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Abstract
Causal confusion is a phenomenon where an agent learns a policy that reflects imperfect spurious
correlations in the data. Such a policy may falsely appear to be optimal during training if most of
the training data contain such spurious correlations. This phenomenon is particularly pronounced in
domains such as robotics, with potentially large gaps between the open- and closed-loop performance
of an agent. In such settings, causally confused models may appear to perform well according to open-
loop metrics during training but fail catastrophically when deployed in the real world. In this paper,
we study causal confusion in offline reinforcement learning. We investigate whether selectively
sampling appropriate points from a dataset of demonstrations may enable offline reinforcement
learning agents to disambiguate the underlying causal mechanisms of the environment, alleviate
causal confusion in offline reinforcement learning, and produce a safer model for deployment. To
answer this question, we consider a set of tailored offline reinforcement learning datasets that exhibit
causal ambiguity and assess the ability of active sampling techniques to reduce causal confusion at
evaluation. We provide empirical evidence that uniform and active sampling techniques are able to
consistently reduce causal confusion as training progresses and that active sampling is able to do so
significantly more efficiently than uniform sampling.
Keywords: Causal confusion, offline reinforcement learning, active sampling

1. Introduction

Offline learning offers opportunities to scale reinforcement learning to domains where offline data is
plentiful but online interaction with the environment is costly. The fundamental challenge of offline
reinforcement learning is to identify the cause and effect of actions from a fixed dataset, which
is often intractable. In the absence of online interactions, our hope is that the dataset uniformly
covers an exhaustive set of plausible scenarios. This is often not the case in datasets for robotic
control, which are heavy-tailed and often contain only a handful of samples for rare (and informative)
events. Causal confusion occurs when agents misinterpret the underlying causal mechanisms of the
environment and erroneously associate certain actions or states with a given reward. For example,
if an agent happens to simultaneously observe independent events X and Y in its environment
whenever it receives a reward R, and R causally depends on Y but not on X , the agent may attribute
the reward R to X and Y occurring jointly even though R may be independent of X . Problematically,
if the spurious correlation between X and R observed at training time ceases to hold at deployment
time, a causally-confused model may show a significant deterioration in performance.
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Although spurious features might not perfectly explain all the input-label pairs in offline data,
optimisation methods such as stochastic gradient descent benefit from correlations in the data when
seeking to reduce the training loss. Therefore spurious correlations are unwittingly transferred
from the data to the mechanisms of learned models. This phenomenon is especially pronounced
in models trained on high-dimensional visual inputs, since extracting the true causal factors of an
environment (and their interplay) from an image is a particularly difficult problem. On the other
hand, it is noticeably easy for neural networks to find shortcuts for prediction, for instance, using
co-occurrence patterns between objects and backgrounds to successfully perform object detection, as
has been extensively documented in the deep computer vision literature (Beery et al., 2018; Geirhos
et al., 2020). Several works have also reported causal confusion in control policy learning and
used heuristic loss re-weighting or dataset-balancing schemes based on domain knowledge of the
prediction task to reduce the amount of causal confusion in the learned models (Wijmans et al., 2019;
Kumar et al., 2022). However, these heuristics require a practitioner to know the source of causal
confusion a priori since they explicitly upweigh the loss for specific spurious-correlation-breaking
samples in the dataset (Wen et al., 2021, 2020). While this may be limiting in practice, the success of
these heuristics demonstrates that it is possible to recover less causally-confused models from a fixed
dataset, as long as we have access to an oracle sampling scheme for the training data.

This insight suggests that causal confusion in learned models may primarily be an artifact of the
optimisation procedure and raises the question of whether systematically providing data points that
expose spurious correlations to the optimizer may allow alleviating causal confusion. Unfortunately,
in practice, identifying such sets of data points for a given task is challenging. Furthermore, naive
sampling schemes, such as uniform sampling from the dataset for a sufficiently long training horizon,
may eventually be able to resolve causal confusion in a learned model. For instance, if a model has
achieved close-to-zero loss on the dominant scenarios, high loss from the tail-cases may begin to
influence optimisation. However, even if such naive approaches were successful at partially or fully
resolving causal confusion, for reasons of computational efficiency and predictive performance (e.g.,
early stopping), their practical usefulness would be limited.

In this paper, we investigate the efficacy of data sampling strategies in mitigating causal confusion
in offline reinforcement learning from datasets exhibiting causal ambiguity. Our contributions can be
summarised as follows:

1. We design three decision-making tasks to study causal confusion in offline RL from visual
inputs: a grid-world simulation of traffic-light navigation; a maze navigation task with goals
correlated to a fixed position in the maze; and a car-racing game with highly-correlated action
sequences across time.

2. We study uncertainty-based and loss-based active sampling techniques and find that active
sampling alleviates causal confusion in offline training and yields a higher reward at evaluation.

3. We further show that active sampling is able to alleviate causal confusion at a significantly
higher sample efficiency than naive uniform sampling, and that the usefulness of active
sampling in alleviating causal confusion is highly related to the quality of predictive uncertainty
estimates used in the best-performing, uncertainty-based acquisition function.

Our work suggests that in many cases we may not have saturated our datasets and can push the
capabilities of offline reinforcement learning agents by optimising on the long tail of the data. We
show that simply showing the same training dataset according to a better distribution to a model
during training could be a viable strategy to explore before investing efforts in collecting more
high-quality data or exploring larger models.
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2. Preliminaries

We consider an environment formulated as a Markov Decision Process (MDP) M defined by a tuple
(S,A,P, r, d0, γ), where S is the state space, A is the action space, P (s′ | s,a) is the transition
probability distribution, r : S × A → R is the reward function, d0 is the initial state distribution,
and γ ∈ (0, 1] is the discount factor. The goal of reinforcement learning (RL) is to find an optimal
policy π(a | s) that maximizes the cumulative discounted reward Est,at

[∑∞
t=0 γ

tr (st,at)
]
, where

s0 ∼ d0(·),at ∼ π (· | st), and st+1 ∼ P (· | st,at).
Q-learning-based RL algorithms learn an optimal state–action value function Q∗(s, a), repre-

senting the expected cumulative discounted reward starting from s with action a and then acting
optimally according to policy π∗ thereafter, ie Q∗(s, a) = Eπ∗

[∑∞
t=0 γ

tr (st,at) | s0 = s, at = a
]
.

Analogously, the value function V (s) = Eπ

[∑∞
t=0 γ

tr (st,at) | s0 = s
]

represents the expected
cumulative discounted reward achievable from state s when following policy π. Q-learning is trained
on the Bellman equation defined as follows with the Bellman optimal operator B defined by:

BQ(s, a) := R(s, a) + γEP (s′|s,a)

[
max
a′

Q
(
s′, a′

)]
. (1)

The Q-function is updated by minimizing the Bellman Squared Error E
[
(Q− BQ)2

]
where a frozen,

periodically updated copy of the Q-network weights are used to compute the target BQ.
Offline RL algorithms aim to learn an optimal policy by learning estimates of the value (or

Q-value) function from a static dataset of transitions D = {(s,a, r, s′)} collected by a behaviour
policy πβ . Since the agent does not interact with the environment, naively using online RL techniques
in the offline case leads to value function overestimation on unseen states and actions. This happens
because the max operator in the target update in Equation (1) propagates erroneously high values from
the next state’s value estimate into the update. Thus, algorithms based on the pessimism principle
of underestimating the Q-values to optimise the worst-case regret bound have been successful at
learning policies from datasets containing either good coverage of the state–action space or high
return trajectories (Kumar et al., 2020; Kumar et al., 2019; Buckman et al., 2021; Bai et al., 2022).

Prior work categorised pessimistic offline RL algorithms into (1) proximal and (2) uncertainty-
aware algorithms (Buckman et al., 2021). The former penalises action-value estimates based on
deviations from the actions seen in the dataset, while the latter conservatively updates the value
functions, taking the uncertainty of their targets into account. Proximal pessimistic algorithms like
CQL, BEAR (Kumar et al., 2019; Kumar et al., 2020) are known to work well with exactly the kind
of narrow and biased data distributions that are most prone to causal confusion (Fu et al., 2020).
We, therefore, analyse the proximal class of algorithms in this work and leave the study of causal
confusion in uncertainty-aware pessimistic offline RL algorithms to future work.

Conservative Q-Learning. We choose CQL (Kumar et al., 2020) as an instantiation of a proximal
pessimistic offline RL algorithm in our experiments, due to its simplicity and competitive performance
on offline RL benchmarks. The CQL objective, which combines the standard TD-error of Q-learning
with a penalty constraining deviations from the behaviour policy, is defined as:

LCQL
critic (θ)=

1

2
E

(s,a,s′)∼D

[
(Qθ(s, a)− BQθ̄(s, a))

2
]
+α0 E

s∼D

[
log

∑
a

expQθ(s, a)− E
a∼πβ

[Qθ(s, a)]

]
,

(2)

where α0 is a coefficient controlling the degree of conservatism.
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3. Related Work

Causal Confusion in Supervised Policy Learning. Several works in offline imitation learning
have proposed solutions to mitigate causal confusion. de Haan et al. (2019) demonstrated causal
mis-identification in models trained on expert trajectories collected in the Mountain-Car and CARLA
simulators (Sutton and Barto, 2018; Dosovitskiy et al., 2017) where inputs were augmented with
the previous control command taken by the acting agent. They proposed to resolve the confusion
through a scheme to query an expert or collect additional rollouts in the environment to refine a
learned causal graph that conditions a learned policy. Wen et al. (2020) propose adversarial training
to prune out any known sources of spurious correlations from the policy’s representation, for instance,
the previous control commands given to a robot; Wen et al. (2021) propose re-weighting the losses
of data points based on the loss of a model trained with just the spurious correlates as the input;
OREO (Park et al., 2021) regularises the model’s representation to be invariant to any individual
object being dropped out in a scene. Lee et al. (2022) propose training a diversified policy ensemble
for imitation learning in the case when perfect spurious correlations exist in the data and later select
from these hypotheses based on validation data Causal Confusion has also recently been studied
in reward-learning from preferences (Tien et al., 2022), where spurious correlations can be drawn
between a human evaluator’s preferences and certain actions or parts of the state space, for tasks in
the Assistive gym (Erickson et al., 2019). For instance, a reward model trained to classify or rank
trajectories for a feeding task can easily learn that higher force correlates to higher reward since a
certain level of force needs to be inserted in the direction of the mouth in all preferred trajectories.

Active Sampling. The analysis in this work is inspired by the approach presented in Jesson et al.
(2021), which considers the problem of treatment effect estimation in settings where we wish to
be sample-efficient in terms of querying for outcomes of costly experiments. Jesson et al. (2021)
propose several causality-inspired acquisition functions that prefer data points that have both high
variance in their estimated outcomes and that correspond to covariates with considerable overlap
in the dataset. In Q-learning-based RL algorithms, Prioritised Experience Replay (Schaul et al.,
2015) is a non-Bayesian loss-based sampling scheme proposed for off-policy learning. It computes
acquisition scores based on the TD-error of transitions and has not been studied in offline RL.

Ensemble Models in RL. Ensembles have been studied extensively to guide exploration in online
RL (Osband et al., 2016; Lee et al., 2021), and recently to construct adaptive pessimism constraints
in offline RL, to disincentivise uncertain actions from having high estimated returns. It was recently
also shown that significantly increasing the size and diversity of the ensembled critic in Soft-Actor-
Critic (Haarnoja et al., 2018) performs competitively with state-of-the-art offline RL algorithms (An
et al., 2021). We are not aware of any prior work that has explored how uncertainty about the value
function ca be used to sample state transitions in RL.

AI Alignment. AI alignment seeks to align the behavior of agents with the intentions of their
creators by investigating the incentives behind demonstrated tasks. Recent work on Goal Mis-
generalisation (Langosco et al., 2022) explores how online RL agents in Procgen (Cobbe et al.,
2019) can get confused about the goal they are pursuing since those goals co-occur with irrelevant
artifacts in the environment most of the time. In this case, the specification is correct, but the agent
still pursues an unintended objective (as opposed to poor reward definitions that predictably lead to
reward hacking).
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4. Alleviating Causal Confusion in Offline RL via Active Sampling

In this section, we provide relevant background on active sampling and describe the active sampling
schemes we use in this work in conjunction with offline RL.

4.1. Active Sampling

Active sampling techniques are used to selectively sample from a given dataset during training to
enable sample-efficient learning or to improve learning from noisy data (Loshchilov and Hutter,
2015; Mirzasoleiman et al., 2019). To perform active sampling, data points are scored according
on a given acquisition function, and a small number of points are sampled based on these scores
using a pre-specified weighting scheme. Similar to active learning, the acquisition functions are
often information-theoretic quantities and seek to reduce the uncertainty about model parameters by
acquiring informative data points. In this work, we build on Jesson et al. (2021) and study whether
active sampling can enable sample-efficient resolution of causal confusion in models trained on
long-tailed datasets.

In particular, the focus of this work is to investigate whether active sampling techniques can alle-
viate the negative effects of causal ambiguity in state–action trajectories used in offline RL—without
necessitating any modifications to the learning objective. Algorithm 1 describes the procedure for
CQL, integrated with our proposed method for active sampling of state transitions. The modifications
from uniform sampling are highlighted in blue. As we noted in Section 1, causal confusion in policy
learning has been observed to occur due to insufficient exposure of a model to the rare scenarios that
make up the long tail of the dataset it is trained on. These data points are unknown in advance, and
we hypothesise that a good approach to finding them is to compute the epistemic uncertainty or the
loss of the training model of each point in the dataset. We will thus define a set of loss-based and
uncertainty-based acquisition functions, which we will use to perform active sampling, next.

Uncertainty-based Sampling. We are interested in sampling state transitions for which the learned
Q-network is uncertain about its predictions over the action seen in the data (aβ = πβ(s)) or its
own greedy action (a∗ = argmaxQ(s)). We model the epistemic uncertainty in the learned Q-
function by creating an ensemble model of Q-functions {Qθi}i and training each of them on identical
transitions across the ensemble members, with their own corresponding targets, {θ̄i}i, as proposed
in Ghasemipour et al. (2022). We can then use the variance of the Q-value estimates of the ensemble
as a measure of the epistemic uncertainty. However, the Q-values of different ensemble members
may have arbitrary numerical offsets (and still be equivalent) since they are trained by bootstrapping
their own value estimates. To address this, we estimate the uncertainty about an action’s value by
computing the variance of its advantage estimates over the ensemble, where the advantage of action
ai for a Q-learner is given by

Aπ(s, ai) = Qπ(s, ai)− V π(s) ≈ Qπ(s, ai)−
∑
a

[
Q(s, a) · eQ(s,a)∑

a′ e
Q(s,a′)

]
. (3)

The advantage function in RL represents a causal quantity assessing the relative effect of action ai on
the outcome Q for a given state s. The acquisition scores will then be the variance of the advantage
estimates: Var(Aπ(s, ai)). We consider two variants, Variance-greedy and Variance-data, referring
to whether the advantages are computed for the greedy actions (ai = a∗) or the dataset actions
(ai = aβ). To ensure a fair comparison, we will fix the ensemble size we use for the Q-network
across all the sampling schemes we try, including uniform sampling.
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Loss-based Sampling. We sample transitions based on their Temporal Difference error similar to
Prioritised Experience Replay (PER; Schaul et al. (2015)) and refer to this variant as TD-Error.

We discuss a causal interpretation of our active sampling approach in Appendix 1 and explain
how it relates to causal discovery of accurate treatment effects from offline data.

4.2. Computing Acquisition Scores

Algorithm 1 Conservative Q-Learning ( + active
sampling)

1: Initialise ensemble Q-function Qθ, nep=epochs,
dsz=dataset size, bsz=batch size, T=steps-per-
epoch.

2: for epoch e in {1, . . . , nep} do
3: for step t in {1, . . . , T} do
4: compute scores acqi over Dtrain =

[si, ai]
dsz
i=1 according to the acquisition func-

tions in Section 4.1
5: acqi =

acqi∑dsz
j=1 acqj

(normalise scores)

6: sample batch B = [si, ai, s
′
i, ri]

bsz
i=1 from

Dtrain ∼ multinomial(acq)
7: Train the Q-function on Dtrain using objec-

tive from Equation (2)
8: end for
9: end for

In practice, computing the acquisition scores
over all the transitions in the dataset can be
both expensive and redundant since high-error or
high-uncertainty points will likely stay high over
a short window of subsequent gradient steps.
Thus, we only recompute all the scores after
every n gradient steps and vary n as a hyper-
parameter in our experiments.

Later in Section 5.4, we will also explore a
scheme where scores are recomputed only over
sampled batches, as done in Prioritised Experi-
ence Replay (PER). This is an approximation
where a priority queue is maintained and the
priority of every data point is derived from the
TD-Error computed on it. In this case, the pri-
orities are only updated for a small subset of
points at every gradient step, since the acqui-
sition scores are only recomputed on the data
points in the sampled batch, potentially leading to many points in the replay buffer with stale scores.
We adopt the same implementation as that of PER with the scores for the priorities coming from the
TD-error and Variance estimates. We include further details about this procedure in the appendix. We
refer to the above two cases by appending -dataset and -batch to the names of the sampling schemes
to indicate that scores are recomputed for the entire data versus just the sampled batch respectively.

5. Experiments

In this section, we first describe the experimental setup and evaluation protocol (in Section 5.1). Next,
we introduce the different benchmark domains and present the results of the corresponding empirical
evaluations (in Sections 5.2 to 5.5).

5.1. Experiment Design

We focus on investigating the following questions through our experiments: (1) Can causal confusion
be consistently observed in offline RL agents when sampling transitions uniformly from a long-tailed
demonstration dataset? (2) Can active sampling based on a model’s predictive uncertainty, or its
loss, help in alleviating the effects of causal confusion? (3) To what extent does the quality of
predictive uncertainty estimates affect predictive performance and sample efficiency gains under
uncertainty-based active sampling?
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To answer these questions, we modify three reinforcement learning environments (MiniGrid,
Atari, and Procgen) to either include a realistic spurious correlate in the observations or bias the
sampling of episodes. The specific modifications ensure that a demonstration dataset collected in
these environments produces causally-confused agents when trained with an offline RL algorithm
with uniform sampling of the data. The modifications are described and motivated further in the
following sections.

Prior work on causal confusion, largely in the domain of imitation learning, has used a training
protocol where training is terminated once a model reaches a sufficiently low loss (de Haan et al.,
2019). The last checkpoint is then evaluated in the environment to report the achieved reward. This
procedure, however, does not capture the full picture and disregards certain practical considerations
of training neural networks—especially in the offline RL setting—for the following two reasons:

1. This approach cannot be adopted to offline RL as offline RL training does not lead to monoton-
ically increasing performance, and the Q-function starts to excessively optimise the conser-
vatism penalty after a certain point in training. Approaches to perform early stopping in offline
RL recommend termination based on statistics independent of the loss curves (Kumar et al.,
2020; Agarwal et al., 2020a).

2. Scenarios occurring in the long tail of a demonstration dataset for a task will appear less
frequently when episodes are sampled uniformly from the task environment for model evalua-
tion. In this case, computing the validation loss over a uniformly sampled test set or average
evaluation reward over uniformly sampled episodes will not accurately reflect the model’s
progress in resolving causal confusion in this environment.

To address these issues, we adopt two measures: First, we evaluate the reward at the end of
every epoch (as commonly done in offline RL) and continue training until the reward saturates. This
allows us to measure both whether active sampling can recover the rewards achieved by uniform
sampling in fewer steps and also whether it achieves a higher maximum reward. Second, we design
the evaluation environment episodes in a way that allows isolating the causally confused behaviour
and identifying whether causal confusion has been resolved. This amounts to doing a scenario-driven
evaluation for the toy environments in which we know what the spurious correlate is by constructing
all possible scenarios with and without the spurious correlate present. This process is described in
more concrete terms for the Traffic-World MiniGrid environment in Section 5.2.

We will now describe each benchmark environment and discuss the performance of the proposed
active sampling schemes in their respective sections.

5.2. Illustrative Example: Traffic-World

The autonomous driving literature cites many examples where models trained on large datasets
are very performant but exhibit causal confusion on the tail cases of their operational domain, for
instance: (1) self-driving agents stopping at pedestrian crossings regardless of whether a pedestrian
is present or not since the two often co-occur; (2) agents that simply try to cruise if they know their
current speed since expert driving datasets contain cruising behaviour in a large fraction of each
trajectory.

We build on the traffic gridworld environment proposed in (Lyle, 2021) (shown in the left panel
of Figure 1), where an agent (red triangle) starts at the leftmost point in a row behind randomly
initialised leading vehicles (blue circles), and needs to cross a traffic light to reach a goal location
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Figure 1: Traffic-World: Left Top: The leading vehicle is static causing the top-left tile to flash
yellow. Left Bottom: The agent is in front of a red light, and the top-left tile is not yellow since the
agent is not blocked by the leading vehicle. Right: Reward curves for agents trained on data not
exhibiting causal ambiguity (green) and data exhibiting causal ambiguity (others), i.e. data without
and with a spurious correlate respectively.

(green square) on the right side of the grid. We collect data such that the probability of the traffic
light turning red becomes lower as the agent approaches it, and so the data distribution contains:
(1) mostly episodes where the light is green throughout the episode, (2) some episodes where the
traffic light is red and the agent has to wait behind the vehicle in front (referenced here onward as the
leading vehicle) before the light turns green again, and (3) only a couple of episodes where the light
turns red with the agent at the front of the traffic queue.

In this setup, the agent could simply learn to follow the leading vehicle, instead of learning traffic
light rules. To test causal confusion explicitly here, we introduce a related spurious correlate: a
flashing yellow tile at the top left of the grid (emulating the brake lights on a leading vehicle), that
is yellow whenever the leading vehicle is stopped or blocked, and grey otherwise. The agent could
follow this as an indicator of whether to stop or go ahead, and this policy’s actions would be optimal
for 98% of the data points.

We now define four instances of this environment that constitute our evaluation set, and we
average the reward over these when reporting the results. The first three instances cover tail-cases,
and the last one covers the majority case of scenarios that occur in our 7000-episode dataset:

1. simple-green-with-tile: The agent is unobstructed; the traffic light is green; the tile flashes
yellow. This tests whether the agent relies on the tile to decide when to move.

2. simple-red-no-tile: The agent is unobstructed; the traffic light is red; the tile does not flash
yellow. This tests whether the agent relies on the tile to decide when to stop.

3. traffic-light-switches-with-tile: The agent starts behind traffic; the traffic light switches to red
for some time steps when the agent reaches it; the tile flashes according to the leading vehicle.

4. always-green-with-tile: This is a trivial episode with traffic where the agent can simply reach
the goal without needing to navigate a red light since it is always green.
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Figure 2: (Maze) Rewards curves of different agents trained on a skewed dataset containing 6000
episodes with a fixed goal at the top-right and 200 episodes with a randomly sampled goal in Maze.
We see that the agents trained with uniform sampling and active sampling perform similarly on the
fixed goal evaluation environment (right), but the active sampling variants achieve a higher reward
in the environments with randomly sampled goals (left). This verifies that the model is not just
performing well in one of the two kinds of environments and the reason behind the lower performance
of uniform sampling, in this case, is causal confusion about the location of the goal.

Figure 1 shows the evaluation curves of CQL agents trained with uniformly-sampled data, with
and without the yellow tile present in images in the dataset. We see that the performance of the
former agent degrades and it takes 4× the number of gradient steps to converge to the solution
of the latter agent which is trained without the spurious correlate present. Also shown are the
active sampling variants (TD-Error, Variance-greedy and Variance-data) trained with the spurious
yellow tile, which perform very similarly to uniform sampling without the spurious correlate present.
From the plots, we see that for the TD-error variant there is high variance across seeds; thus the
inter-quartile mean of the average rewards across seeds is lower than the maximum achievable reward,
although good solutions were found for some random seeds very early in training. We also see that
the Variance-based versions recover a good solution quickly.

5.3. Assessing Generalization in Offline Reinforcement Learning: Procgen

The Maze environment in Procgen (Cobbe et al., 2019) defines a navigation task where the agent
starts at the bottom left in the maze and receives a reward of +10 upon successfully reaching the
goal which is sampled at any valid location in the maze. Langosco et al. (2022) recently showed that
an agent trained on a series of environments with the goal always at the top-right will be causally
confused about the source of the reward and will still navigate to the top-right even when the goal is
sampled elsewhere.

We generate a skewed mixture dataset containing mostly episodes where the goal is sampled at the
top-right, and a few episodes where the goal is sampled randomly. Further details about the collection
are described in the Appendix. Figure 2 shows the evaluation performance of random and active
sampling agents trained on this mixture dataset. The left and right plots show the performance when
the goals are sampled randomly and from the top-right in the evaluation environment, respectively.
We observe that active sampling recovers the maximum performance achieved by uniform sampling
in half the number of training steps. On this benchmarking task, the gains from active sampling are
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Figure 3: Comparison of active and uniform sampling agents on Enduro. On the left is the comparison
in the -dataset case, and on the right is the case with -batch sampling where scores are incremented
and updated based on the sampled batch. We see an increase in the number of gradient steps it takes
the -batch case to reach the highest possible reward.

largely in terms of training efficiency since both active and uniform sampling variants saturate to
similar final rewards in the environment with randomly sampled goals. We plot the computation
time for the uniform and active sampling variants in Figure 8 in the appendix and note that variance-
based sampling reaches the highest-score achieved by uniform sampling in lesser wall-clock time.
Qualitative evaluations show that uniform sampling agents which achieve a lower reward still
successfully navigate to the top-right corner of hard mazes, and are therefore only confused about
the location of the goal.

It is important to note that if the evaluation environments considered here had followed a
distribution of scenarios similar to the training data distribution, then we would have observed
saturation of the evaluation reward somewhere between 10,000–20,000 gradient steps. This is
because the evaluation performance on the environments with the fixed goal, which occurs much
more frequently, saturates at this point. An active sampling model on which early-stopping would
be performed based on the validation loss, would then have fared much better on the tail case of
randomly-sampled-goal episodes (and done similarly well otherwise), as compared to the model
trained with uniform sampling of data. This shows why the experimental design choices we adopted
in this work—scenario-driven evaluation and termination of training based on rewards—are crucial
to appropriately evaluating causal confusion in offline RL agents.

5.4. Causal Confusion in the ALE Benchmark

We are now interested in evaluating our active sampling baselines on a larger pre-existing dataset with
more realistic noise and variations. Prior work in imitation learning (Park et al., 2021; de Haan et al.,
2019) has attempted to simulate causal confusion in specific Atari game-play datasets by modifying
images to display the previous action taken by the agent. This kind of causal confusion is inspired by
robotics datasets that have trajectories with highly correlated (and thus predictable) sequences of
actions, because embodiment dictates that an agent’s state does not change too drastically between
subsequent timesteps.

However, when we trained uniform sampling CQL agents with and without the previous action
on the images for 20 Atari games, only a select few games actually exhibited causal confusion of this
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Figure 4: Reward curves of the larger (left) and smaller (right) ensemble training when sampling on
the basis of the uncertainty of either one: of the speed of convergence depending on the quality of
uncertainty estimation.

Fraction of
data sub-sampled

Reward
(Uniform)

Reward
(Variance-data)

Reward
(Variance-greedy)

Reward
(TD-Error)

0.5 470 780 560 560
0.7 570 850 810 820
0.9 660 1000 890 980

Table 1: Sub-sampling experiment on the Enduro dataset.

kind. We pick Enduro since we can consistently observe both a convergence speed degradation and
final reward degradation upon adding the previous action to the image. Enduro is a car racing game
where an agent needs to overtake cars (receiving a positive reward for each car overtaken) and drive
along a winding road, with a limited number of collisions allowed.

Figure 3 shows our proposed active sampling baselines compared to uniform sampling in the
following two cases that we previously discussed in Section 4.2: (1) -dataset case when we recompute
the scores across the dataset every few gradient steps and (2) -batch case when the scores are only
recomputed for the sampled batch and updated in a priority queue.

Also shown is the uniform sampling baseline trained without the previous action displayed
on the image (data without causal ambiguity). We note that all active sampling variants perform
significantly better than their uniform sampling counterpart when both are trained with the spurious
correlate (i.e., with the previous action displayed on the image). This discrepancy is observed in
terms of convergence time to their best performance and in terms of the highest reward achieved,
which is approximately 40 percent higher than the reward achieved by uniform sampling. While
both TD-Error and Variance-based variants achieve a similar highest score, TD-error sampling takes
twice the number of forward passes (and thus twice as long) to compute the acquisition score (i.e.,
the TD-error) in the -dataset case.

We further observe that when we go from the -dataset to the -batch setting (i.e., updating scores
only for the sampled batch, Figure 3, right), the final reward achieved by the active variants is only
slightly lower than previously. However, in this setting, all methods require twice the number of
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gradient steps to obtain this reward since the acquisition scores in the -batch setting are stale for
many data points. A relevant line of future work will be to investigate how to maintain the sampling
quality without needing to recompute all scores as in the -dataset case.

We also conducted an experiment where we uniformly sub-sample decreasing fractions of the
original dataset and see that even the active sampling variants trained with 70% of the data outperform
the uniform sampling variants trained on all the data. This suggests that naively acquiring more data
is unlikely to resolve causal confusion if the data distribution remains skewed. We present these
results in Table 1.

5.5. Effect of Predictive Uncertainty on Active Sampling and Causal Confusion

To better understand the improvement in convergence speed of active sampling vis-‘a-vis uniform
sampling, we train CQL with a smaller (n = 3) and a larger (n = 10) ensemble of Q-networks, all
else equal, and sample identical transitions based on the predictive uncertainty of only either the
smaller or the larger ensemble. This experiment setup allows us to isolate the effect of the predictive
variance on active sampling and therefore on the observed reduction in causal confusion.

Figure 4 shows the training curves for both ensembles, and we find that when transitions are
sampled according to the predictive uncertainty of the larger ensemble, even the smaller ensemble
converges faster (albeit to a smaller value than that achieved by the larger ensemble). Similarly,
when points are sampled according to the predictive uncertainty of the smaller ensemble, the larger
ensemble converges to its highest reward more slowly. This result implies that improved predictive
uncertainty estimation, for which we use the size of the ensemble as a proxy, improves the ability of
active sampling to identify samples that break spurious correlations in the data and reduce causal
confusion. We provide a further discussion of these observations in Appendix 4.

6. Conclusion

In this paper, we studied how to alleviate causal confusion in offline RL. We designed uncertainty-
and loss-based data sampling baselines to selectively sample transitions for training, and found
evidence that active sampling can recover a less causally-confused model in significantly fewer
training steps as compared to uniform sampling. In future work, we hope to scale the analysis
performed in this paper to larger benchmark environments, with sources of noise in the reward and
transitions, to further corroborate our findings. Such an analysis would help further distinguish the
quality of solutions found through loss-based and uncertainty-based active sampling since noisy
transitions can have irreducible loss. Additional promising avenues for future work include studying
the usefulness of active sampling in the regime of offline-to-online RL-based fine-tuning, as well as
extending the analysis presented in this paper to environments with continuous action spaces.
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1. Conditional Average Treatment Effect Estimation from Causally Ambiguous Data

In this section, we discuss a causal interpretation of our approach which employs active sampling as a
tool for causal discovery. We start by describing quantities of interest in the field of causal inference
and their connection to Q-values (and derived quantities) used in RL.

Treatment-effect estimation, where the goal is to estimate the effect of a treatment T ∈ T on
the outcome Y ∈ Y for individuals described by covariates X ∈ X , is a central problem in causal
inference. In particular, we may wish to estimate the expected difference in potential outcomes
for individuals when subjected (t = 1) or not subjected (t = 0) to a treatment t, measured by the
Conditional Average Treatment Effect (CATE, Abrevaya et al. (2015)), defined as

τ(X) ≡ E[Y | x, t = 1]− E[Y | x, t = 0]. (1.1)

Here the treatment t is often considered to be a binary variable, but the definition can be extended
to the multivariate case with continuous or discrete values. Realizations of the random variables
X,T, Y are denoted by x, t, y, respectively. The set of assumptions needed to ensure identifiability
of the CATE estimator are listed in (Rubin, 1974).

To frame the problem of disambiguating the effect of different actions (i.e., treatments t ∈ T )
in a given state (i.e., a set of covariates x ∈ X ), we frame estimation of the advantage functions
A(s, a) = Q(s, a) − V (s) in reinforcement learning as CATE estimation (Pan et al., 2021). In
particular, the outcome Y corresponds to the Q-function (i.e., the expected return) for a given
state–action pair, and we can express the corresponding CATE estimator as

E

[ ∞∑
t=0

γtr (st,at) | st = s, at = a

]
− E

[ ∞∑
t=0

γtr (st,at) | st = s

]
= Q(s, a)− V (s) = A(s, a),

(1.2)

which indicates the advantage of executing an action a at state s as opposed to any other alternative
action. With this connection established, we can now cast active sampling of data points to estimate
a value or advantage function, as a sequential process of accurately estimating treatment effects.

2. Evaluation Metrics

We present the reward curves directly in most of our experimental reporting. The curves are computed
by taking the inter-quartile-mean (IQM) across seeds as proposed by Agarwal et al. (2021). We
report the number of seeds used for all experiments in Appendix 7.

Offline RL training performance is known to be non-monotonic, unlike supervised learning
where the accuracy (or loss) increases (decreases) and then saturates. Often the reward curves start to
decrease after a period when overfitting to the data-action values (through the conservatism penalty)
starts to happen. Since we define deterministic benchmark environments testing all the tail-scenarios
in the case of Traffic-World and Maze experiments, we can consider any point on the curve where
the model solves the highest number of environments (achieves the highest reward) as the point
of convergence (as opposed to it being a noisy spike due to stochastic evaluation). This is similar
to taking the max-reward checkpoint as done in (Agarwal et al., 2020b). However, to ensure that
the solutions learned by any method are recoverable, we want to be able to get a good checkpoint
from the model without needing to evaluate it too often. Thus we consider a method as having
achieved higher reward than other methods at any point in time if it maintains this gap for at least two
subsequent post-epoch evaluations. This is akin to taking a windowed-max over the reward curves.
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3. Implementation

All our environments use a discrete action space. Therefore we build our method on top of the
double-DQN implementation similar to the original CQL paper. As stated in Equation (2), we use
ensembles of Q-networks, and at evaluation time, we average the Q-value outputs of the ensemble,
and select the action with the maximum Q-value. In other places where we need to do inference (for
instance: to compute Q-values for the conservative loss) we take the mean across the ensemble.

A design choice we make is the network initialisation when we start to do active sampling: the
uncertainty encoded by a random network at the start of training can be very inaccurate and biased
towards some subset of the data. We instead train with uniform sampling for an epoch and then
start active sampling second epoch onwards. As expected, we see that a partially trained ensemble
encodes better uncertainty compared to a randomly initialised one and that bigger ensembles encode
better uncertainty than smaller ones when the network is not trained enough with uniform sampling
at the start, as seen in Figure 7.

4. Further Analysis

Figure 5: (Traffic-World) Histogram of the advan-
tage function variance estimates for the data action
plotted for all transitions, overlayed by the scores
for one tail case’s samples. The tail case we con-
sider here comprises state-action pairs where the
top-left tile flashes yellow but the data-collecting
policy still moves one step ahead ignoring the
tile, since there is space to move towards the goal
without getting a negative penalty or triggering an
episode termination. We can see that these sam-
ples fall in the 98th percentile of all points.

Uncertainty Histogram: In Figure 5, we plot
a histogram for the computed Variance-data
scores after one epoch of training with uniform
sampling on the Traffic-World benchmark. We
overlay the scores for a specific tail case over
the scores for the entire dataset. We can verify
that samples from the tail-case fall in the higher
percentile of variance scores.

Ensemble Uncertainty over a longer pe-
riod of training: In addition to the figure in
the main paper analysing the quality of uncer-
tainty estimation on the Atari benchmark, we
plot in Figure 7 the training curves of two ensem-
bles when they’ve been initialised with a longer
period of uniform sampling at the start. We
see that the gap between the informative-ness
of samples fetched based on their uncertainties
reduces (as compared to Figure 4). The larger
ensemble’s uncertainty still leads to quicker con-
vergence, however, than when both ensembles
are trained using the smaller ensemble’s uncer-
tainty for data-sampling.

Q-value divergence and Episodic Sam-
pling to ensure better propagation of TD-
Error: Another observation we made was related to active sampling results in the case of benchmarks
with short episodes (nsteps ∼ 20 − 30) and sparse rewards, in our case Traffic-World and Maze.
Q-learning is trained through bootstrapping where we minimise the TD-error which involves esti-
mating the Q-values at successive states across transitions in a trajectory. Additionally, the CQL
objective has the gap-expanding property because the conservatism penalty tries to push Q-values
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Figure 7: Reward curves of the larger (left) and smaller (right) ensemble training when sampling
on the basis of the uncertainty of either one: of the speed of convergence depending on the quality
of uncertainty estimation. Here, the difference is that both ensembles start active sampling from
an initialisation that is trained for longer with uniform sampling. We see a less drastic gap in
convergence between the two samplers, as compared to the main paper’s Figure 4. This is expected
since the uncertainties should get more informative (up to a point) as we train for longer with random
sampling.

of different actions at a state apart (pushing up the data-action value and pushing down others to
some extent). Sometimes in the case of repeated sampling of a particular transition tuple, there is a
potential divergence of Q-values of the nearby (preceding and following) state-action pairs. This can
be seen as an explosion of Q-values in the training metrics and can be partially resolved by gradient
clipping. We only observed this in the case of TD − Error and V ariance− data variants.

Figure 6: (Traffic-World) Two agents trained with
and without episodic scores for TD-Error-based
active sampling of causally ambigous data.

One experiment we tried to address the
above concern (with some success) was that
of episodic sampling, where we use a heuristic
to convert individual transition-wise acquisition
scores to scores over entire episodes (for exam-
ple taking the maximum acquisition score over
transitions in an episode). This kind of episodic
sampling turns out to give much more stable
training curves but involves additional hyperpa-
rameters and heuristics. The reasoning for it’s
success is likely related to the motivation of al-
gorithms like emphatic-TD (Rupam Mahmood
et al., 2015), Reverse Experience Replay (RER)
(Rotinov, 2019). In these works, they propose
not just prioritising transitions with high TD-
error, but also increasing the priority of transi-
tions preceding these ones in the priority queue,
since these transitions will have informative TD-updates in the subsequent time-steps. We show
the reward curves with episodic and without episodic active sampling of data corresponding to the
experiment in Traffic-World with the spurious correlate present, in Figure 6.
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5. Computational Cost

Figure 8: Timing Comparison for different sam-
pling schemes on the Procgen-Maze benchmark
plotted as reward achieved versus wallclock time
in minutes.

Figure 8 shows a scatter plot for the wall-clock
times to achieve highest reward across differ-
ent active and uniform baselines (labelled as
TD-Best, Variance-Best and Random-Best) cor-
responding to the results for the Maze environ-
ment. It also plots the time needed for active
sampling variants to achieve the best reward that
uniform sampling achieves (denoted as Variance-
par-Random and TD-par-Random in Figure 8).
We note that we use a very simple implementa-
tion of active sampling in our work which can be
optimised significantly by paralleling the compu-
tation of acquisition scores over the dataset. This
will make the trade-off between performance
and training time even more favourable towards
approaches that do active sampling.

6. Data Collection

Traffic-World. To collect data for Offline RL, we trained a PPO agent on a slightly modified version
of the Traffic-world environment, with reward shaping on the environment (Lyle, 2021), to incentivise
the agent to reach the goal since this is a hard exploration environment (there is the potential to
receive many negative rewards before receiving a positive reward, and without reward shaping the
PPO agent just learns to toggle in-place till the episode ends to avoid negative penalties). Maze. We
use the Impala-based PPO agent trained in (Langosco et al., 2022) for 200M steps to collect the
expert trajectories on 6000 episodes of episodes with randomised goals and 200 episodes of episodes
with fixed goals.

7. Hyperparameters

For all benchmarks, we performed a grid-search around the hyperparameters from CQL (Kumar
et al., 2020). We found the combination of parameters that matches previously reported scores for
the Procgen and Atari benchmarks and achieves the highest score on the Traffic-World benchmark,
when using uniform sampling with CQL. For active sampling, we used the same hyperparameters as
for uniform sampling (batch size, learning rate, α). Additional parameters related to active sampling
are: (1) n: the number of gradient steps we take before we recompute acquisition scores on the data.
Thus, n− 1 is the number of gradient steps for which the scores remain stale. (2) the ensemble size
which we keep constant across the active and active sampling variants for a fair comparison.

For the -batch case of incrementally computed scores, the hyper-parameters involved are tempera-
ture and increment coefficients for importance weighting of gradients (β and inc), the temperature α
for the acquisition scores and epsilon ϵ (the additive constant for the scores to ensure no data-point’s
priority is equal to zero and thus never sampled). We used the same values as those used in the
original PER implementation (Schaul et al., 2015), and set β and inc to zero, as we found training to
work better without importance weighting of gradients. Tables 2 to 4 list out the final values chosen
for reporting results across the three benchmarks, along with the values used for the grid search.
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Hyperparameter Value Search
α (CQL) 1 1, 4
learning rate 5× 10−3 5× 10−4 , 1× 10−3 , 5× 10−3

batch-size 512 256, 512, 1024
n (steps before score recomputation) 4 2,4,8,16
gradient clipping norm 5 1,3,5,7
target update interval 4 1, 4, 16, 32
ensemble size 3 3,6
seeds 7

Table 2: Traffic-World experiments.

Hyperparameter Value Search
α (CQL) 1 1, 4
learning rate 1× 10−3 5× 10−4 , 1× 10−3 , 5× 10−3

batch-size 2048 1024, 2048
n (steps before score recomputation) 8 4, 8, 16
gradient clipping norm 5 1,3,5,7
target update interval 50 20, 50, 100
ensemble size 5 3, 5
seeds 9

Table 3: Maze experiments.

Hyperparameter Value Search
α (CQL) 1 1, 4
learning rate 5× 10−3 5× 10−4 , 1× 10−3 , 5× 10−3

batch-size 2048 1024, 2048
n (steps before score recomputation) 8 8, 16
gradient clipping norm 7 1,3,5,7
target update interval 100 10, 50, 100, 1000
ensemble size 5 3, 5, 10
seeds 9

Table 4: Enduro experiments.
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