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Abstract
Conditional independence provides a way to understand causal relationships among the variables
of interest. An underlying system may exhibit more fine-grained causal relationships especially
between a variable and its parents, which will be called the local independence relationships. One of
the most widely studied local relationships is Context-Specific Independence (CSI), which holds in
a specific assignment of conditioned variables. However, its applicability is often limited since it
does not allow continuous variables: data conditioned to the specific value of a continuous variable
contains few instances, if not none, making it infeasible to test independence. In this work, we
define and characterize the local independence relationship that holds in a specific set of joint
assignments of parental variables, which we call context-set specific independence (CSSI). We then
provide a canonical representation of CSSI and prove its fundamental properties. Based on our
theoretical findings, we cast the problem of discovering multiple CSSI relationships in a system as
finding a partition of the joint outcome space. Finally, we propose a novel method, coined neural
contextual decomposition (NCD), which learns such partition by imposing each set to induce CSSI
via modeling a conditional distribution. We empirically demonstrate that the proposed method
successfully discovers the ground truth local independence relationships in both synthetic dataset
and complex system reflecting the real-world physical dynamics.
Keywords: Context-Specific Independence, Local Independence, Causal Discovery

1. Introduction

Discovering the causal relationships in a system is an important and challenging problem in many
areas of scientific research such as social science (Sobel, 1995), biology (Shipley, 2016), and
economics (Angrist et al., 1996; Angrist and Pischke, 2008; Imbens and Rubin, 2015; Banerjee
et al., 2016; Imbens, 2020). There have been many causal discovery algorithms finding causal
relationships given observational data (Spirtes et al., 2000; Chickering, 2002; Hoyer et al., 2008;
Shimizu et al., 2006; Zhang et al., 2011; Zheng et al., 2018; Zhu et al., 2019). These methods
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Figure 1: (a) Causal graph in Example 1. (b, c) CSI can represent the local independence of Y and
X2, but not the other. In contrast, CSSI is able to represent both. (d) Augmented causal
graph with PIV Z added in Example 4. (e, f) PIV representing CSSIs for each context set.

often exploit conditional independence either explicitly (constraint-based methods) or implicitly
(score-based or gradient-based).

A system often exhibits more fine-grained relationships between a variable and its parents, i.e., a
local independence relationship. For example, when pushing an object on the ground, it will move
only when a force exceeds the friction which is determined by the mass and the ground. Context-
specific independence (CSI) (Poole and Zhang, 2003; Boutilier et al., 2013) is the independence
that holds in a certain conditioning value (i.e., context) as opposed to any value of the conditioned
variables. It has been shown that such independence leads to more efficient probabilistic inference by
exploiting the underlying local structure (Poole, 1998; Poole and Zhang, 2003; Gogate and Domingos,
2010; Van den Broeck et al., 2011; Dal et al., 2018). Further, it allows the identification of causal
effects, which would not be possible without CSI relationships (Tikka et al., 2019; Robins et al.,
2020).

Despite the fact that many real-world scenarios involve continuous variables, most prior works
on local independence relationships assumed that variables are discrete. This is partly due to the
notion of CSI that is inherently suited for discrete variables as conditioning on the specific value of
a continuous variable is infeasible, where the resulting subset of data would be practically empty.
Hence, it is non-trivial to explore how local independence for continuous variables can be empirically
discovered and utilized in probabilistic or causal inferential tasks.

Consider a system as an example consisting of three observed variables X1, X2, Y , and an
unobserved one U . We describe the system using a structural causal model (SCM) (Pearl, 2009;
Peters et al., 2017). Let X1, X2 follow a uniform distribution between 0 and 1, and U follow a
standard Gaussian distribution. Further, let Y be determined as Y = X1 + U if X1X2 < 1/2 and
Y = X2 + U otherwise. Focusing on the observable variables, while Y depends on both X1 and X2

overall (Fig. 1(a)), Y depends only (i) on X1 under a certain condition and (ii) on X2, otherwise.
Since X1 < 1/2 implies the condition X1X2 < 1/2 and Y being the function of X1 and U , it can be
represented as CSI (Fig. 1(b)). On the other hand, CSI cannot capture the other local independence
where Y is determined only by X2 and U since Y and X1 are always dependent given any assignment
of X2.

Against this background, we define context-set specific independence (CSSI), a generalized
notion of local independence where conditional independence holds in a certain context set, a set
of joint assignments of the variables. We characterize context-set specific independence in order
to uncover CSSIs for continuous variables, which is more challenging due to an infinite number of
context sets. Our characterization leads to the design of NCD (Neural Contextual Decomposition) to
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find the partitions of the joint outcome space where each partition set induces a CSSI. Our approach
is based on approximating a conditional distribution for each partition given a subset of parents. For
instance, based on the above example, our method learns two partitions of the Cartesian product of
the domains of X1 and X2, where each partition is flexibly modeled as P̂ (Y |X1) and P̂ (Y |X2).

Our contributions are summarized as follows. (i) We introduce the notion of context-set specific
independence (CSSI), a new class of local conditional independence relationships. This generalizes
two well-known local independence, CSI and partial conditional independence (PCI), and permits
continuous conditioned variables. (ii) We characterize context-set specific independence by relating
possible CSSIs arisen from a given distribution. We examine a canonical representation of CSSIs
and provide a sufficient condition under which a unique CSSIs exists. These characterizations lead to
defining contextual decomposition, a way to understand an entire group of CSSIs presenting in a
given dataset. (iii) We devise neural contextual decomposition, a simple and effective method for
finding a contextual decomposition without directly testing for individual local independence. It
utilizes an auxiliary variable (partition indicator variable) used for training of a neural network for
context decomposition. Empirical evaluations on a synthetic dataset and Spriteworld demonstrate the
effectiveness of the proposed method in recovering local independence relationships.

2. Preliminaries

Throughout this paper, we use capital letters for random variables and small letters for their assign-
ments. Bold letters denote the set of random variables or its assignments. Calligraphy letters can be
the domain of corresponding variables or complex mathematical objects.

2.1. Structural Causal Model

We adopt a structural causal model (SCM) (Pearl, 2009) as a causal framework to understand
generated data. An SCMM is defined as a tuple ⟨V,U,F, P (U)⟩, where V = {V1, · · · , Vd} and
U are a set of endogenous and exogenous variables, respectively. F = {f1, · · · , fd} is a set of
functions determining each endogenous variable, i.e., Vj ← fj(Pa(j),Uj) where Pa(j) ⊆ V\{Vj}
is a parent of Vj and Uj ⊆ U. We may use variable Vi and its index i interchangeably. Vj
is the outcome space of each variable Vj . In this work, we restrict to a Markovian model1 and
assume that an SCM satisfies structural minimality (Pearl, 2009; Peters et al., 2017), which asserts
that j ∈ Pa(i) if and only if there exist two values for j that lead to different values for i, i.e.,
fi(vj ,vPa(i)\{j},ui) ̸= fi(v

′
j ,vPa(i)\{j},ui) where vj , v

′
j ∈ Vj and vPa(i)\{j} ∈ VPa(i)\{j}. An

SCM M induces a causal graph G = (V,E), which is a directed acyclic graph (DAG), where
V = {1, . . . , d} and E ⊆ V ×V are the set of nodes and edges, respectively. If i ∈ Pa(j) inM,
then a directed edge (i, j) is in E. In the language of SCM, each node i corresponds to a random
variable Vi and each edge (i, j) denotes a direct causal relationship from Vi to Vj .

2.2. Local Independence Relationship of Discrete Variables

As described earlier, in many cases, the causal mechanism exhibits fine-grained independence
relationships, which do not hold in general but only under certain conditions, i.e., local independence.

1. Conditional independence is a statistical notion and would be irrelevant to whether the model is Markovian or
semi-Markovian. However, Markovian models will allow clearer interpretation of context-specific independence with
respect to the functional form of the target variable irrespective of regimes, i.e., observational or interventional.
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To begin with, we first provide the definition of context-specific independence (CSI) and partial
conditional independence (PCI). We adopt the definitions of CSI and PCI from prior works (Boutilier
et al., 2013; Pensar et al., 2015, 2016) for the relationship between a variable and its parents. For
the definitions of CSI and PCI, variables are assumed to be discrete. Let X be a non-empty set of
parents of Y and XA,XB be non-empty partitions of X, i.e., X is disjoint union of XA and XB .

Definition 1 (Context-Specific Independence (CSI)) Y is said to be contextually independent of
XB given the context XA = xA if P (y | xA,xB) = P (y | xA), holds for all y ∈ Y and xB ∈ XB

whenever P (xA,xB) > 0. This will be denoted by Y ⊥⊥ XB | XA = xA.

Definition 2 (Partial Conditional Independence (PCI)) Y is said to be partially conditionally
independent of XB in the domain DB ⊆ XB given the context XA = xA if P (y | xA,xB) =
P (y | xA,x

′
B), holds for all y ∈ Y and xB,x

′
B ∈ DB whenever P (xA,xB) > 0 and P (xA,x

′
B) >

0. This will be denoted by Y ⊥⊥ XB | DB,XA = xA.

PCI is a more fine-grained notion than CSI and, thus, PCI does not imply CSI: P (y | xA,xB) =
P (y | xA,x

′
B) for all xB,x

′
B ∈ DB is not equivalent to P (y | xA,xB) = P (y | xA). Further

discussions of the related works on local independence relationships are provided in Sec. 6 and ap-
pendix A.1.

3. Compactly Representing Local Independence of Continuous Variables
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Figure 2: Example 1.

Our goal is to find such local independence relationships in a system
that may contain continuous variables. The information about local
independence relationships of continuous variables can also be leveraged
in various tasks as demonstrated in the case of discrete variables. Given
that a naive generalization of CSI or PCI to continuous variables seems
practically implausible, we first define an alternative notion of local
independence, which we call context-set specific independence (CSSI).
Then, we characterize CSSI and describe how it can be equipped within
the framework of SCM. All omitted proofs can be found in the Appendix.

3.1. Local Independence Relationship over Continuous Variables

Here, we focus on a causal mechanism of a target variable Y and its parents X = {X1, · · · , Xd}, i.e.,
SCMM = ⟨V,U,F, P (U)⟩ where {X1, · · · , Xd, Y } ⊆ V is a set of continuous random variables
and Y = f(X, U). We denote XA = {Xi | i ∈ A} where A ⊆ Pa(Y ) = {1, · · · , d}. Similarly,
XAc = {Xi | i ∈ Ac} where Ac = Pa(Y ) \A. Throughout the paper, we assume strictly positive
densities. We first define a context-set specific independence (CSSI).

Definition 3 (Context-Set Specific Independence) Let X = {X1, · · · , Xd} be a non-empty set of
the parents of Y in a causal graph, and E ⊆ X be an event with a positive probability. E is said
to be a context set which induces context-set specific independence (CSSI) of XAc from Y if
p (y | xAc ,xA) = p (y | x′

Ac ,xA) holds for every (xAc ,xA) , (x
′
Ac ,xA) ∈ E . This will be denoted

by Y ⊥⊥ XAc | XA, E .
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CSSI extends CSI and PCI in the sense that the independence holds in a set of conditioned values
in CSSI since they consider a point-based condition. We revisit the earlier example to illustrate
how CSI, PCI, and CSSI (Defs 1 to 3) represent the local independence relationships in the system
(insufficiency results for CSI and PCI in representing Example 1 is depicted in Appendix A.1.)

Example 1 Let X1, X2 be a uniform random variable defined on [0, 1], s.t. X1, X2 ∼ Unif [0, 1]
and U be an exogenous variable. Let Y be:

Y =

{
X1 + U if X1X2 < 1/2,

X2 + U if X1X2 ≥ 1/2.

Let E = {(x1, x2) | x1x2 < 1/2}. Then, Y ⊥⊥ X2 | X1, E and Y ⊥⊥ X1 | X2, Ec hold. On the other
hand, Y ̸⊥⊥ X1 | X2 = c for any c.

As described earlier, we focus on the discovery of local independence (i.e., CSSI) of continuous
variables and henceforth assume variables are continuous. In a case where the variables are discrete,
CSSI can be discovered by first (i) discovering PCI relationships and then (ii) integrating them (see
Appendix A.1 for the detail). We now introduce important properties of CSSI.

Proposition 4 (CSSI Entailment) Suppose a CSSI relationship Y ⊥⊥ XAc | XA, E holds. Then,
the following CSSI relationships also hold:

(i) Y ⊥⊥ XBc | XB, E for any B ⊇ A, (ii) Y ⊥⊥ XAc | XA,F for any F ⊆ E .

Due to such implications, we are interested in CSSI with minimal conditioned variables.

Definition 5 A CSSI of the form Y ⊥⊥ XAc | XA, E is said to be regular if there does not exists any
B ⊊ A such that Y ⊥⊥ XBc | XB, E holds. Then, we say XA to be a local parent set of Y in E .2
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Figure 3: Example 2.

Among the CSSIs with the same context set, the regular CSSIs are
the most informative, in the sense that the set of the conditioned variables
cannot be further reduced. We say a CSSI is trivial if A = Pa(Y ) (i.e.,
Ac = ∅ and X = XA), since it trivially holds for any E ⊆ X . A trivial
CSSI on E = X is indeed regular. In general, regular CSSI may not be
unique on the given context set. We show the non-uniqueness of local
parent sets by an example below.

Example 2 Let X1, X2, X3 ∼ Unif [0, 1] and U be an exogenous vari-
able. Let Y be:

Y =


X3 + U if X1, X2 < 1/2,

X3 + 2 · U if X1, X2 ≥ 1/2,

X1 +X2 +X3 + U otherwise.

Let E1 = {x | x1, x2 < 1/2}, E2 = {x | x1, x2 ≥ 1/2}. Then, regular CSSIs Y ⊥⊥ X12 | X3, E1 and
Y ⊥⊥ X12 | X3, E2 hold. Also, the following regular CSSIs hold on E1 ∪ E2:

Y ⊥⊥ X1 | X23, E1 ∪ E2 and Y ⊥⊥ X2 | X13, E1 ∪ E2.
2. We use paE and PaE(Y ) to denote the local parent set of Y in E , i.e., paE = XA and PaE(Y ) = A.

5



HWANG KWAK SONG ZHANG LEE

In the example above, there exist two distinct regular CSSIs on E1 ∪ E2. If the local parent set
is not unique on the given context set, discovering the local parent set would yield an inconsistent
result. Thus, we explore a sufficient condition that guarantees the uniqueness of the local parent set.
We now provide an intersection property of CSSI, which will be used to derive a sufficient condition.

Proposition 6 (Intersection Property of CSSI) Suppose E ⊆ X is convex. If CSSI relationships
Y ⊥⊥ XAc | XA, E and Y ⊥⊥ XBc | XB, E hold, then Y ⊥⊥ X(A∩B)c | XA∩B, E hold.

In Example 2, we cannot derive Y ⊥⊥ X12 | X3, E1 ∪ E2 from the two regular CSSIs on E1 ∪ E2
as E1 ∪ E2 is not convex. We now introduce a sufficient condition that guarantees the uniqueness of
regular CSSIs given a context set E .

Theorem 7 (Uniqueness of Local Parent Set) Suppose E ⊆ X is convex. There exists a unique
A ⊆ Pa(Y ) such that the regular CSSI relationship Y ⊥⊥ XAc | XA, E holds.

Proof Suppose regular CSSIs Y ⊥⊥ XAc | XA, E and Y ⊥⊥ XBc | XB, E hold for some A and B.
By Prop. 6 and the convexity of E , (Y ⊥⊥ X(A∩B)c | XA∩B, E) holds true. Due to the minimality
(i.e., regular), A ∩B cannot be a proper subset of A nor B. Hence, A = B = A ∩B.

This implies that one may devise a conditional independence test or causal discovery algorithm
to find the (unique) local parent set on the convex subset of data (e.g., a rectangular E = [a1, b1]×
· · · × [ad, bd] ∈ Rd or a ball E = {x | ∥x − x0∥2 ≤ r}). If the subset of data is non-convex, the
local parent set may not be unique,3 and thus the results may not be valid without any additional
assumptions. We provide a more general condition for Prop. 6 and Thm. 7 in Appendix B.

4. Discovering Local Independence Relationships by Learning the Partition

We investigate the representation and discovery of multiple CSSIs in a system. To compactly
represent CSSIs, we introduce a decomposition of the parents’ outcome space, where each partition
corresponds to a CSSI-inducing context set. Then, we transform the finding of such decomposition
as a learning problem involving an auxiliary variable representing the decomposition. Finally, we
develop a neural approach to learning the decomposition via the auxiliary variable.

4.1. Representing CSSIs in a System as a Partition

We have seen through examples that a system may exhibit multiple CSSIs. We define a canonical
notion of CSSI in order to examine a compact representation of CSSIs.

Definition 8 A CSSI relationship Y ⊥⊥ XAc | XA, E is canonical if there does not exists any F ⊆ E
such that Y ⊥⊥ XBc | XB,F and B ⊊ A.

By definition, the canonicality of a CSSI implies its regularity. Canonical CSSIs are the most
fine-grained ones since any subset of the context set also entails the same regular CSSI relationship.
In Example 2, CSSI relationship Y ⊥⊥ X1 | X23, E1 ∪ E2 is regular but not canonical since
Y ⊥⊥ X12 | X3, E1. If a trivial CSSI on E = X is canonical, a system does not exhibit any CSSI
relationship (e.g., Example 3 in Appendix D). We now define a compact representation of multiple
CSSIs in a system.

3. Note that this does not imply that local parent set is always not unique on the non-convex subset of data, e.g.,
Y ⊥⊥ X2 | X1, E is the unique regular CSSI on the non-convex set E in Example 1.

6



NEURAL CONTEXTUAL DECOMPOSITION

Definition 9 (Contextual Decomposition) Let {Ek}Nk=0 be a partition of X . {(Ek, Ak)}Nk=0 is
a contextual decomposition (CD) if regular CSSI Y ⊥⊥ XAc

k
| XAk

, Ek holds for all k where
A0 = Pa(Y ) and Ak ⊊ Pa(Y ) for all k ≥ 1.4 We say a CD {(Ek, Ak)}Nk=0 is canonical if
Y ⊥⊥ XAc

k
| XAk

, Ek is canonical for all k, and is distinctive if Ai ̸= Aj for all i ̸= j.

E0 is a set to cover a remaining subset of X excluding non-trivial context sets. (E0, A0) cor-
responds to a trivial CSSI. For any causal system, {(X , Pa(Y ))} is a CD, which we call trivial
CD. When a system does not exhibit any CSSI relationship, a trivial CD is the only existing CD. In
Example 2, both {(E0,X123), (E1,X3), (E2,X3)} and {(E0,X123), (E1 ∪ E2,X23)} are CDs where
E0 = (E1 ∪ E2)c. The former is canonical, but the latter is not. Contextual decomposition can be
viewed as the discretization of the joint outcome space, in contrast to discretizing each variable
which is a commonly used strategy to handle continuous variables (Nyman et al., 2017). As a
canonical CSSI is a fine-grained notion of CSSI relationship, a canonical CD can also be viewed as a
fine-grained CD. While a canonical CD may not be unique (e.g., Example 5 in Appendix D), the
following theorem characterizes the shared property of the canonical CDs in a system.

Theorem 10 Let {(Ei, Ai)}Ni=0 and {(Fj , Bj)}Mj=0 be canonical CDs where Ei and Fj are open
sets for all i, j ≥ 1. Then, the following holds: (i) if p(Ei ∩ Fj) > 0 then Ai = Bj , and (ii) for any
C ⊆ Pa(Y ), p(E [C]△F [C]) = 05 where E [C] =

⋃
Ai=C Ei and F [C] =

⋃
Bj=CFj .

Roughly, any intersecting context sets (i.e., p(Ei ∩ Fj) > 0) from different canonical CDs
share the same local parent set (i.e., Ai = Bj). Also, for any C ⊆ Pa(Y ), the union of the
context sets having the same local parent set C is identical for any canonical CSSI in a system (i.e.,
p(E [C]△F [C]) = 0). We provide an example of canonical CDs to elaborate Thm. 10 in Example 5
(Appendix D). An interesting property of CDs is that the union of the context sets having the same
local parents set may no longer entail the same one, i.e., paE1∪E2 ̸= paE1 ∪ paE2 , in general as
shown in Example 2. For the case of distinctive canonical CDs, we have stronger uniqueness which
directly follows from Thm. 10.

Corollary 11 (Uniqueness of Distinctive Canonical CD) Let {(Ei, Ai)}Ni=0 and {(Fj , Bj)}Mj=0

be distinctive canonical CDs where Ei and Fj are open sets for all i, j ≥ 1. Then, the following hold:
(i) N = M , and (ii) if p(Ei ∩ Fj) > 0 then Ai = Bj and p(Ei △Fj) = 0.

In words, distinctive canonical CD is unique since any intersecting context sets (i.e., p(Ei∩Fj) >
0) from different distinctive canonical CDs share the same local parent set (i.e., Ai = Bj), and their
difference is negligible (i.e., p(Ei △Fj) = 0).

4.2. Representing Contextual Decomposition with an Auxiliary Variable

We now introduce a partition indicator variable, which will serve as a mapping between X and an
arbitrary contextual decomposition. This variable will be useful in transforming the task of testing
for CSSI to the task of learning such decomposition. We first show that a CD can be represented by
introducing an auxiliary variable.

4. While the context sets have positive probability by its definition, we allow the case of p(E0) = 0.
5. △ is a symmetric difference, i.e., A△B = (A \B) ∪ (B \A)
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Proposition 12 (Expressing CSSI as CSI with Auxiliary Variable) Let {Ek}Nk=0 be a partition
of X . {(Ek, Ak)}Nk=0 is a contextual decomposition if and only if Y ⊥⊥ XAc

k
| XAk

, Z = zk holds
for all k ≥ 1, where Z is the deterministic random variable defined as Z = zk if X ∈ Ek for all k.

In Example 1, we can introduce Z so that Y ⊥⊥ X2 | X1, Z = z1 and Y ⊥⊥ X1 | X2, Z = z2
where Z = z1 if X ∈ E and z2 otherwise. We now formally define a partition indicator variable.

Definition 13 Let {Ek}Nk=0 be a partition of X and a random variable Z be defined as Z = zk if
X ∈ Ek for all 0 ≤ k ≤ N . Variable Z is a partition indicator variable (PIV) if for all k ≥ 1 there
exists some Ak ⊊ Pa(Y ) such that Y ⊥⊥ XAc

k
| XAk

, Z = zk.

PIV can be viewed as a particular type of sufficient set of statistics.6 Prop. 12 implies that a
PIV represents a corresponding CD. With PIV Z, each CSSI relationship Y ⊥⊥ XAc

k
| XAk

, Ek is
equivalently expressed as Y ⊥⊥ XAc

k
| XAk

, Z = zk. Thus, for x ∈ Ek,

p(y | x) = p(y | x, zk) = p(y | xAc
k
,xAk

, zk) = p(y | xAk
, zk), (1)

where the first equality holds by definition, and the last equality holds since PIV entails CSI
relationships. Therefore some of the parent variables (i.e., XAc

k
) would be ignored for modeling the

conditional distribution of Y given Ek. In contrast to CSI, which uses the value of a proper subset of
Pa(Y ) ignoring the rest, the value of Z is determined by the whole X, in general, and a subset of
Pa(Y ) to be ignored (i.e., XAc

k
) could involve in determining the value of Z.

4.3. Neural Contextual Decomposition

As described earlier, conditional independence tests can be used to discover the CSSI relationship on
a particular subset of data. Further, assuming strictly positive densities, testing on a convex subset of
data is sufficient to obtain a unique local parent set without any additional assumptions. However, it
is generally infeasible to test on every possible subset to discover multiple CSSIs in a given system.

Against this background, we propose Neural Contextual Decomposition (NCD), a neural
approach to recovering distinct contextual decomposition from given data P (V) via learning PIV Z.
Recalling Y ⊥⊥ XAc

k
| XAk

, Z = zk, we let Z ⊆ {0, 1}d so that the local parent set Ak corresponds
to the set of the indices of the nonzero element of zk, e.g., Y ⊥⊥ X2 | X13, Z = (1, 0, 1).7 With PIV
Z, we can write the conditional density as:

p(y | x) =
∑

z p(y | x, z)p(z | x) =
∑

z p(y | xAz , z)p(z | x), (2)

where Az is Ak corresponding to zk and p(z | x) = δ(z = zi) if x ∈ Ei. Our method models
p(y | x, z) and p(z | x).

Modeling p(y | x, z) and p(z | x). Since p(y | x, z) = p(y | xAz , z), some of the parent
variables (i.e., xAc

z
) are redundant for modeling a conditional distribution. Therefore, our method

approximates the conditional distribution p(y | x, z) as p̂(y | x, z) and let a neural network fθ
takes (x⊙ z, z) as an input where ⊙ denotes an element-wise product and outputs the parameters
of the estimator p̂(y | x, z).8 For the input of fθ, we simply concatenate x ⊙ z and z, e.g., if

6. Chicharro et al. (2020) utilized a sufficient set of statistics with a focus on discovering a causal structure. However, we
provided the characterization and representation of local independence and its fundamental properties. Although the
concept of a sufficient set of statistics and related rules is valid for continuous variables, their information bottleneck
approach is restricted to the discrete variables.

7. We assume that Pa(Y ) = {1, · · · , d} is identifiable and correctly discovered, e.g., by some causal discovery methods.
8. In our experiments, we model p̂ as the Gaussian and let fθ outputs the parameters of the Gaussian distribution.
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z = (1, 0, 1) then fθ takes (x⊙ z, z) = (x1, 0, x3, 1, 0, 1) as an input. We emphasize that labeling
(i.e., concatenation of z) is essential since xAc

k
cannot be ignored without conditioning on z, i.e.,

p(y | x) = p(y | x, zk) = p(y | xAk
, zk) holds for x ∈ Ek but p(y | x) ̸= p(y | xAk

) and
p(y | x, zk) ̸= p(y | xAk

) in general. Moreover, without labeling, it is unable to distinguish
whether the zero entries of input are either masked or its assignment being zero. We also model the
conditional distribution p(z | x) as p̂(z | x), and let a neural network gϕ takes x as input and outputs
the parameters of Bernoulli variables. That is, gϕ(x) = (π1, · · · , πd) and z(k)|x ∼ Bernoulli(πk)
for all k where z = (z(1), · · · , z(d)) ∈ {0, 1}d. We provide further discussions of the related works
on neural network based causal discovery methods in Sec. 6.

Training objective. Our model becomes p(y | x; θ, ϕ) =
∑

z p̂(y | x, z)p̂(z | x) = Ep̂(z|x)p̂(y | x, z),
and its maximum likelihood estimation is as follows:

sup
θ,ϕ

Ep(x,y)

[
log Ep̂(z|x) p̂(y | x, z)

]
. (3)

For the inner expectation, we use the Monte Carlo approximation: 1
N

∑N
i=1 p̂(y | x, z(i)), where

z(i) ∼ p̂(z | x). We also use Gumbel-Softmax estimator (Jang et al., 2016; Maddison et al., 2016) to
enable the learning with neural networks. The final training objective is as follows:

L(θ, ϕ;D) =
∑

(x,y)∈D

(
log

1

N

N∑
i=1

p̂(y | x, z(i))
)
, (4)

where z(i) is sampled from p̂(z | x) andD is a dataset of samples, which could be a minibatch in prac-
tice, from the joint distribution entailed by an underlying SCM. Further details of the implementation
of NCD are provided in Appendix E.3.

5. Empirical Evaluation

In this section, we evaluate our proposed method to discover contextual decomposition and CSSIs.
We first consider causal systems with different types of functional model and varying complexity of
partition (Sec. 5.1), and then a more complex system reflecting the real-world physical dynamics
(Sec. 5.2).

We compare our method with attention-based methods (Pitis et al., 2020) which aims to discover
the local structure in a causal system of continuous variables, by computing the attention weights of
the input x. It first trains a transformer (Vaswani et al., 2017) to model the conditional distribution
p(y | x). Then, it uses the attention weights (a1, · · · , ad) of the input x to discover the local
independence relationship. Intuitively, a low attention score aj implies that the input variable Xj

has a weak influence on the target variable Y . We also compare with a mixture model, which
applies a single attention layer on top of the multiple NNs. Local independence is discovered by first
computing the approximation of the Jacobian of each NNs and then applying the weighted sum with
the learned attention score. For the experiments on the synthetic dataset, we let the number of the
NNs be equal to the ground truth number of partition sets (i.e., oracle modeling).

For the implementation of fθ(x⊙z, z), which outputs the parameters of the Gaussian distribution
p̂(y | x, z), and gϕ(x), which outputs the parameters of the Bernoulli distributions, we used MLPs
with 3 hidden layers and hidden units of 128. For all experiments, we set the batch size to 1000
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Figure 4: Learned decision boundaries (partition) for epochs 5, 10, 15, and 20. Labels 0, 1, 2, and 3
denote z = (0, 0), (0, 1), (1, 0), and (1, 1), respectively.

and trained our method and the baselines for 100 epochs. All of our experiments were conducted
with 3 different seeds, and a shaded area in a ROC plot represents a standard deviation. A detailed
description of the baseline methods and further implementation details are provided in Appendix E.3.9

5.1. Synthetic Data

We consider causal systems where distinctive CD exists. We generate synthetic datasets consisting of
the samples (X, Y ) where X = {X1, · · · , Xd} is the parent variables of Y . We assume the parent
variables are independent and follow the unit normal. The data generating process is as follows:

Y = fi(XAi , U) if x ∈ Ei, for 0 ≤ i ≤ N, (5)

where U is an exogenous variable, {Ek}Nk=0 is a partition of X , Ai is distinctive to each other
(i.e., Ai ̸= Aj for all i ̸= j). In our experiments, d = 9 and the exogenous variable follows the
unit normal. We evaluate our method with varying types of functions fk, local parents sets Ak,
and partition sets Ek. For the functions {fk}, we consider nonlinear functions with (i) additive
and (ii) non-additive noise models. We use randomly initialized neural networks for the nonlinear
functions, i.e., we do not assume any specific family of distributions for fk. For the partition {Ek},
we consider the cases where the boundaries of the partition sets are (i) linear and (ii) nonlinear.
In the case of linear boundaries, partition sets are defined by a linear function h, i.e., x ∈ Ek
if h(XAk

) = max(h(XA0), · · · , h(XAN
)). For the nonlinear boundaries, we further control the

complexity of the partition by considering both cases when nonlinear boundaries are determined
by the norm of x and some nonlinear function h. For the local parent sets {XA0 ,XA1 ,XA2},
we consider two cases: (i) uniformly distributed as {X123,X456,X789} and (ii) non-uniformly
distributed as {X,X123,X456789}. In our experiments, we use different configurations of functions,
local parent sets, and boundaries. For the main experiments, we consider the case of nonlinear
functions with a non-additive noise model and report the results under the additive noise model in
the appendix. We provide the details of the setups and implementations in Appendix E.1.

Experimental results. We illustrate our results in Fig. 5 for (top) the uniformly and (middle)
non-uniformly distributed local parent sets, respectively. Our method successfully discovers local
independence structures and outperforms the baselines in most cases. We again emphasize that the
mixture model exploits the ground truth number of partition sets for its implementation.

9. Code available at: https://github.com/bluemoon010/NCD.
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Figure 5: ROC curves for the ground truth local independence relationships on (top, middle) the
synthetic dataset of (top) uniformly and (middle) non-uniformly distributed local parent
sets with different types of boundaries and (bottom) on the Spriteworld.

Visualization of the predicted partition. We present plots in Fig. 4 illustrating how the neural
network learns the partition throughout the training procedure based on a toy experiment with 2 parent
variables X = {X1, X2}. The quality of the discovered contextual decomposition is improved as the
training goes on. Our model successfully discovered the local independence and the corresponding
context sets. It shows that the data points within each partition are properly classified, while the
model fails to classify some points close to the decision boundary.

5.2. Complex System Reflecting Real-world Dynamics

We examine our method on the modified Spriteworld environment (Watters et al., 2019; Pitis et al.,
2020), which reflects real-world physics dynamics, to evaluate our method in a more complex
environment. In a 2 dimensional space, there are n moving objects (i.e., sprites), which can
collide with each other. Each i-th object corresponds to two 2-dimensional variables X2i−1 =
(x, y)(i), X2i = (vx, vy)(i) which represents the position and the velocity of the object. An agent can

11



HWANG KWAK SONG ZHANG LEE

influence the objects through an action. Action corresponds to a 2-dimensional variable X2n+1 =
(ax, ay), representing some position in the 2D scene, and it influences the dynamics of the nearest
object, thus there are interactions between the action and each object. In each time-step, the
object and action variables influence the object variables of the next time-step. Formally, X =
{X1, · · · , X2n+1} and Y = {Y1, · · · , Y2n} where X denotes the object and action variables and Y
denotes the object variables of the next time-step. Further, there exist dependencies among the parent
variables. Each Yk is generated from X with an unknown dynamics function fk, i.e., Yk = fk(X, U)
where U is the exogenous variable. As a whole, all X are involved in generating each Yk since the
objects can collide with each other and the action influences the objects. However, the interactions
are sparse—the collision occurs only when objects are (i) close enough and (ii) heading toward each
other. Thus, the dynamics system exhibits numerous CSSI relationships. As shown in the bottom of
Fig. 5, our method recovers the ground truth local structure on the varying number of objects. We
provide further details of the dataset and the implementation in Appendix E.2.

6. Related Work

Local independence relationship. One of the most widely used local independence relationships
is the notion of context-specific independence (CSI) (Boutilier et al., 2013; Poole, 1998). Pensar
et al. (2015) proposed LDAG, a graph labeled with CSIs. In order to represent a more flexible
local relationship, Pensar et al. (2016) introduced partial conditional independence (PCI), which
is a generalization of CSI. The benefits of exploiting local independence relationships such as CSI
has explored recently in the field of causal effect identification. Tikka et al. (2019) established the
framework of causal calculus in the presence of CSI relationships along with LDAG and showed
that it enables richer causal effect identification. Robins et al. (2020) proposed the algorithm for
the identification of controlled direct effect leveraging CSI relationships. While our focus is on
continuous variables in SCM, Nyman et al. (2017) also considered continuous variables following
Gaussian distributions but discretized the variables with certain intervals. Hence it is limited in terms
of both the type of distribution and the conditioning set for local independence.

Local independence of continuous variables. Pitis et al. (2020) proposed attention-based methods
to learn local causal structures. They trained a single-head transformer network and an adjacency
matrix is then obtained by the product of softmax attention masks of each layer. Since it is trained
without an inferred local causal graph, its prediction uses all of the values of the input and does not
take any local independence into account for approximating conditional distribution. In contrast, our
method learns both local causal graph within the parental relationship and conditional distribution si-
multaneously. Recently, Seitzer et al. (2021) proposed to estimate the conditional mutual information
to discover the local independence relationships. However, they assumed that the underlying ground
truth conditional distribution is the Gaussian in order to compute the conditional mutual information.
In addition, their method is restricted to a single edge, i.e., one of the parent variables and the target
variable, thus is not scalable and does not discover a CSSI relationships.

Neural network based causal discovery. Causal discovery attempts to reconstruct a ground truth
causal graph, e.g., through conditional independence induced from the underlying system, where
most of the methods fall into one of the three categories: constraint-based (Spirtes et al., 2000),
score-based (Chickering, 2002; Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2020), or hybrid
(Wang et al., 2017) (see (Glymour et al., 2019) for an extensive review). In contrast, our goal is to
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discover local independence especially within a variable and its parents. While masking the input
instances with the learned mask (i.e., adjacency matrix) is a widely used technique in prior works
on neural network based causal discovery (Kalainathan et al., 2022; Ng et al., 2019; Brouillard
et al., 2020), our work has a different focus. The key difference is that they learn the mask which is
invariant to individual instances, where there exists a single ground truth adjacency matrix. In our
work, a mask is a function of the input variables which is modeled as PIV where there exist multiple
valid contextual decompositions. For the same reason, they do not require labeling instances, which
is essential for valid approximation in our model.

7. Conclusion

Local independence relationships (e.g., CSI) could be leveraged in many tasks, but most of the
methods are restricted to discrete variables. To this end, we formalized the notion of context-set
specific independence (CSSI) providing a more flexible representation of local independence and
further allowing both discrete and continuous variables. Along with CSSI, we introduced local
parent set which allows CSSI to be represented in a causal graph and hence provides an intuitive
and compact description of local independence. For the discovery of CSSIs in a system, we focused
on continuous variables which is challenging, since it is impractical to directly test every individual
CSSIs due to the nature of continuous variables and adopting prior methods to discover CSIs for
discrete variables is not trivial. In this work, we tackled this challenge by finding the contextual
decomposition, a partition of the joint outcome space where each partition is CSSI-inducing context-
set. We presented NCD, effectively discovering such decomposition by augmenting an auxiliary
partition indicator variable (PIV) which enables the gradient-based training. While finding PIV is
equivalent to finding contextual decomposition which implies the discovery of CSSIs, experimental
results showed that NCD successfully finds PIV and discovers CSSIs in a synthetic dataset and is
also effective in a complex environment reflecting real-world dynamics.
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Appendix A. Appendix for Preliminaries

A.1. Local Independence

CSI is the most widely studied local independence relationship which generalizes the notion of
conditional independence (CI). If the causal relationship between variable and its parents exhibits a
CSI relationship, it implies that the variable is independent of the subset of its parents given a certain
context. Labeled DAG (LDAG) (Pensar et al., 2015) is developed to encode CSI relationships on the
underlying DAG, where each edge is labeled with a set of contexts, which invoke CSI relationships.
Intuitively speaking, each label on its corresponding edge (j) represents the condition of the edge to
be inactive, i.e., Xj does not affect Y given the context in the label. In the field of causal inference,
it has been shown that the presence and knowledge of CSI relationships provide richer causal effect
identification (Tikka et al., 2019). PCI (Pensar et al., 2016) extends CSI in that, given the specific
context, the local independence relationship only holds in a certain domain (i.e., DA). We would like
to note again that the line of works of aforementioned local independences mostly focused on finite
discrete variables.

Revisiting Example 1, CSI relationship Y ⊥⊥ X2 | X1 = c holds for every c < 1/2, however
Y ̸⊥⊥ X1 | X2 = c for any c ∈ [0, 1]. PCI relationships in this system are as follows:

Y ⊥⊥ X2 | X2 ∈ [0, 1], X1 = c (∀c < 1/2), (6)

Y ⊥⊥ X2 | X2 ∈ [0, 1/2c], X1 = c (∀c ≥ 1/2), (7)

Y ⊥⊥ X1 | X1 ∈ [1/2c, 1], X2 = c (∀c ≥ 1/2). (8)

Note that PCI in Eq. (6) is equivalent to CSI Y ⊥⊥ X2 | X1 = c. We now show that CSSI subsumes
CSI and PCI. CSSI generalizes CSI and PCI and is compatible with both discrete and continuous
variables.

Proposition 14 (CSSI subsumes CSI and PCI) (1) For any CSI relationship Y ⊥⊥ XB | XA =
xA, there exists a context set E ⊆ X such that CSSI relationship Y ⊥⊥ XB | XA, E holds.
(2) For any PCI relationship Y ⊥⊥ XB | DB,XA = xA, there exists a context set E ⊆ X such that
CSSI relationship Y ⊥⊥ XB | XA, E holds.

Proof (1) By the definition of CSI, p (y | xA,xB) = p (y | xB) holds for all xA ∈ XA whenever
p (xA,xB) > 0. Let E = {(xA,xB) | xA ∈ XA} ⊆ X . Then, p (y | xA,xB) = p (y | xB) =
p (y | x′

A,xB) for every (xA,xB) , (x
′
A,xB) ∈ E . Therefore, E is a context set which induces CSSI

relationship Y ⊥⊥ XA | XB, E .
(2) By the definition of PCI, p (y | xA,xB) = p (y | x′

A,xB) holds for all xA,x
′
A ∈ DA whenever

p (xA,xB) , p (x
′
A,xB) > 0. Let E = {(xA,xB) | xA ∈ DA} ⊆ X . It directly follows that

p (y | xA,xB) = p (y | x′
A,xB) for every (xA,xB) , (x

′
A,xB) ∈ E , thus E is a context set which

induces CSSI relationship Y ⊥⊥ XA | XB, E .

Appendix B. More general condition for the uniqueness of regular CSSI

We adopt and slightly modify the notion of coordinate-wise connectedness from Peters (2015).
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Definition 15 Let E ⊆ X , E|xA = {xAc | (xA,xAc) ∈ E} ⊆ XAc and projA(E) = {xA | E|xA ̸=
∅} ⊆ XA. Let {E|(k)xA}k∈I be the path-connected components of E|xA . For XS ,XT ⊆ XAc , we
say E|(i)xA and E|(j)xA are directly coordinate-wise connected w.r.t XS and XT if projS(E|

(i)
xA) ∩

projS(E|
(j)
xA) ̸= ∅ or projT (E|

(i)
xA) ∩ projT (E|

(j)
xA) ̸= ∅. We say E|xA is coordinate-wise connected

w.r.t XS and XT if for any pair of its path-connected components E|(i)xA and E|(j)xA , there is a sequence
(i = a0, a1, · · · , an = j) such that E|(at−1)

xA and E|(at)xA are directly coordinate-wise connected w.r.t
XS and XT for all t = 1, · · · , n. We say E is absolutely coordinate-wise connected if for any
XA ⊆ X and xA ∈ projA(E), E|xA is coordinate-wise connected w.r.t XS and XT for any arbitrary
XS ,XT ⊆ XAc .

The following proposition generalizes Prop. 6.

Proposition 16 (Generalization of Prop. 6) Suppose CSSI relationships Y ⊥⊥ XAc | XA, E and
Y ⊥⊥ XBc | XB, E hold. If E|xA∩B is coordinate-wise connected w.r.t. XA\B and XB\A for all
xA∩B ∈ projA∩B(E) , then Y ⊥⊥ X(A∩B)c | XA∩B, E hold.

Proof The outline of the proof mostly follows the one in Peters (2015). It is enough to show that if
CSSIs Y ⊥⊥ XAB | XCD, E and Y ⊥⊥ XAC | XBD, E hold and E|xD is coordinate-wise connected
w.r.t. XB and XC for all xD ∈ projD(E), then Y ⊥⊥ XABC | XD, E holds, i.e.,

p(y | xA,xB,xC ,xD) = p(y | x∗
A,x

∗
B,x

∗
C ,xD) (9)

holds for any (xA,xB,xC ,xD), (x
∗
A,x

∗
B,x

∗
C ,xD) ∈ E . Let {E|(k)xD}k∈I be the path-connected com-

ponents of E|xD . First, we will show that for any xABC ,x
∗
ABC ∈ E|

(i)
xD , p(y | xA,xB,xC ,xD) =

p(y | x∗
A,x

∗
B,x

∗
C ,xD) holds. Since E|(i)xD is path-connected, there exist compact path {x(t)

ABC |
0 ≤ t ≤ 1} such that x(0)

ABC = xABC and x
(1)
ABC = x∗

ABC . We take the set of n open balls with
a small radius ϵ which is the open cover of the path. Let x(ai)

ABC be the center of the i-th open ball
Bi and suppose xABC ∈ B1 and x∗

ABC ∈ Bn. For any x′
ABC ∈ Bj and x′′

ABC ∈ Bj+1, suppose
x′′′
ABC ∈ Bj ∩Bj+1. Then,

p(y | x′
A,x

′
B,x

′
C ,xD) = p(y | x′′′

A ,x
′′′
B ,x

′
C ,xD)

= p(y | x′′′
A ,x

′′′
B ,x

′′′
C ,xD)

= p(y | x′′
A,x

′′
B,x

′′′
C ,xD)

= p(y | x′′
A,x

′′
B,x

′′
C ,xD)

hold. Therefore, p(y | xA,xB,xC ,xD) = p(y | x∗
A,x

∗
B,x

∗
C ,xD) also holds. Now, we will show

that for any (xA,xB,xC) ∈ E|(i)xD and (x∗
A,x

∗
B,x

∗
C) ∈ E|

(j)
xD , p(y | xA,xB,xC ,xD) = p(y |

x∗
A,x

∗
B,x

∗
C ,xD) holds. Let (i = a0, a1, · · · , an = j) be a sequence such that E|(at−1)

xD and E|(at)xD are
directly coordinate-wise connected w.r.t XB and XC for all t = 1, · · · , n. For any x′

ABC ∈ E|
(aj−1)
xD

and x′′
ABC ∈ E|

(aj)
xD , projB(E|

(aj−1)
xD ) ∩ projB(E|

(aj)
xD ) ̸= ∅ or projC(E|

(aj−1)
xD ) ∩ projC(E|

(aj)
xD ) ̸= ∅.

Without the loss of generality, suppose ∃x′′′
B ∈ projB(E|

(aj−1)
xD )∩ projB(E|

(aj)
xD ). Let (xp

A,x
′′′
B ,x

p
C) ∈

E|(aj−1)
xD and (xq

A,x
′′′
B ,x

q
C) ∈ E|

(aj)
xD . Then,

p(y | x′
A,x

′
B,x

′
C ,xD) = p(y | xp

A,x
′′′
B ,x

p
C ,xD)

= p(y | xq
A,x

′′′
B ,x

q
C ,xD)

= p(y | x′′
A,x

′′
B,x

′′
C ,xD)
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hold. Therefore, p(y | xA,xB,xC ,xD) = p(y | x∗
A,x

∗
B,x

∗
C ,xD) also holds for any (xA,xB,xC) ∈

E|(i)xD and (x∗
A,x

∗
B,x

∗
C) ∈ E|

(j)
xD , i.e., it holds for any (xA,xB,xC ,xD), (x

∗
A,x

∗
B,x

∗
C ,xD) ∈ E .

Thus, Y ⊥⊥ XABC | XD, E holds.

A sufficient condition for the intersection property of conditional independence (CI) from Peters
(2015) replaces the strict positiveness. In contrast, the intersection property of CSSI requires strictly
positive densities and additional conditions. The following proposition generalizes Thm. 7.

Proposition 17 (Generalization of Thm. 7) Suppose E ⊆ X is absolutely coordinate-wise con-
nected. For any CSSI relationship Y ⊥⊥ XAc | XA, E , there exists an unique B ⊆ A such that
regular CSSI relationship Y ⊥⊥ XBc | XB, E holds.

Proof Suppose regular CSSIs Y ⊥⊥ XSc | XS , E and Y ⊥⊥ XT c | XT , E hold for some S and T .
Since E is absolutely coordinate-wise connected, Y ⊥⊥ X(S∩T )c | XS∩T , E holds by Prop. 16. Since
Y ⊥⊥ XSc | XS , E and Y ⊥⊥ XT c | XT , E are regular, it follows that S = T = S ∩ T .

Unfortunately, it is hard to characterize absolutely coordinate-wise connected sets. On the other
hand, convex sets are absolutely coordinate-wise connected since a convex subset of Rn is simply
connected and thus path-connected.

Appendix C. Omitted Proofs

Proposition 4 (CSSI Entailment) Suppose a CSSI relationship Y ⊥⊥ XAc | XA, E holds. Then,
the following CSSI relationships also hold:

(i) Y ⊥⊥ XBc | XB, E for any B ⊇ A, (ii) Y ⊥⊥ XAc | XA,F for any F ⊆ E .

Proof (i) By definition, p (y | xA,xAc) = p(y | xA,x
′
Ac) holds for every (xA,xAc) , (xA,x

′
Ac) ∈ E .

Suppose B ⊇ A. For every x = (xB,xBc) ,x′ = (xB,x
′
Bc) ∈ E , xA = x′

A holds since xB = x′
B .

Therefore, p (y | xB,xBc) = p(y | x) = p (y | xA,xAc) = p (y | xA,x
′
Ac) = p(y | x′) = p(y |

xB,x
′
Bc).

(ii) SupposeF ⊆ E . Since p (y | xA,xAc) = p(y | xA,x
′
Ac) holds for every (xA,xAc) , (xA,x

′
Ac) ∈

E , it also holds for every (xA,xAc) , (xA,x
′
Ac) ∈ F .

Proposition 6 (Intersection Property of CSSI) Suppose E ⊆ X is convex. If CSSI relationships
Y ⊥⊥ XAc | XA, E and Y ⊥⊥ XBc | XB, E hold, then Y ⊥⊥ X(A∩B)c | XA∩B, E hold.

Proof It directly follows from Prop. 16.

Theorem 7 (Uniqueness of Local Parent Set) Suppose E ⊆ X is convex. There exists a unique
A ⊆ Pa(Y ) such that the regular CSSI relationship Y ⊥⊥ XAc | XA, E holds.

Proof It directly follows from Prop. 17.
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Theorem 10 Let {(Ei, Ai)}Ni=0 and {(Fj , Bj)}Mj=0 be canonical CDs where Ei and Fj are open
sets for all i, j ≥ 1. Then, the following holds: (i) if p(Ei ∩ Fj) > 0 then Ai = Bj , and (ii) for any
C ⊆ Pa(Y ), p(E [C]△F [C]) = 010 where E [C] =

⋃
Ai=C Ei and F [C] =

⋃
Bj=CFj .

Proof Let {(Ei, Ai)}Ni=0 be a CD such that each CSSI relationship Y ⊥⊥ XAc
i
| XAi , Ei is canonical,

Ai is non-identical to each other for all i, and XA0 = X. Let {(Fj , Bj)}Mj=0 be another CD such
that each CSSI relationship Y ⊥⊥ XBc

j
| XBj ,Fj is canonical and Bj is non-identical to each other

for all j, and XB0 = X.
(i) Suppose there exist Ei and Fj such that p(Ei ∩ Fj) > 0 and Ai ̸= Bj for some i and j. First,

we consider the case if i, j ≥ 1. Without the loss of generality, suppose that Ai \ Bj ̸= ∅. Since
Ei and Fj are open, we can take a non-empty open ball D ⊂ Ei ∩ Fj . Since Y ⊥⊥ XAc

i
| XAi ,D

and Y ⊥⊥ XBc
j
| XBj ,D hold, Y ⊥⊥ X(Ai∩Bj)c | XAi∩Bj ,D holds by Prop. 16. This contradicts

that Y ⊥⊥ XAc
i
| XAi , Ei is canonical since Ai ∩Bj ⊊ Ai and D ⊂ Ei. Therefore, Ai = Bj . Now,

we consider the case if i = 0 or j = 0. Without the loss of generality, assume that i = 0. Suppose
j ≥ 1. Since Y ⊥⊥ XBc

j
| XBj ,Fj holds, Y ⊥⊥ XBc

j
| XBj , (E0 ∩ Fj) also holds. It contradicts

that (E0, A0) is canonical since (E0 ∩ Fj) ⊂ E0 and Bj ⊊ Pa(Y ) = A0. Therefore, j = 0 and
A0 = B0 = Pa(Y ) trivially holds in this case.

(ii) Now, let C ⊂ Pa(Y ). Suppose that p(E [C]△F [C]) > 0. Without the loss of generality,
suppose that p(F [C] \ E [C]) > 0. There exists Ek such that p(Ek ∩ (F [C] \ E [C])) > 0. Note
that Ek ̸⊂ E [C], i.e., Ak ̸= C. Therefore, there exists Ft such that Ft ⊂ F [C] (i.e., Bt = C) and
p(Ek ∩ Ft) > 0. Therefore, Ak = Bt = C. However which contradicts that Ak ̸= C.

Corollary 11 (Uniqueness of Distinctive Canonical CD) Let {(Ei, Ai)}Ni=0 and {(Fj , Bj)}Mj=0

be distinctive canonical CDs where Ei and Fj are open sets for all i, j ≥ 1. Then, the following hold:
(i) N = M , and (ii) if p(Ei ∩ Fj) > 0 then Ai = Bj and p(Ei △Fj) = 0.

Proof Let {(Ei, Ai)}Ni=0 be a CD such that each CSSI relationship Y ⊥⊥ XAc
i
| XAi , Ei is canonical,

Ai is non-identical to each other for all i, and XA0 = X. Let {(Fj , Bj)}Mj=0 be another CD such that
each CSSI relationship Y ⊥⊥ XBc

j
| XBj ,Fj is canonical and Bj is non-identical to each other for

all j, and XB0 = X. Suppose there exist Ei and Fj such that p(Ei ∩ Fj) > 0 and Ai ̸= Bj for some
i, j ≥ 1. Without the loss of generality, suppose that Ai \ Bj ̸= ∅. Since Ei and Fj are open, we
can take a non-empty open ball D ⊂ Ei ∩ Fj . Since Y ⊥⊥ XAc

i
| XAi ,D and Y ⊥⊥ XBc

j
| XBj ,D

hold, Y ⊥⊥ X(Ai∩Bj)c | XAi∩Bj ,D holds by Prop. 16. This contradicts that Y ⊥⊥ XAc
i
| XAi , Ei

is canonical since Ai ∩ Bj ⊊ Ai and D ⊂ Ei. Therefore, Ai = Bj . Now, suppose that Ei ̸= Fj

and p(Fj △ Ei) > 0. Without the loss of generality, suppose that p(Ei \ Fj) > 0. There exists
Ek such that p(Ek ∩ (Fj \ Ei)) > 0. Since Y ⊥⊥ XBc

j
| XBj , Ek ∩ (Fj \ Ei) holds, k ̸= 0. Since

(Ek∩(Fj\Ei)) ⊂ (Ek∩Fj), p(Ek∩Fj) > 0 holds and thereby Ak = Bj holds. Thus, Ai = Bj = Ak

and it contradicts that Ai is non-identical to each other for all i. Therefore, if p(Ei ∩ Fj) > 0, then
p(Ei △Fj) = 0.

Proposition 18 A CSSI relationship Y ⊥⊥ XAc | XA, E holds if and only if CSI relationship
Y ⊥⊥ XAc | XA, Z = 0 holds, where Z is the deterministic binary random variable defined as
Z = 0 if X ∈ E and Z = 1 otherwise.

10. △ is a symmetric difference, i.e., A△B = (A \B) ∪ (B \A)
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Proof (−→). Suppose Y ⊥⊥ XAc | XA, E holds. By definition, p (y | xA,xAc) = p(y | xA,x
′
Ac)

holds for every (xA,xAc) , (xA,x
′
Ac) ∈ E . Since p(xA,xAc , z0) > 0 implies x ∈ E and xAc ∈ E|xA ,

we have

p(y | xA, z0) =

∫
E|xA

p(y,x′
Ac | xA, z0)dx

′
Ac

=

∫
E|xA

p(y | xA,x
′
Ac , z0)p(x

′
Ac | xA, z0)dx

′
Ac

=

∫
E|xA

p(y | xA,x
′
Ac)p(x′

Ac | xA, z0)dx
′
Ac

=

∫
E|xA

p(y | xA,xAc)p(x′
Ac | xA, z0)dx

′
Ac

= p(y | xA,xAc)

∫
E|xA

p(x′
Ac | xA, z0)dx

′
Ac

= p(y | xA,xAc) = p(y | xA,xAc , z0),

for every (xAc ,xA) ∈ E . Therefore, Y ⊥⊥ XAc | XA, Z = z0 holds.
(←−). Suppose Y ⊥⊥ XAc | XA, Z = z0 holds. By definition, p(y | xA,xAc , z0) = p(y | xA, z0)
holds for every x with p(xA,xAc , z0) > 0. Since p(xA,xAc , z0) = p(x, z0) > 0 is equivalent to
x ∈ E , for every (xA,xAc), (xA,x

′
Ac) ∈ E we have

p (y | xA,xAc) = p(y | xA,xAc , z0)

= p(y | xA, z0)

= p(y | xA,x
′
Ac , z0)

= p
(
y | xA,x

′
Ac

)
.

Therefore, Y ⊥⊥ XAc | XA, E holds.

Proposition 12 (Expressing CSSI as CSI with Auxiliary Variable) Let {Ek}Nk=0 be a partition
of X . {(Ek, Ak)}Nk=0 is a contextual decomposition if and only if Y ⊥⊥ XAc

k
| XAk

, Z = zk holds
for all k ≥ 1, where Z is the deterministic random variable defined as Z = zk if X ∈ Ek for all k.

Proof It is the direct extension of Prop. 18.

Appendix D. Additional Examples

Example 3 (Non-existence of non-trivial CD) Let X1, X2 ∼ Unif [0, 1] and U be an exogenous
variable. Let Y = X1 +X2 + U . In this case, there exists a unique contextual decomposition which
is trivial: E = X , i.e., the causal mechanism does not exhibit any CSSI relationship.

Example 4 (Augmented Causal Graph, Continued from Example 1) Let X1, X2, and Y be de-
fined as Example 1. Let Z be the binary random variable which is 0 if X1X2 < 1/2 and otherwise 1.
Then, the following holds:

Y ⊥⊥ X2 | X1, Z = 0, Y ⊥⊥ X1 | X2, Z = 1.

Here, {E1, E2} is a contextual decomposition where Ek is a support set of P (Z = k | X).

21



HWANG KWAK SONG ZHANG LEE

Figure 6: Example 5.

We illustrated the implementation of PIV in Figs. 1(d) to 1(f ). Fig. 1(d) shows an augmented SCM in
Example 4. Fig. 1(e) represents Y ⊥⊥ X2 | X1, Z = 0, and Fig. 1(f ) represents Y ⊥⊥ X1 | X2, Z =
1.

Example 5 (Canonical CD, Illustrating Thm. 10) Let X1, X2 ∼ Unif [0, 1] and U be an exoge-
nous variable. Let Y be:

Y =


X1 + U if X2 ≥ 0.8,

X2 + U if X1 < 0.5 and X2 < 0.8,

X2 + 2U if X1 ≥ 0.5 and X2 < 0.8.

Let E1 = {(x1, x2) | x2 > 0.8}, E2 = {(x1, x2) | x1 < 0.5, x2 < 0.8}, E3 = {(x1, x2) | x1 >
0.5, x2 < 0.8}, and E0 = (E1 ∪ E2 ∪ E3)c. Then, canonical CSSIs (Y ⊥⊥ X2 | X1, E1), (Y ⊥⊥
X1 | X2, E2), and (Y ⊥⊥ X1 | X2, E3) hold. Therefore, {(E0,X), (E1,X1), (E2,X2), (E3,X2)}
is a canonical CD. On the other hand, let F1 = E1, F2 = {(x1, x2) | (x1 < 0.5, 0.4 < x2 <
0.8) or (x1 > 0.5, x2 < 0.4)}, F3 = {(x1, x2) | (x1 < 0.5, x2 < 0.4) or (x1 > 0.5, 0.4 < x2 <
0.8)}, and F0 = (F1∪F2∪F3)

c. Then, canonical CSSIs (Y ⊥⊥ X2 | X1,F1), (Y ⊥⊥ X1 | X2,F2),
and (Y ⊥⊥ X1 | X2,F3) hold. Therefore, {(F0,X), (F1,X1), (F2,X2), (F3,X2)} is a canonical
CD. Here, p(E2 ∩ F2) > 0 and thus paE2 = paF2 = X2 by Thm. 10. Also, E [X2] = E2 ∪ E3 =
F2 ∪ F3 = F [X2] by Thm. 10.

Appendix E. Experimental Details

E.1. Synthetic datasets

We provide the details of the configurations of the causal system in our experiments. The following
causal system is the case of uniformly distributed local parent sets with a linear boundary. Here, g is
a linear function implemented with a randomly initialized NN.

Y =


f1(X123, N) if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456, N) if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X789, N) if g(x369) = max(g(x147), g(x258), g(x369)).

(10)
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The following is the case of uniformly distributed local parent sets with a nonlinear boundary
determined by the norm:

Y =


f1(X123, N) if ∥x∥ < c1,

f2(X456, N) if c1 < ∥x∥ < c2,

f3(X789, N) if ∥x∥ > c2.

(11)

The following is the case of uniformly distributed local parent sets with a nonlinear boundary
determined by a linear function g implemented with a NN:

Y =


f1(X123, N) if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456, N) if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X789, N) if g(x369) = max(g(x147), g(x258), g(x369)).

(12)

The following causal system is the case of non-uniformly distributed local parent sets with a linear
boundary. Here, g is a linear function implemented with a randomly initialized NN.

Y =


f1(X123, N) if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456789, N) if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X, N) if g(x369) = max(g(x147), g(x258), g(x369)).

(13)

The following is the case of non-uniformly distributed local parent sets with a nonlinear boundary
determined by the norm:

Y =


f1(X123, N) if ∥x∥ < c1,

f2(X456789, N) if c1 < ∥x∥ < c2,

f3(X, N) if ∥x∥ > c2.

(14)

The following is the case of non-uniformly distributed local parent sets with a nonlinear boundary
determined by a nonlinear function g implemented with a NN:

Y =


f1(X123, N) if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456789, N) if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X, N) if g(x369) = max(g(x147), g(x258), g(x369)).

(15)

For the toy experiment for the visualization of the decision boundary, we let X1, X2 ∼ N (0, I3)
and Y = f1(X1) if ∥(X1, X2)∥ < ϵ and f2(X2) otherwise. For the linear function g, we used a
randomly initialized linear layer. For the nonlinear function g, we used a randomly initialized NN
with a single hidden layer, 10 hidden units, and Tanh activation. The total number of data samples is
50000, with a ratio of 8:1:1 of training, validation, and held-out test set, respectively.

E.2. Spriteworld

While the original environment does not consider the interaction between objects, Pitis et al. (2020)
modified the environment to devise the collision between moving objects and to acquire the ground
truth local causal graphs. Our experiment was also conducted in the modified Spriteworld, which
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Figure 7: Example images of the Spriteworld environment.

we denote as Spriteworld for simplicity. In this environment, there are moving objects in the scene.
Following real-world dynamics, objects can collide with each other, and thus each object has an
influence on others. However, their position and velocity will be affected by the others only when
they collide, which occurs relatively rarely. In other words, the state of each object will only
be determined by its own state in the previous time-step in most cases. Example images of the
Spriteworld environment are shown in Fig. 7. In the setting of Pitis et al. (2020), each variables
represent corresponding objects, i.e., Xi = (x, y, vx, vy)i represents the i-th object. Thus, X =
{X1, · · · , Xn+1} and Y = {Y1, · · · , Yn}. In our experiment, we consider a more complex setup
where each variable represents the position and velocity of each object, thus X = {X1, · · · , X2n+1}
and Y = {Y1, · · · , Y2n}. Further, we also include the exogenous variable.

E.3. Implementation.

Implementation details. For the implementation of our model, the distribution pθ(y|x, z) could
be any distribution as long as the log-likelihood is computable, and we chose Gaussian for simplicity.
We note that ground truth p(y|x, z) is non-Gaussian (i.e., non-linear function with non-additive
noise model) in our experiments. For fθ(x, z), which approximates the conditional distribution
P (Y | X, Z), and gϕ(x), which outputs the parameters of Bernoulli distribution, we used an MLP
with 3 hidden layers and 128 hidden units. For all the experiments, we set the batch size to 1000 and
used the Adam optimizer with the weight decay of 10−5. We set the learning rate of 10−2 for the
synthetic dataset and 10−3 for the Spriteworld. Most experiments were conducted with a single RTX
3090 GPU. For the mixture model and the transformer model, we used 3 MLPs, each with 3 hidden
layers and 128 hidden units, and grid-search the learning rate over {0.005, 0.01, 0.02, 0.03}.

Regularizer. One can adopt a regularizer to induce a sparse solution and prevent the model from
outputting a trivial solution z = (1, 1, · · · , 1) where z ∼ gϕ(x), e.g., adding a term λ · ∥gϕ(x)∥1.
During our experiments, however, we empirically found that the regularizer does not significantly
bring a gain. We hypothesized that since the neural network ϕ is randomly initialized, approximately
half of the entries of z would be 0 at the beginning of the training, and, consequently, it would rarely
converge to the trivial solution z = (1, 1, · · · , 1).

Gumbel-Softmax. Although there are other methods used for learning discrete variables, such as a
REINFORCE estimator, we chose Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016) since
it (i) has a lower variance compared to REINFORCE estimator, and (ii) is empirically shown to be
more effective (Jang et al., 2016; Maddison et al., 2016; Ng et al., 2019). Given that the choice of
reparametrization trick is not the main focus of our work, we did not compare it to other estimators.
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Figure 8: ROC curves for the ground truth local independence relationships on the synthetic dataset
of the additive noise model.

Evaluation. We now describe the procedure for plotting the ROC curve. Let Pa(Y ) = {1, 2, · · · , 9}
(i.e., d = 9). Consider a single data point x where Atrue = {1}, and the model predicted
Apred = {1, 2} with a threshold τ . In this case, TP = 1, FP = 1, FN = 0, and TN = 7.
We note that this evaluation procedure follows the prior work (Pitis et al., 2020). We plot the ROC
curves based on all the data points in a test dataset. Accordingly, TP + FP + FN + TN = B × d
where B is the number of test data points. Each data point belongs to one of the partitioned sets
(i.e., region), and the number of data points for each region is similar. Train and test distributions are
identical.

Appendix F. Additional Experiments

Here, we provide the experimental results on the synthetic datasets where the functions are nonlinear
with an additive noise model. We consider the following causal system with a linear boundary
determined by a linear function g:

Y =


f1(X123) +N if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456) +N if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X789) +N if g(x369) = max(g(x147), g(x258), g(x369)).

(16)

The following is the case of a nonlinear boundary determined by the norm:

Y =


f1(X123) +N if ∥x∥ < c1,

f2(X456) +N if c1 < ∥x∥ < c2,

f3(X789) +N if ∥x∥ > c2.

(17)

The following is the case of a nonlinear boundary determined by a nonlinear function g:

Y =


f1(X123) +N if g(x147) = max(g(x147), g(x258), g(x369)),

f2(X456) +N if g(x258) = max(g(x147), g(x258), g(x369)),

f3(X789) +N if g(x369) = max(g(x147), g(x258), g(x369)).

(18)

As shown in Fig. 8, our method successfully discovers the local independence relationships in
the additive noise system as well.
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