵ

d)σ
2
uX

)X.M + (c+ ϵ
d)(cϵσ

2
uX
− dσ2

uM
)

M.M −
(
c+ ϵ

d

)
X.M

] (41)

but, also like âRV
, this expectation appears unbiased in the uncorrelated-ratio approximation:

E
[
M.Y −

(
c+

ϵ

d

)
X.Y

]
= a

(
σ2
uM
−

cϵσ2
uX

d

)
; (42)

E
[
M.M −

(
c+

ϵ

d

)
X.M

]
= σ2

uM
−

cϵσ2
uX

d
. (43)

It is unsurprising that RR is no more biased than RV , and we should expect that evaluation of the
integrals in (35) and (41) would show the same or better bias for RR even for finite sample size. In
fact, numerical integration of (41) indicates that any nonzero bias terms are proportional to 1/(N+k)
for constants k, and therefore asymptotically vanish.

There is one crucial difference in the estimation performance of âRR
vs. âRV

, a topological one
arising from the presence of prior instrument V . As seen in the uncorrelated-ratio approximation,
there are values of ϵ

d for which the numerator and denominator simultaneously approach 0. Again
assuming homoscedasticity of the noise terms for simplicity, this bias pole occurs at ϵ

d = 1
c for âRR

and at ϵ
d = 1

c(g2+1)
for âRV

. For finite sample sizes, one expects that each pole will be centered in a
region of finite width where the estimator performs poorly, but that this bias will contract to a delta
function as Nsamp → ∞. These poles are connected in the limit as g → 0, although âRV

is not
defined at g = 0.

The practical consequence of the above analyses is that two instrumental estimators of a, con-
structed from the ϵ/d-improved residual and from the remainder, are essentially unbiased. They each
have a pole region of slowly-converging bias, however given sufficiently large g, these regions can
be well-separated. In the presence of a prior instrument g, it is therefore possible to construct an
unbiased estimator for a throughout (ϵ, d) parameter space. It is for this reason that we illustrate both
estimation strategies in full despite their obvious similarities.
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B.2. Variances

We refer first to the variance computations in Gupta et al. (2021), where finite-sample and asymptotic
variances for ĉ and â are calculated taking advantage of the asymptotic normality of OLS estimators,
and the properties of inverse-Wishart-distributed matrices. For the front-door estimator, the asymptotic
variances are quoted as follows:

V∞(âFDC) =
b2σ2

uw
σ2
ux

+ σ2
uy
(d2σ2

uw
+ σ2

ux
)

(d2σ2
uw

+ σ2
ux
)σ2

um

, (44)

V∞(ĉ) =
σ2
um

d2σ2
uw

+ σ2
ux

. (45)

Via the Delta method, the asymptotic variance in estimating the total causal effect ac is given by

V∞(âc) = c2V∞(â) + a2V∞(ĉ), (46)

which holds as long as Cov(â, ĉ) = 0.
Following Corradi; Cameron, the asymptotic variance for a scalar instrumental estimator âIV =

R.Y
R.M may be written

V∞(âR) =
E [(R.R) · E[ũY .ũY |R]]

Cov(R,M)2
(47)

where ũY denotes all additive contributions to Y besides aM , and we have taken instrument R
to have zero mean. Following our claim that the instrumental estimator built from Rc with no
confounding on the mediator (ϵ = 0) is simply the FDC estimator, it is instructive to confirm that the
IV asymptotic variance agrees with the FDC result from Gupta et al. (2021).

For all causal structural models we consider, ũY = uY +b·uW . In the ϵ = 0 case, no confounding
implies Rc ⊥⊥ ũY , so that E [(R.R) · E[ũY .ũY |R]] = E [R.R] · E[ũY .ũY |Rc]. Further computing
E[Rc.Rc] = E[Rc.M ] = σ2

uM
, and evaluating E[ũY .ũY |Rc] algebraically via the covariance matrix

approach, we arrive at:

V∞(âRc,ϵ=0) =
σ2
uM
· (σ2

uY
+ b2E[uW .uW |Rc])

(σ2
uM

)2
= V∞(âFDC). (48)

When the mediator is permitted to experience some confounding ϵ, we should expect some correlation
between Rc.Rc and ũY .ũY via uW . Separating this term from the product in the numerator, and
observing that E[Rc.Rc] = E[Rc.M ] = E[M.MX.X−(M.X)2

X.X ], we find

V∞(âRc) =
σ2
uY

+ b2E[uW .uW |Rc]

E[M.MX.X−(M.X)2

X.X ]
+

O(σ4
uW

)

E[M.MX.X−(M.X)2

X.X ]2
(49)

where the quantity in the denominator has the distribution of the marginal from a Wishart-distributed
matrix, as the quantity 1

D in Gupta et al. (2021). It is possible to simplify this denominator expectation
directly to only one non-trivial integral,

E[Rc.Rc] = σ2
uM
· N

N + 2
+ ϵ2σ2

uW
− ϵ2E[

E[(uW .X)2|X]

X.X
], (50)
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where the final expectation value would reduce to σ2
uW
· 1
N+2 were uW ⊥⊥ X , but numerical evaluation

via cylindrical coordinates has confirmed that it approaches asymptotic σ2
uW

with strong correlation
between uW and X . Thus E[Rc.Rc] is bounded both above and below, with the overall V∞(âRc)
slowly worsening as correlation between uW and X becomes stronger.

If we assume that c has been learned through previous experimentation, and that low-variance,
unbiased estimation of ϵ

d has been attained, it is possible to obtain an exact variance result for the
ϵ/d-improved IFDC estimator. Since Rc = uM − ϵ

duX , E[Rc.M ] = σ2
uM
− cϵ

d σ
2
uX

and E[Rc.Rc] =

σ2
uM

+ ϵ2

d2
σ2
uX

. Thus,

V∞(âRR
) =

b2σ2
uW

σ2
uX

+ σ2
uY

(d2σ2
uW

+ σ2
uX

)

(d2σ2
uw

+ σ2
uX

)
·

σ2
uM

+ ϵ2

d2
σ2
uX

(σ2
uM
− cϵ

d σ
2
uX

)2
, (51)

which has the expected property that as ϵ → 0, V∞(âRR
) → V∞(âFDC), but with asymptotic

confounding ϵ → ∞, V∞(âRR
) → V∞(âFDC) ·

σ2
uM

c2σ2
uX

. The variance expression only becomes

unbounded at the pole ϵ
d = 1

c , just as expected from our computation of the bias.

Appendix C. Nonlinear Bias Examples

As two practical examples, we demonstrate the computed ϵ/d-improved IFDC biases for cubic-
polynomial d and linear ϵ, and for linear d and cubic-polynomial ϵ. Specifically,

d(W ) = d1W + d2W
2 + d3W

3, (52)

in which case the invertibility condition simplifies to −
√
3d1d3 ≤ d2 ≤

√
3d1d3, which may only

be fulfilled if d1 and d3 have the same (or 0) sign. Setting all variances and b = c = d1 = ϵ1 = 1 for
simplicity, we find

Bias [âRR,nd=3] =
6(2d22 − d3)(1 + 3d3)

1 + 72d42 − 30d3 − 108d23 − 180d33 + 18d22(3 + 10d3 + 20d23)
, (53)

Bias [âRR,nϵ=3] =
3ϵ3

ϵ22 + 12ϵ3 + 9ϵ23
. (54)

Varying the cubic coefficient and plotting curves over the quadratic coefficient, theoretical bias
estimates for these two scenarios are presented in Figures 7 and 8, respectively. We have set all noise
variances to σ2 = 0.2 for these computations, in order to more clearly show trends and to assure
convergence. For Figure 7, we have taken terms of d−1 up to order m = 10 to demonstrate that at this
order in the expansion, the prediction still varies substantially; it is “non-perturbative”, and so even
to order 10 should only be taken as a qualitative estimate. The convergence up to order 3 in Figure 8,
however, is taken to be sufficiently precise. To summarise these results, up to non-perturbative effects
we expect that nonzero d2 pushes the bias in the positive direction, while nonzero d3 (restricted to
be positive by invertibility) pushes the bias in the negative direction. Coordinates in (d2, d3) where
unbiasedness is retained or nearly retained should therefore exist. In contrast, nonzero ϵ2 appears to
have a much smaller impact on bias, in fact tending towards 0, while nonzero e3 leads to bias in the
direction of sign(ϵ3). It is noteworthy that for positive ϵ3, the bias is small and tentatively approaches
an asymptote around 0.1, while for negative ϵ3, bias grows rapidly and appears unbounded.

22



ESTIMATING LONG-TERM CAUSAL EFFECTS IN THE PRESENCE OF UNOBSERVED CONFOUNDING

-0.4 -0.2 0.2 0.4
d2

-0.20

-0.15

-0.10

-0.05

0.05

0.10

Bias

e3 = 0

e3 = 0.5

Figure 7: Theoretical ϵ/d-improved IFDC biases for cubic-polynomial d and linear ϵ, plotted over
−0.5 < d2 < 0.5 and with curves ranging over 0 < d3 < 0.5.
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Figure 8: Theoretical ϵ/d-improved IFDC biases for linear d and cubic-polynomial ϵ, plotted over
−1.0 < ϵ2 < 1.0 and with curves ranging over −0.5 < ϵ3 < 0.5.
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