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Abstract
Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool
for analyzing biological data, especially in the field of single-cell genomics. One remaining
challenge is the interpretability of latent variables as biological processes that define a cell’s identity.
Outside of biological applications, this problem is commonly referred to as learning disentangled
representations. Although several disentanglement-promoting variants of the VAE were introduced,
and applied to single-cell genomics data, this task has been shown to be infeasible from independent
and identically distributed measurements, without additional structure. Instead, recent methods
propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order
to learn disentangled representations with a causal semantic. Here, we extend the application
of these methodological advances to the analysis of single-cell genomics data with genetic or
chemical perturbations. More precisely, we propose a deep generative model of single-cell gene
expression data for which each perturbation is treated as a stochastic intervention targeting an
unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-
cell data to evaluate their performance at latent units recovery, causal target identification and
out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene
perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass
contemporary methods on a transfer learning task. We implement our new model and benchmarks
using the scvi-tools library, and release it as open-source software at https://github.com/
Genentech/sVAE.
Keywords: non-linear ICA; deep generative models; variational inference; disentanglement; causal
representations; single-cell genomics; perturbation biology
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1. Introduction

Machine learning methods have been key to gaining insights from large, high-dimensional ge-
nomic datasets, especially in single-cell genomics (Ching et al., 2018). Variational Auto-Encoders
(VAEs) (Kingma and Welling, 2014; Rezende et al., 2014), a recent approach in inferring complex
data generative processes, are often well-suited for these applications because they allow for flexible
model design, while keeping necessary changes to the inference procedure relatively minimal. Many
generative models have been proposed for analyzing diverse biological data modalities, including
gene (RNA) expression, chromatin accessibility and quantitative protein measurements (Yau and
Campbell, 2019; Lopez et al., 2020b).

However, VAEs suffer from a critical disadvantage due to their lack of interpretability, reflected
as the absence of direct correspondence between individual latent variables and biological pro-
cesses (Way and Greene, 2018). While disentanglement-promoting VAEs (Higgins et al., 2017; Chen
et al., 2018) can help better relate the two in genomics (Eraslan et al., 2022), these methods often
compromise the quality of the latent variables for downstream tasks (Kimmel, 2020). This is perhaps
not surprising given recent theoretical developments showing that the recovery of ground truth latent
variables is impossible from independent and identically distributed (i.i.d.) measurements (Locatello
et al., 2019). In the remainder of this paper, we interchangeably use the terms “disentanglement”
and “latent variable recovery”, following recent perspectives on non-linear Independent Component
Analysis (ICA) (Locatello et al., 2019).

Recent efforts in disentanglement instead focus on the assumption of non-stationary data (Khe-
makhem et al., 2020), where data must be (i) observed in different regimes, with known pairing
between data points and regimes, (ii) generated such that regimes are incurring changes in latent vari-
ables, and (iii) latent variables are conditionally independent given the regime. In this configuration,
latent recovery with a conditional VAE (Sohn et al., 2015) is indeed theoretically possible. Follow-up
work (Lachapelle et al., 2022) also draws connections to causal representation learning (Schölkopf,
2022), in which each regime may be modeled as an intervention targeting an unknown subset of
latent variables.

Recent advances in biotechnology made non-stationary data increasingly available, especially
in the context of genetic or chemical perturbation screens with single-cell transcriptomic profiling
as a readout (Ji et al., 2021; Peidli et al., 2022). The Compositional Perturbation Autoencoder
(CPA) (Lotfollahi et al., 2021) was introduced to embed perturbation profiles in latent space of
an auto-encoder and predict the effect of unseen combinations of single perturbations. However,
this method neither exploits the non-stationary assumption in its probabilistic model nor refers to
any identifiability guarantees for the latent space. Thus, to the best of our knowledge, there have
been no applications of the principles of disentanglement exposed in Khemakhem et al. (2020) and
Lachapelle et al. (2022) to these new biological data types.

Here, we explore real-world applications of those principles (Figure 1). The promise is that causal
models may eventually yield representations of perturbations and cells that are more mechanistically
interpretable and more efficient for out-of-domain generalization. For example, the learned causal
representations may lead to the delineation of biological processes such as gene programs, that are
affected by perturbations (Dixit et al., 2016). Furthermore, the model may also be used to project
samples from unseen perturbations onto an existing atlas using transfer learning (Lotfollahi et al.,
2022).
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Figure 1: Overview of the sparse VAE framework applied to single-cell perturbation data. (A) Input
data are gene expression profiles of cells under different genetic or chemical perturbations
(colors), as well as the intervention label. (B) A schematic of the generative model, and the
causal semantics of the sparse VAE (C) Three method outputs. (i) identification of target
latent variables, encoded as a causal graph between the interventions and latent variables;
(ii) a disentangled latent model for which individual latent variables are more likely to be
interpreted as the activity of a relevant biological process; and (iii) the generalization of
the generative model to unseen interventions (e.g., for latent target identification).

After a brief introduction to disentangled representation learning and its intersection with causal
inference (Section 2), we describe our motivation and effort to explore the learning of causal
representations of perturbed cells profiled by single-cell RNA-seq (scRNA-seq) (Section 3). We
also introduce sVAE+, a variant of the sVAE (Lachapelle et al., 2022) with a Bayesian approach for
learning sparse mechanism shifts that requires minimal hyperparameter tuning. Next, we introduce a
benchmarking tool for simulations of single-cell perturbation data and the evaluation of algorithms
for latent units recovery, intervention target recovery, and transfer learning (Section 4). Finally, we
present an application of the methods to two large-scale genetic screening experiments (Section 5).
We show that models that exploit the sparse mechanism shift assumption outperform all methods by a
significant margin on a transfer learning task. Our results suggest that causal inference is a promising
paradigm for modeling the effects of perturbation in modern data sets from molecular biology.
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2. Background

This paper is concerned with the recovery of latent variables that initially generated the data, as well
as providing a causal semantic to those latent variables. Therefore, we briefly introduce non-linear
Independent Component Analysis (ICA), one of the prominent methods for accomplishing this task,
and its relationship to causal representation learning.

2.1. Non-linear Independent Component Analysis

ICA assumes that x ∈ Rd is generated using p independent latent variables z = (z1, . . . , zp), called
independent components (Hyvärinen et al., 2002). More precisely, observations x are generated
as x = f(z) + ϵ with f a mixing function and ϵ an exogenous noise variable. The ICA literature
focuses on the identifiable case (e.g. if f is a linear function, then the original z may be recovered).
In the general case of a non-linear mixing function f however, the model is unidentifiable from
i.i.d. observations of x (Hyvärinen and Pajunen, 1999). Given this negative result, several papers
introduced identifiable forms of non-linear ICA models (Harmeling et al., 2003; Sprekeler et al.,
2014; Hyvärinen and Morioka, 2016, 2017), based on the assumption that components (zi)pi=1 are
conditionally independent given an additional auxiliary random variable a ∈ RK . Examples of
auxiliary variables a include the past components in the case of time series analysis or some form
of class label (Hyvärinen and Morioka, 2016). With the observation of auxiliary variables, latent
recovery is possible up to a linear transformation under sufficient conditions (Hyvärinen and Morioka,
2016).

The iVAE framework (Khemakhem et al., 2020) proposes a VAE-based approach (Kingma
and Welling, 2014; Rezende et al., 2014) for learning the parameters θ of a generative model
pθ(x | z)pθ(z | a), as well as ϕ, those of a variational approximation qϕ(z | x, a) to the posterior
pθ(z | x, a). The iVAE specifies pθ(z | a) = N (µa, I) as a Gaussian location-scale family with
isotropic variance. As for the VAE, the parameters (θ, ϕ) of the iVAE are learned via maximization
of the evidence lower bound (ELBO):

log pθ(x | a) ≥ Eqϕ(z|x,a) log
pθ(x, z | a)
qϕ(z | x, a)

. (1)

2.2. Causal Inference from Unknown Interventions in Latent Space

Recent theoretical work (Lachapelle et al., 2022; Lachapelle and Lacoste-Julien, 2022) explores the
assumption of sparse connections between the auxiliary variables (al)Kl=1 and the latent components
(zi)pi=1, encoded in the form of a bipartite graph Ga = ([K], [p], E), where E is the edge set. In
the case where a describes a discrete data regime via one-hot encoding, the sparsity pattern of Ga

corresponds to the one of the mean vectors µa of pθ(z | a).
The novel sparsity assumption allows for recovery of latent units up to a permutation under

weaker assumptions than Khemakhem et al. (2020). Perhaps as importantly, it also allows for the
interpretation of the graph Ga from a causal perspective. More precisely, Theorem 22 of Lachapelle
et al. (2022) applies in the case where a ∈ {e1, e2, . . . , eK}, where each of el for l ∈ [K] is a
one-hot vector encoding the l-th intervention, and each intervention has unknown targets on the set
of components of z. The (unknown) graph Ga describes which latent components are targeted by the
intervention, that is Gai,l = 1 if and only if the l-th intervention targets zi. In this context, the sparsity
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assumption corresponds precisely to the sparse mechanism shift hypothesis from Schölkopf (2022)
i.e. that only a few mechanisms change at a time.

The VAE variant introduced in Lachapelle et al. (2022) (sparse VAE; sVAE) has an identical
generative model as the one from the iVAE, except for the prior pθ(z | a) for which a (stochastic)
binary mask Ĝai ∼ Bernoulli(πai ) is applied to the location parameter via element-wise product. The
estimation procedure also relies on variational inference, with an addition of the regularization term
α∥πai ∥1 to the ELBO, where α is a hyper parameter. To allow for gradient-based optimization of
the objective function, sVAE uses the Gumbel-sigmoid distribution, a continuous relaxation of the
Bernoulli distribution (Jang et al., 2017; Maddison et al., 2017).

3. A Sparse Mechanism Shift Model for Single Cell Measurements

For self-containment and context of this work, we first describe why interventions are a sensible
model for single-cell perturbations, and then propose a new model for causal representation learning
of those data.

3.1. Single-cell Perturbation Profiles as Interventional Data

Experimental advances in biology now allow us to actively intervene and change the properties of a
single cell by some genetic (Norman et al., 2019) or chemical (Srivatsan et al., 2020) perturbation and
then simultaneously profile each individually-perturbed cell for the identification of the perturbation
and its molecular profile. A genetic perturbation may be induced by the delivery of a guide RNA in
a cell expressing a CRISPR-associated protein (e.g., Cas9). Upon delivery, the CRISPR complex
performs a genetic intervention (e.g., knock-out) at the location of the gene targeted by the RNA
guide, altering the function of the gene, along with the associated protein. In the case of a chemical
perturbation, cells are growth in the presence of a small molecule, which may enter the cell via the
plasma membrane and interfere with one or several biochemical reactions. In both cases, interventions
can affect (directly and indirectly) the expression of many genes (gene programs) that correspond to
the activity of interpretable biological processes.

In such experiments, gene expression is profiled in each cell separately, after a fixed time, with
single-cell RNA sequencing (scRNA-seq) — a well-established technology used in diverse research
areas of biology such as development (Semrau et al., 2017), autoimmunity (Gaublomme et al., 2015),
and cancer (Patel et al., 2014). The measurements of a scRNA-seq experiment are summarized into a
gene expression matrix X = (X1, . . . , XN ) ∈ NN×d, with N the number of instances (cells), and d
the number of genes. Individual entries of this matrix xng count the number of transcripts aligned to
gene g in cell n. The same scRNA-seq assay also captures the identity of each intervention in each
cells, often in the form of an RNA-expressed barcode sequenced alongside native gene expression
levels. This information is summarized into an intervention design matrix A ∈ {0, 1}N×K , where K
denotes the total number of treatments (Figure 1A).

3.2. Generative Model under Sparse Mechanism Shift

Perturbation Model We assume a fixed number p of latent variables z = [z1, . . . , zp], each
representing the activity of a distinct biological process. Each intervention a ∈ [K] targets latent
variable i ∈ [p] with probability

πai ∼ Beta (1,K) ,
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such that the binary variable

γai ∼ Bernoulli (πai ) ,

encodes whether latent variable i is targeted by the intervention. Then, latent variable zi under
intervention a is generated as a mixture distribution

zi | a ∼ γai Normal (µai , 1) + (1− γai )Normal (0, 1) . (2)

We note that the choice of the hyperpriors for the Beta distribution is sparsity inducing (Moran et al.,
2022). Therefore, this generative model assumes that each perturbation should only affect a small
subset of the latent variables. This hypothesis, inspired by Lachapelle et al. (2022), encourages
the model to represent cells by the activity of biological processes that describe the effect of the
perturbations.

Measurement Model For each single cell n ∈ [N ], we measure the gene expression vector
xn = [xn1, . . . , xng], as well as the perturbation information an ∈ [K]. Latent variables zn are
generated conditionally on an, following (2). The expected frequency of expression of gene g is
calculated as

ρng = f(zn),

where f is a neural network with two hidden layers, 128 hidden units at each layer, and ReLU
non-linearity in between hidden layers. Notably, f also has a softmax non-linearity at its output, to
allow for interpretation of its output as a frequency of expression. Finally, gene expression xng is
generated as

xng ∼ NegativeBinomial (lnρng, θg) ,

where ln is the number of RNA transcript captured in cell n (referred to as library size, ln =
∑

g xng),
and θg are inverse-dispersion parameters. Indeed, the number of RNA transcripts captured in a
single-cell is (mostly) treated as an artifact of the assay, and must be factored out of the learned
representation. The choice of the negative binomial distribution is motivated by the fact that the
data takes the form of counts, with overdispersion (Grün et al., 2014). All in all, this measurement
model (a simplified version from the one described in Lopez et al. (2018)) takes into account major
technical factors of variation in the data, and encourages the latent variables to learn patterns more
reflective of the biological signal.

Connection to prior work Existing non-linear ICA models such as the iVAE and the sVAE are
not directly applicable to single-cell data, due to their unsuitable noise models. However, if we use
the measurement model presented here, and change the prior on γai to be a point mass at 1, we obtain
a model assimilated to the iVAE. Similarly, if we place a Laplace prior on πai and perform MAP
inference on γai , we obtain a model close to the sVAE. The model outlined here can be seen as a
Bayesian treatment of the mechanism sparsity model in sVAE, and we therefore refer to it as sVAE+
in the remainder of this paper.
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3.3. Variational Inference

The marginal probability of the data p(x | a) is intractable. Therefore, we proceed to posterior ap-
proximation with variational inference to learn the model’s parameters. We approximate the posterior
distribution of each {πai , γai , zni}a∈[K],i∈[p],n∈[N ] with the mean-field variational distribution:

q̄ =
∏
n∈[N ]

q(zn | xn, an)
∏

a∈[K],i∈[p]

q(γai )q(π
a
i ). (3)

As in VAEs, each q(zn | xn, an) follows a Gaussian distribution with diagonal covariance matrix.
The parameters of those distributions are encoded via neural networks. Each of the latent variables
q(γai ) follows a Bernoulli distribution with free variational parameters. Finally, we use a point mass
for each of q(πai ) = δψa

i
, therefore performing MAP inference over this set of latent variables. We

optimize the ELBO, derived as:

Eq̄

 N∑
n=1

log
p(xn, zn | γan)
q(zn | xn, an)

+
∑

a∈[K],i∈[p]

log
p(γai , π

a
i )

q(γai )q(π
a
i )

 . (4)

This objective function is amenable to stochastic optimization, as in Kingma and Welling (2014).
This allows us to sample a fixed number of data points at each iteration, as well as from the variational
distribution using the reparameterization trick and the Gumbel-sigmoid distribution for q(γai ). We
provide the derivation of (4) function in Appendix A. Additionally, we discuss practical challenges
we encountered for training this model, alongside with implementation details in Appendix B. We
implemented sVAE+ and the other baselines within the scvi-tools codebase (Gayoso et al.,
2022).

3.4. Downstream utilization of sVAE+

The sVAE+ model provides three main benefits (Figure 1C). First, the estimated graph Ga identifies
which latent variables are affected by which perturbations. Edges in this graph are calculated by
binarizing the matrix (πai )a∈[K],i∈[p] at threshold 0.5. This helps in biological interpretation. For
example, we can discover sets of perturbations that affect the same biological process. Second, the
sparsity constraint on the latent space promises to help in disentanglement: identifying individual
latent variables as distinct gene programs coordinately regulated by the perturbation, consistent with
our understanding of the underlying organization of a cellular molecular circuits (Heimberg et al.,
2016). Third, an important byproduct of the causal semantic is that one can reasonably expect the
learned representations to perform better at downstream tasks such as transfer learning (Schölkopf,
2022), a growing use-case of deep generative models in single-cell genomics (Lotfollahi et al.,
2022). In this work, we present a synthetic case of holding out perturbations and performing target
identification with a fixed generative model. However, we anticipate that transfer learning will be
helpful in other concrete tasks, such that the projection of new cells onto perturbation atlases (Peidli
et al., 2022) or the prediction of the outcome of perturbations across cellular contexts (e.g., different
cell lines or tissues).

To the best of our knowledge, sVAE+ is the first proposed framework to explicitly model cellular
perturbations as interventions on latent variables for the purpose of understanding causal mechanisms,
while incorporating a model of experimental noise from single cell RNA-seq assays.
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4. A Sandbox for Evaluation of Learned Representations

With sVAE+ being at the intersection of representation learning and single-cell biology, we consider it
is important to present its alignment/compliance with both fields. To do so, we propose a sandbox for
evaluation of current and future methods aimed at learning causal representations of single-cell data.
Our sandbox consists of three main components: (i) simulation module for perturbed scRNA-seq data
(ii) implementation of relevant baselines adapted for single-cell expression data and (iii) evaluation
module including quantitative metrics for evaluation of learned representations.

4.1. Sandbox overview

Simulated data An important component of our sandbox is the simulation framework, that allows
for systematic evaluation of the methods for all tasks on scRNA-seq data. We defer the details of
the simulation framework in Appendix C, and briefly present here its main features. We simulated
data from a deep generative model that takes into account common features of scRNA-seq data
(count distribution, library size). We sampled cells from synthetic interventions on latent variables,
targeting only a sparse subset of them. With these simulations, we have access to (i) ground truth
latent variables, required to assess disentanglement (ii) ground truth identity of intervention targets
in latent space for each perturbation, required to assess target identification and (iii) simulation of
out-of-domain samples. In this last case, these simulations provide a way to report performance
under more complex settings (different sparsity rate or effect size between train and test data).

Baselines Because practitioners rely on disentanglement methods with the hope for recovering
more insightful representations of single cell data, we include as baselines the standard vanilla
VAE (Kingma and Welling, 2014) and its popular derivative β-VAE (Higgins et al., 2017), both
adopted by the biology community (Lopez et al., 2018; Eraslan et al., 2022). We also include the
iVAE (Khemakhem et al., 2020) as well as the sVAE (Lachapelle et al., 2022), both explicitly aiming
at latent units recovery. All baselines were adjusted to account for single-cell readouts within the
unified framework of scvi-tools (details appear in Appendix D).

Evaluation metrics Based on the ground truth provided by our simulation framework, we evaluate
the performance of all methods in terms of disentanglement, causal structure learning, and trans-
ferability. For assessing disentanglement, we report the Mean Correlation Coefficient (MCC), an
established metric for permutation equivalence that measures the average Pearson (or Spearman)
correlation coefficients between pairs of ground truth and estimated latent variable, for the best
possible permutation. A high MCC means that we successfully identified the true parameters and
recovered the true sources. We also report R2, a metric for assessing identifiability up to a linear
transformation. To evaluate the learned causal structure, we report the precision, recall and F1 score
of the learned adjacency matrix of Ĝa compared to the ground truth Ga, taking into account the
permutation equivalence of z. Finally, to assess transferability, we report the negative log-likelihood
of data points from holdout perturbations (Interventional NLL). For such a perturbation a∗, we
fine-tune the model by learning parameters for the prior p(zn | a∗n), while keeping the rest of the
generative model p(xn | zn) fixed (Gentzel et al., 2019). In order to keep this evaluation procedure
as simple as possible, we do not regularize for sparsity with sVAE and sVAE+ during the fine-tuning
step. Finally, the likelihood is approximated using the importance weighted ELBO with 5, 000
particles (Burda et al., 2016).
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Table 1: Mean and standard deviation per metric on simulations for d = 15. Best in bold.

Disentanglement Causal discovery OOD
Pearson MCC (↑) Spearman MCC (↑) R2 (↑) Precision (↑) Recall (↑) F1 (↑) Inter. NLL (↓)

VAE 0.46 ± 0.02 0.40± 0.02 0.82± 0.00 - - - 327.10 ± 2.81
β-VAE 0.48± 0.02 0.42± 0.02 0.83± 0.00 - - - 392.68 ± 4.58
iVAE 0.47 ± 0.01 0.39± 0.00 0.85± 0.00 0.16± 0.02 0.18 ± 0.03 0.17± 0.08 323.26± 2.88
sVAE 0.72± 0.14 0.63± 0.13 0.84± 0.01 0.43± 0.19 0.39± 0.37 0.31± 0.13 318.26± 3.86
sVAE+ 0.88 ± 0.04 0.79 ± 0.04 0.86 ± 0.01 0.54 ± 0.10 0.47 ± 0.09 0.51 ± 0.09 315.43 ± 2.46

4.2. Experiments with synthetic data

As part of the empirical evaluation, we explored the performance of all methods across several values
of the latent space dimension, d ∈ {5, 10, 15, 20}. In all cases, we simulated data subject toK = 100
interventions, with 500 cells sampled per intervention. Measurements from 20 interventions were
held-out from the training set, and used for transfer learning evaluation. All configurations were
ran for 5 different random initialization. We selected the optimal hyper-parameters of each method
(number of epochs, β, and sparsity penalty α) using the Unsupervised Disentanglement Ranking
(UDR) framework (Duan et al., 2020) (hyper-parameter grids appear in Appendix D). The number of
latent variables of the generative model was fixed to the one used in the simulation.

We present the results for all methods across different metrics for d = 15 in Table 1. An
extended, systematic overview for different setups can be found in Appendix E. Our takeaways from
the synthetic experiments are as follows:

• Disentanglement All methods achieve high R2 score, which corresponds to a satisfactory
recovery of the latent units, up to a linear transformation. However, the iVAE, sVAE and
sVAE+ compare favorably to the standard VAE and β-VAE at the task of latent units recovery
up to a permutation, with sVAE+ being the strongest performer.

• Causal structure recovery The correct structure of the causal graph can be best recovered
with sVAE+, compared to sVAE and iVAE.

• Out-of-distribution generalisation sVAE and sVAE+ learning latent representations that
better model data from held-out interventions, as evaluated by the Interventional NLL.

To summarize, the proposed sandbox lets us better understand how different scenarios match with
each baselines, which can be leveraged depending on the application a practitioner has in mind
(whether the end goal is disentanglement, causal recovery or out-of-distribution generalization). In
addition, we also notice sVAE+, that includes Bayesian treatment of the mechanism sparsity model,
outperforms all VAE variants across all three objectives, without the need for tuning the sparsity
hyper prior (Appendix E.4).

5. Empirical Evaluation on Real Datasets

We apply our benchmark models to real-world data from two recent large-scale Perturb-seq experi-
ments (Norman et al., 2019; Replogle et al., 2022). Further details about the processing of these data
sets appear in Appendix F.
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Figure 2: Perturbation effects on latent components (subset of perturbations, and components).

5.1. In-domain Transferability and Interpretability on a Genetic Screen

In the data set from Norman et al. (2019), 105, 528 cells from an erythrocytic leukemia cell line
(K562) were profiled after interventions targeting one or two of 112 genes, including cell cycle
regulators, transcription factors, kinases, phosphatases, and genes of unknown function. After quality
control and data filtering, we retained 96, 221 cells of undergoing 212 different genetic interventions
and 8, 907 unperturbed (control) cells. Due to experimental limitations (Dixit et al., 2016), we observe
signal only for a subset of several thousand genes (here, d = 3, 000). The goal of the experiment
was to understand the mechanisms of genetic interactions and recover gene regulatory logics. In
order to simulate a transfer learning scenario, we selected the top-30 interventions with the most
significant effect on gene expression, as assessed by the maximum mean discrepancy (Gretton et al.,
2012) estimated with a linear kernel on a PCA with dimension 50, and held out the corresponding
cells as a test set. Because we did not hold out interventions according to biological knowledge, but
simply based on effect size across all interventions, we qualify this benchmark of “in-domain”.

We applied each studied method to this data set. Without ground truth, we use data points from
held-out interventions to evaluate the models after transfer learning. For all models, we report the
negative ELBO evaluated on a validation data set (val. nELBO; including additional cells with the
same perturbations as in the training data), as well the Interventional NLL (I-NLL) in Table 2. Mean
and standard deviations of the metrics are reported across five random initializations of the neural
network weights. All of iVAE, sVAE and sVAE+ improve data fit compared to the VAE and β-VAE,
as measured by the validation negative ELBO. However, while the iVAE provides the best fit to the
validation set, with a thin margin, it fits the test set poorly compared to sVAE and sVAE+. This
suggests that sVAE and sVAE+ have stronger transfer capabilities compared to other methods, and
learn a more causal representation of the data.

We also performed a preliminary biological interpretation of the sparse VAE model. We first
visualized the effect of perturbations in latent space in the form of a weighted adjacency matrix
Wij for Ga, where the weight encodes the shift in the mean of the corresponding latent component
zi for perturbation j (Figure 2). For visual convenience we focused on a subset of perturbations
and latent components to retain the most informative data. Briefly, many perturbations have similar
effects on latent variables, as it has been observed previously at the level of individual genes and
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Table 2: Results on the data set from Norman et al. (2019).

val. nELBO I-NLL

VAE 717.00± 0.06 776.26± 0.12
β-VAE 718.75± 0.11 777.18± 0.12
iVAE 715.69± 0.07 777.87± 0.11
sVAE 715.66± 0.10 776.02± 0.11
sVAE+ 716.30± 0.08 775.33± 0.13

programs (Dixit et al., 2016). This can be interpreted as the perturbed genes being a part of the
same pathway. Indeed, perturbations involving the same gene (in different combinations) grouped
together by their shared effect on latent factors, as did those involving different genes from related
pathways (e.g. FOXO and homeobox transcriptions factors affecting cell differentiation), whereas
perturbations in genes from different pathways had different effects (e.g. IRF1 vs. CEBP family
transcription factors). Additional biological interpretation of the model appears in Appendix G.

5.2. Out-of-Domain Transferability on a Genome-wide Genetic Screen

In order to assess more systematically the transferability of the generative model learned with
our benchmark methods, across distinct biological pathways, we now consider the larger data set
from Replogle et al. (2022). The original data has around two million cells, after interventions
targeting one of around ten thousand genes. We focused on a subset of interventions with large effect
on gene expression (K = 683), resulting in N = 116, 641 cells profiled. As in the previous data
set, we observe signal only for around a thousand genes (here, d = 1, 187). Those interventions
have been carefully annotated by experts into 63 clusters, of which 8 contained at least 20 distinct
interventions and were matched to a known biological pathway. We applied our transfer learning
benchmark, treating each pathway as a set of held-out perturbations (data splits are detailed in
Appendix F), and report the interventional NLL in Figure 3, across five random initializations of the
neural network weights. In most scenarios, sVAE+ outperforms all methods with this metric. Again,
this suggests that sVAE+ learns more desirable representation of cells.

6. Related Work

Disentanglement in Variational Auto-Encoders In order to quantify, and potentially improve
upon the poorly interpretable latent variables inferred by VAEs, Higgins et al. (2017) created (i) a
dataset with ground truth factors, (ii) metrics to quantify the mutual information between the inferred
and the true factors and (iii) a modification of the VAE that outperforms existing methods with respect
to these metrics. The proposed modification, the β-VAE, consists in scaling the Kullback-Leibler
divergence term in the evidence lower bound with a scalar β > 1. Notably, this line of work does
not necessarily associate disentanglement with the exact recovery of latent variables (unlike this
paper), but is more largely concerned by the conservation of coherent axes of variation in the data.
Several research groups proposed novel algorithms, such as the β-TCVAE (Chen et al., 2018) or the
Factor-VAE (Kim and Mnih, 2018), while others improved benchmarking and metrics (Eastwood
and Williams, 2018; Duan et al., 2020).
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Figure 3: Results on the data set from Replogle et al. (2022). Each box plot reports the interventional
likelihood (x-axis) on held-out interventions for a method (y-axis) trained on the full data
set with one pathway hold-out.

Identifiable Models from Unsupervised Data Although deep generative models are in general
unidentifiable, some recent work proposed different sets of assumptions for which recovery of latent
variables is possible. For example, Moran et al. (2022) proposed a VAE model for which each feature
may be generated from only a sparse set of latent factors. Such model is proven to be identifiable
under an anchor assumption, that stipulates that for each latent factor, there exists at least two features
depending only on that factor. This hypothesis is also relevant to the field of single-cell genomics,
for which a few genes may be reasonably expected to be part of only one biological process. More
recent work (Kivva et al., 2022) provides an identifiability result for unsupervised deep generative
models under a mixture model prior.

Supervised Generative Models Both of the iVAE and the sVAE are particular instances of con-
ditional deep generative models (Sohn et al., 2015). These models place the auxiliary variable a
“upstream” of the latent factors z in the corresponding graphical model, in the form of a conditional
prior p(z | a). A different modeling choice would consist in placing the auxiliary variable “down-
stream” of z, an idea commonly exploited in supervised topic models (Mcauliffe and Blei, 2007).
Such modeling hypotheses have limited causal semantic, but may still be useful for recovering
biological processes that are helpful for analyzing perturbation data, because the supervision may
effectively guide inference towards topics that are more reflective of those perturbations.

Causal Structure Learning Although here we consider the setting of learning from interventional
data with targets being latent variables (and therefore unknown), a related line of work is concerned
with learning causal relationships at the level of features, possibly under interventions (Wang et al.,
2017). These methods are in principle applicable to large-scale genetic screens (Lopez et al., 2022),
because by design we know which genes are targeted by each intervention. However, current
algorithms for causal structure learning are very limited in their ability to handle internal cellular
states (confounding factors), a task for which latent variable models are more suitable. Therefore,
this paper presents an alternative modeling choice for this type of interventional data.
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7. Discussion

We propose to explicitly model perturbations in single-cell genomics as interventions on a latent
space, with a causal semantic. This naturally leads to the application of the sVAE (Lachapelle et al.,
2022) and iVAE (Khemakhem et al., 2020) framework, as well as our proposed sVAE+ model, to
disentangle the latent space of single cell data by leveraging additional knowledge of perturbations.
We provide a benchmarking framework for assessing the performance of the learned representations
in terms of level of disentanglement, causal target identification, as well as transfer learning. In
simulated data, both approaches outperform the β-VAE and the vanilla VAE, with a strong advantage
for sVAE+, explicitly assuming sparsity in mechanism shifts for each perturbation. We also applied
all methods to two real data sets. Our analysis suggests that sparsity may help in transfer learning
and interpretation of latent variables. Importantly, we see in Figure 2 that multiple latent variables
are affected by each intervention, which suggests more informative constraints to the model could be
added to further improve its interpretability (Lotfollahi et al., 2023).

The hypotheses from the sVAE+ model in its current state, however, may present a few limitations
for biological applications. Importantly, although it may be reasonable to expect that genetic (and
often chemical) interventions directly trigger a sparse subset of a cell’s circuitry (e.g., blocking a
single pathway (Dixit et al., 2016)), there are important molecular feedback mechanisms that can
induce indirect downstream effects in other pathways, especially as increasing time passes from
the initial perturbation (Freimer et al., 2022). Because many experiments measure gene expression
from hours to days after intervention, sparsity may be a limiting assumption without resolving
interactions between pathways, discussed at length in biological application of traditional causal
discovery learning methods (Segal et al., 2005; Friedman et al., 2000; Pe’er et al., 2001). This issue
could be resolved in the future with the potential availability of time-resolved measurements from
single-cell perturbation experiments. We note that the treatment of those time-resolved measurements
is included in the theory of Lachapelle et al. (2022) (Theorem 5), although in this paper we focused
on the more specific theorem with action-sparsity described in Theorem 22. In Appendix H, we
discuss more technical assumptions of Lachapelle et al. (2022), such as covering of latent variable
by the interventions, and sufficiently variability. Briefly, we found that the benefit of models that
account for action-sparsity is reduced when perturbations have small effects, or target a small subset
of all the latent variables.

To conclude, we present a first attempt at leveraging the sparse mechanism shift assumption
for the purpose of learning causal representations as well as interpretable models of single-cell
perturbation data. Looking forward, we anticipate that this line of work may unlock new perspectives
to reason about perturbations as interventions on the genetic and molecular circuits that govern a
cell’s identity (Wagner et al., 2016). This perspective is especially important for enhancing our
understanding of biological processes leading to disease states, as well as proposing candidate targets
and drugs.

Code Availability Statement

We implement our new model and benchmarks using the scvi-tools library, and release it as
open-source software at https://github.com/Genentech/sVAE.
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Appendices
The appendices are organized as follows. We first provide the mathematical derivations of the
evidence lower bound of sVAE+ (Appendix A), along with implementation details (Appendix B).
Then, in Appendix C, we provide details about our simulation framework. In Appendix D, we explain
the baselines used in this study, and the hyperparameter grid used for reporting the experimental
results. In Appendix E, we provide supplementary experimental results. In Appendix F, we report the
preprocessing steps for the real-world data sets. In Appendix H, we discuss the technical assumptions
from the work of Lachapelle et al. (2022), and the implication it has in this study.

Appendix A. Derivation of the Evidence Lower Bound for sVAE+

We now derive the ELBO that is used as the objective function for inference within the sVAE+
framework. Let us note X = [xn]

N
n=1 and A = [an]

N
n=1. We also adopt vector notation for the latent

variables γ = [γai ]a∈[K],i∈[p], π = [πai ]a∈[K],i∈[p] and Z = [zn]
N
n=1. We remind the reader that the

likelihood of the data may be written as an intractable integral over the (latent) random variables:

log p(X | A) = log

N∏
n=1

p(xn | an) (5)

= log

∫∫∫ N∏
n=1

p(xn, zn,γ,π | an)dZdγdπ (6)

= log

∫∫∫ N∏
n=1

p(xn | zn)p(zn | γan)
∏
a∈[K]

∏
i∈[p]

p(γai | πai )p(πai )dZdγdπ. (7)

Now, we remind the reader of the variational distribution

q̄ =
∏
n∈[N ]

q(zn | xn, an)
∏

a∈[K],i∈[p]

q(γai )q(π
a
i ). (8)

To derive the evidence lower bound, we start by weighting the integrand by the variational distribution
as follows:

log p(X | A) = logEq̄

 N∏
n=1

p(xn | zn)p(zn | γan)
q(zn | xn, an)

∏
a∈[K]

∏
i∈[p]

p(γai | πai )p(πai )
q(γai )q(π

a
i )

 , (9)

and then use the concavity of the natural logarithm to apply Jensen inequality:

log p(X | A) ≥ Eq̄ log

 N∏
n=1

p(xn | zn)p(zn | γan)
q(zn | xn, an)

∏
a∈[K]

∏
i∈[p]

p(γai | πai )p(πai )
q(γai )q(π

a
i )

 . (10)

From this follows the celebrated evidence lower bound (ELBO):

log p(X | A) ≥ Eq̄

 N∑
n=1

log
p(xn, zn | γan)
q(zn | xn, an)

+
∑

a∈[K],i∈[p]

log
p(γai | πai )p(πai )
q(γai )q(π

a
i )

 . (11)
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Exploiting the analytical expressions for (i) the Kullback-Leibler divergence between two multivariate
Gaussian distributions, (ii) the Kullback-Leibler divergence between two Bernoulli distribution and
(iii) the simplification of the expression resulting from q(π) = δψ being a Dirac distribution, we get
the final objective function:

log p(X | A) ≥Eq̄

[
N∑
n=1

log p(xn | zn)−DKL(q(zn | xn, an) ∥ p(zn | γan))

]
−

∑
a∈[K],i∈[p]

DKL(q(γ
a
i ) ∥ Bernoulli(ψai ))− logBeta(ψai ; 1,K).

(12)

The last technical challenge remains in applying the reparameterization trick to q(γ), for which
we use the Gumbel-sigmoid distribution (Maddison et al., 2017), as a continuous relaxation of the
Bernoulli distribution. As written, the objective function may now be implemented in PyTorch
(Paszke et al., 2019), and scvi-tools (Gayoso et al., 2022).

Appendix B. Practical Considerations for the Implementation of sVAE+

We have encountered a practical difficulty with the implementation of the evidence lower bound
described in Appendix A. Indeed, the obtained sparsity rate in the posterior distribution q(γ) was
particularly variable with respect to the number of samples N , the parameter K for the prior
distribution p(π) and also the number of epochs during training. This behavior potentially reveals
model mis-specification, and / or sub-optimal choices for the parameterization of the variational
distribution (Grünwald and van Ommen, 2017).

To systematically investigate this behavior, we explored re-weighting the objective function using
a pseudo sample size parameter Npseudo as follows:

ELBOpseudo = Eq̄

[
Npseudo

N

N∑
n=1

log p(xn | zn)−DKL(q(zn | xn, an) ∥ p(zn | γan))

]
−

∑
a∈[K],i∈[p]

DKL(q(γ
a
i ) ∥ Bernoulli(ψai ))− logBeta(ψai ; 1,K).

(13)

Using the re-weighted ELBO in (13) as the objective function, with Npseudo = 200, we were able to
outperform all baselines and obtain state-of-the-art results on the simulation scheme presented in
Appendix C (not reported in this manuscript).

However, because the optimal value of Npseudo may change depending on the data set, and more
specifically on the values of p, K and N , we sought to find a simpler implementation that would
perform well throughout the paper with a minimum number of parameters to tune. The practical
solution1 we retained was to fix the value of ψai to E[q(γai )] in (12), instead of optimizing it as a free
parameter. We have found this simplification of the inference procedure to outperform all baselines,
and therefore was applied throughout the paper.

This simplification results in an inference procedure that provides no treatment of the uncertainty
for the sparsity patterns in the graph Ĝa. This is an important point, because such measure of
uncertainty is insightful to assess the statistical significance of the edges in the causal graph (following

1. This solution is implemented in the code, and the original lower bound appears as commented.
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the principles of Bayesian decision theory, with examples in Clivio et al. (2019) and Lopez et al.
(2020a)). We therefore expect that more advanced treatment of the sparsity, such as improvements
over the Beta-Bernoulli prior, or in the inference procedure, will provide substantial improvement as
well as usability to sVAE+. We treat such practical advances as future work.

Appendix C. Simulation Details

We simulate single-cell gene expression profiles from perturbation experiments as follows. We
assume we have measurements from N cells. Each of the cells, for example cell n ∈ [N ], has been
exposed to a perturbation/intervention an ∈ [K]. We use K = 100 interventions in our simulations,
and sample N = 100, 000 cells in total. The first 80 interventions form the training set, and the last
20 form the test set. Each intervention a ∈ [K] is represented by a sparse perturbation embedding
µa ∈ Rp, where p = 15 is the dimension of the embedding.

For each intervention, we treat the number of affected latent dimensions ta = {1, 2, 3} uniformly
at random. The indices of affected dimensions are also drawn without replacement from [p], encoded
into a binary vector βa,. ∈ {0, 1}p. Finally, each component µa,i of µa = (µa,1, . . . , µa,p) for i ∈ [p]
is generated as:

ηa,i ∼
1

2
Normal(−e, 0.5) + 1

2
Normal(e, 0.5) (14)

µa,i ∼ (1− βa,i)δ0 + βa,iηa,i, (15)

where e is a scalar quantifying the strength of the intervention, and δ0 designates the Dirac delta
distribution with mass at 0. For cell n, exposed to intervention an, latent variable zn is generated as:

zn ∼ Normal(µa, I), (16)

where each individual component of zn encodes the activity of a pathway, shifted by the intervention.
Measurements xng from a single cell n and a gene g are generated from a count distribution:

xng ∼ Poisson (lnfg(zn)) , (17)

where ln is the library size fixed to 105, and the mixing function f is a neural network with three
hidden layers of 40 units, Leaky-ReLU activations with a negative slope of 0.2, and a softmax non-
linearity on the last layer to convert the outputs to counts (Lopez et al., 2018). The weight matrices
of f are sampled according to an isotropic Gaussian distribution, with orthogonal columns, to make
sure f is injective (Lachapelle et al., 2022). Although we used a Poisson distribution for simplicity,
future work will investigate the use of more realistic count distributions such as Beta-Poisson, or
negative binomial, that may be important to model over-dispersion of scRNA-seq data (Zhang et al.,
2019).

Appendix D. Details for Empirical Evaluation of the Benchmark Methods

In this section, we provide the necessary details for reproducing the experiments in the paper.
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D.1. Baseline and Metric Details

Shared components of the generative model All models rely on the generative model described
in Section 3. For the VAE and β-VAE, γ = 0 while for iVAE, γ = 1. Similarly, the sVAE is
implemented with a Laplace prior on π as in the original publication. The neural network architecture
for f in the generative model is given in section C.

Shared components of the inference The mean and variance of the variational distribution for
z are each obtained as the output of a neural network with two hidden layers, 128 hidden units at
each layer and ReLU non-linearity in between hidden layers, taking as input the observed data x. We
optimize the ELBO using the Adam optimizer (Kingma and Ba, 2015) with minibatches of size 128.

VAE and β-VAE Since both of these models do not have the ability to use the interventions while
modeling the data, in our implementation we let them use all the available data and simply ignore the
covariate a.

iVAE Unlike sVAE and sVAE+ which can estimate a causal graph, iVAE only outputs estimates
for the parameters µ (effect of each intervention on each latent variable). In order to compare those
three baselines, we need a heuristic to build an adjacency matrix from the estimates of µ. In this
benchmark, we initially used the outlier detection method from Rousseeuw and Driessen (1999),
based on the idea that for each intervention, we seek to find the latent variables with most significant
sensitivity to it. However, the method have yielded poor result (high recall), therefore we simply
selected the top-2 latent units per intervention, ordered by the absolute value of their µ parameter.
With such type of heuristics, we ensure to have a sparse graph, based on the most meaningful factors.

Transfer Learning Details For the transfer learning experiments, we fix the parameters of the
generative model, as well as the ones of the variational network. For VAE and β-VAE, we report the
importance weighted ELBO (IWELBO) for the hold-out interventions. For iVAE, sVAE, and sVAE+,
we proceed to a fine-tuning step with all of the above parameters frozen, except for the parameter µ.
In this fine-tuning step, we fix the variables γ to 1 to avoid the sparsity prior to constrain the model
in fitting the test set. The IWELBO (Burda et al., 2016) with T particles is calculated as:

IWELBOT (X | A) =
N∑
n=1

Ez1n,...,zTn∼q(zn|xn,an)

[
log

1

T

T∑
t=1

p(xn, z
t
n | γan = 1)

q(ztn | xn, an)

]
. (18)

D.2. Hyper parameters Grid for the Simulated Data

For all methods, we performed an exhaustive hyper parameter grid search. We used the Unsupervised
Disentanglement Ranking (UDR) framework (Duan et al., 2020) for selecting the optimal hyper
parameters. The complete hyper parameter search space for each algorithm is described in Table 3.

Appendix E. Additional Results from Synthetic Experiments

For quantitative comparison of the considered baseline methods, we leverage the availability of
ground truth latent variables in simulated data sets. In the proposed sandbox in Section 4, we
have control over: the size of the effect for interventions - ea, the sparsity of the interventions -
ta, as well as the dimensionality of the latent and auxiliary variables. The aim of this paper is
to evaluate the extent to which sparse, identifiable methods provide disentangled, or ultimately
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Table 3: Grid search spaces for each baseline.

Hyperparameter space

VAE nepochs ∈ {300, 500}
β-VAE nepochs ∈ {300, 500} , β ∈ {8, 10, 30}
iVAE nepochs ∈ {300, 500}
sVAE nepochs ∈ {300, 500}, α ∈ {10, 20, 40, 60, 80, 100}
sVAE+ nepochs ∈ {300, 500} α ∈ {10, 20, 40, 60, 80, 100}

“generalizable/transferable” representations. To systematically assess the quality i.e. transferability
of the learned representations, we propose the following scenarios:

• transfer to unseen, in-domain interventions (hold-out interventions form a data set with same
level of sparsity and effect size);

• transfer to unseen out-of domain interventions (hold-out interventions form a data set with
different level of sparsity or effect size).

E.1. Results for different latent dimensions

We present the disentanglement results for alternate number of latent dimensions in our simulations
in Table 4. The conclusions in the main text are robust to this choice.

Table 4: Pearson MCC scores on hold out interventions with respect to the number of latent space
dimensions.

VAE iVAE sVAE sVAE+ β-VAE

p = 5 0.59± 0.12 0.69± 0.09 0.71 ± 0.09 0.94 ± 0.03 0.63± 0.06
p = 10 0.55± 0.10 0.66± 0.13 0.72 ± 0.13 0.91 ± 0.03 0.58± 0.03
p = 15 0.56± 0.09 0.68± 0.11 0.72 ± 0.08 0.88 ± 0.04 0.58± 0.08
p = 20 0.47± 0.01 0.59± 0.03 0.70 ± 0.09 0.76 ± 0.02 0.55± 0.08

E.2. Unseen In-domain interventions

The results included in the main section of the paper correspond to the in-domain scenario. Namely,
we generate a sample data set with sparse interventions, we train each baseline on cells affected by
only 80 of those interventions, and we evaluate on the hold out, not seen 20 interventions. Here, we
extend this results to different dimensionality of the latent variable. In Table 5, we include the results
for in-domain interventions with same levels of sparsity in both train and test sets. That is, we train a
model on a data set where a fraction s′ of all possible edges in Ga are included, and we test on a
data set with same sparsity. In Table 6, we investigate how those results hold with different effect
sizes (encoded by the absolute value of the mean of the Gaussian prior shift under intervention). Our
experiments for the in-domain interventions provide the following takeaways:
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• observing the interventional NLL scores, the denser the ground truth latent model is, the more
difficult it is to fit it with the sparse baselines

• observing the MCC scores, disentanglement is easier to achieve in smaller dimensionality of
the latent space and when sparse shifts are present

E.3. Unseen Out-of-domain interventions

Here, we use the flexibility of our sandbox to simulate different scenarios to mimic different
interventions regarding change in effect size from train to test set, or change in sparsity of the
bipartite graph Ga. In Table 7, we include the results for out-of-domain interventions with different
levels of sparsity between train and test sets. That is, we train a model on a data set where s′ of all
possible edges in Ga are included, and we test on a data set with reduced sparsity, s′′, s.t. s′′ ≥ s′.
Similarly, we include results for different effect sizes in Table 8. We train all models on a smaller
effect interventions e′ and test on interventions with larger effects e′′. Our experiments for the
out-of-domain interventions provide the following takeaways:

• observing the interventional NLL scores, the more sparse the ground truth latent model in the
transfer domain, the more difficult it is to fit it for all baselines

• observing the MCC scores, disentanglement, or identifiability of the true latent variables is not
possible in the out-of-domain interventions.

E.4. Additional ablation analysis

Additionally, we explored the robustness of sVAE+ with regards to the hyper prior α defining the
shape parameters (1, α) for the Beta distribution. We remind the reader that this distribution controls
the level of sparsity of the causal graph Ga estimated by sVAE+. From Figure 4, we notice the
robustness of sVAE+ with regards to different values α. In practice, we found that choosing α = K
(the number of interventions) has competitive performance.

50 100 150 200
sparsity - 

0.6

0.7

0.8

mcc

50 100 150 200
sparsity - 

317.5

320.0

322.5 Inter. NLL

50 100 150 200
sparsity - 

0.80

0.85

R2

Figure 4: Pearson MCC, interventional NLL and R2 score with respect to different values for the
sparsity hyperparameter α in sVAE+.

Appendix F. Preprocessing of real world single-cell data

F.1. Norman data set

The original data set from Norman et al. (2019) is publicly available from GEO (GSE133344). For
this manuscript, we downloaded the data processed according to Lotfollahi et al. (2021). Cells
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Table 5: Results for transferability for in-domain interventions at different levels of sparsity s of the
adjacency matrix Ga. The effect size and latent dimension are kept fixed: ea = 5 for all
interventions and dz = 10. Results in bold are best per metric.

s′ = 0.2 s′ = 0.5 s′ = 0.9
pMCC Interv. NLL pMCC Interv. NLL pMCC Interv. NLL

iVAE 0.53 319.27 0.58 330.56 0.60 333.28
sVAE 0.79 318.69 0.58 329.68 0.52 333.98
sVAE+ 0.83 309.45 0.57 322.01 0.59 322.51

Table 6: Results for transferability for in-domain interventions for different sizes of the shift effect e.
The sparsity size and latent dimension are kept fixed: sa = 0.2 for all interventions and
dz = 5. Results in bold are best per metric.

e′ = 1 e′ = 2 e′ = 5
pMCC Interv. NLL pMCC Interv. NLL pMCC Interv. NLL

iVAE 0.78 341.08 0.68 356.84 0.67 381.62
sVAE 0.78 341.03 0.68 349.55 0.66 375.80
sVAE+ 0.78 338.78 0.73 339.80 0.92 341.40

Table 7: Results for transferability for out-of-domain interventions at different levels of sparsity s of
the adjacency matrix Ga. The effect size and latent dimension are kept fixed: ea = 5 for all
interventions and dz = 10. Results in bold are best per metric.

s′ = 0.2 → s′′ = 0.5 s′ = 0.5 → s′′ = 0.7 s′ = 0.7 → s′′ = 0.99
pMCC Interv. NLL pMCC Interv. NLL pMCC Interv. NLL

iVAE 0.44 667.77 0.38 721.55 0.44 762.35
sVAE 0.40 676.64 0.38 720.33 0.37 710.88
sVAE+ 0.41 656.61 0.42 675.15 0.49 681.25

Table 8: Results for transferability for out-of-domain interventions for different sizes of the shift
effect e. The sparsity size and latent dimension are kept fixed: sa = 0.2 for all interventions
and dz = 5. Results in bold are best per metric.

e′ = 1 → e′′ = 3 e′ = 2 → e′′ = 4 e′ = 5 → e′′ = 7
pMCC Interv. NLL pMCC Interv. NLL pMCC Interv. NLL

iVAE 0.47 1179.31 0.59 1153.24 0.58 1224.26
sVAE 0.47 1173.11 0.44 1168.79 0.43 1229.12
sVAE+ 0.47 1103.91 0.51 1104.70 0.46 1179.39
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with guide “NegCtrl1_NegCtrl0_NegCtrl1_NegCtrl0” were excluded. All unperturbed cells were
merged as one control (observational) condition. d = 3, 000 highly variable genes were selected
using scanpy (Wolf et al., 2018) for training. For this data set, all models were run with p = 50
latent variables, and for nepochs = 300 epochs. The remainder of the hyperparameters were selected
via the evidence lower bound on a validation set, that contained the same interventions as the ones of
the training set, as in Brouillard et al. (2020).

F.2. Replogle data set

Pre-filtered single-cell expression data of K562 cells from Replogle et al. (2022) was downloaded
from http://gwps.wi.mit.edu. Selection of genes and interventions, as well as clustering of interven-
tions into pathways was obtained from Supplementary Table 3 of the original paper. The number of
interventions / cells used in the training and testing data sets are detailed for each data split in Table 9.
For this data set, all models were run with p = 50 latent variables, and for nepochs = 100 epochs.
The remainder of the hyperparameters were selected via the evidence lower bound on a validation
set, that contained the same interventions as the ones of the training set, as in Brouillard et al. (2020).

Table 9: Number of interventions used across data splits used for the Replogle dataset.

Ktrain Ktest

Exosome and mRNA turnover 663 20
Spliceosome 648 35
Mediator complex 657 26
TFIIH/nucleotide excision repair 660 23
39S ribosomal subunit, mitochondrial 586 97
60S ribosomal subunit, cytoplasmic 640 43
40S ribosomal subunit, cytoplasmic 630 53
mitochondrial protein translocation 643 40

Appendix G. Biological interpretation of the sVAE+ model on the Norman dataset

We investigated how statistics of the number of perturbed latent variables and/or of the effect size
was changing according to whether one or two genes were targeted in the cell (Figure 5a). The
distribution of both statistics is significantly higher for double vs. single gene perturbations, as
overall expected.

Finally, we sought to assess whether the learned latent variables are reflective of known patterns
in genetic interactions. Two examples of genetic interactions are pointed out in Figure 5b. In
the first one, we may notice that the latent shift for the perturbation that involved a combination
of perturbations in CEBPA and KLF1 has a pattern mostly similar to the shift of a single gene
perturbation CEBPA, as previously reported (Norman et al., 2019). This is an example of a dominant
interaction, already visible in Figure 2, in other combinations (e.g., DUSP9, ETS2). In the second
example (CLB, CNN1), the sparsity pattern identifies two latent variables (number 39 and 99; black
rectangle) with a shift that did not appear in any of the individual perturbations. We applied Integrated
Gradients (Sundararajan et al., 2017) to each of those two components of the encoder network to
obtain a list of 50 most important genes, and used EnrichR (Chen et al., 2013) to obtain an associated
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Figure 5: (A) Targets and effect size identified by the model. (B) Genetic interactions as identified
from target and effect sizes with the model.

gene signature. A positive change in latent variable 99 was associated with hemoglobin alpha binding,
and hydrogen peroxyde metabolic process, both important in the context of erythocytes (the source
cell line). Latent variable 39 was associated with RNA binding.

Appendix H. Discussion on identifiability (sVAE) assumptions in single-cell data

The original version of sVAE as proposed in Lachapelle et al. (2022) does not account for single-cell
data. Hence we did modifications to adjust for that, as explained in Section 3. Additionally, for
the identifiability theory of sVAE to hold, a number of assumptions are required, as stated in their
Theorem 5. In what follows we discuss the main differences and modifications in the single-cell
context.

H.1. Discrete observation space

The basic theory of Khemakhem et al. (2020), and Lachapelle et al. (2022) assumes that the data x is
generated as x = f(z) + ϵ where components of ϵ are mutually independent, and all independent of
z. It also assumes that f is a differentiable bijection with a differentiable inverse. Consequently, this
theory may not be used to back up the claim that the decoder f of the generative model detailed in
Section 3 is identifiable. Indeed, we assume that x follows a count distribution whose parameters
depend on z, and this goes beyond the framework described by the aforementioned theoretical papers.
However, the appendices of Khemakhem et al. (2020) (as well as the Section 3 of this paper) describe
encouraging empirical results that algorithms motivated by theory for data with linear Gaussian
observation noise also improve performance on discrete observation spaces. The characterization of
the theoretical conditions that are necessary and sufficient to guarantee identifiability with a discrete
observation space remains an open problem in the field.

H.2. Sufficient variability

Both sVAE and iVAE require an “assumption of variability” that specify that the conditional distribu-
tion p(z | a) must sufficiently vary with a. In both papers, this assumption is detailed as a geometric
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condition and cannot be validated in real data. Interestingly, this assumption is also not sufficient
for guarantee correct estimation of the parameters in the case of finite sample sizes. This opens the
way for new theoretical developments, based of non-asymptotic bounds (Wainwright, 2019). For
example, we may wonder how many measurements are needed, under “sufficient variability”, for
estimating the latent variables when the interventional effect size becomes small.

From a more practical perspective, we accounted for this in our simulations by making sure
the strength of the shift (encoded by parameter e in Appendix C) was large enough. Interestingly,
as we see from the simulation, when the strength of the effect is low, methods have difficulties in
disentangling the latent factors (Table 8).

This has also an important implication for real-world applications. In an earlier iteration of this
project, we tried to apply iVAE and sVAE to the large-scale chemical screen presented in Srivatsan
et al. (2020), but none of those baselines outperformed the vanilla VAE. After investigation, we
attribute this to (i) a majority of chemicals having low effect on gene expression, (ii) a large fraction
of the variance of the data being attributed to other signals, such as cell type variation, or cell cycles.
In this case, all conditional VAEs may ignore information from the covariates and produce a similar
result than the vanilla VAE.

H.3. Graphical criterion

The theoretical results of Lachapelle et al. (2022) hold under a precise condition on the structure
of the ground truth graph Ga. For example, it is necessary (but not sufficient) for the intervention
set to at least cover all of the latent variables in the model. If this is not the case, then we may
have disentanglement only in a block of latent variables (Lachapelle and Lacoste-Julien, 2022).
This assumption is particularly relevant because experiments may only focus on subsets of possible
perturbations (due to cost and labor limitations) and not all latent variables may be impacted.

Importantly, perturbing all the latent variables is not sufficient. A complete graphical condition
is exhibited the sVAE paper. However, this assumption may be difficult to validate or verify in
practice. Still, according to the results of our simulation experiments (that did not take into account
this condition while creating Ga, as well as the empirical evaluation in Appendix B.4. in Lachapelle
et al. (2022), the causal graph can be approximate recovered with competitive performance compared
to baselines even in the case when the graphical criterion is violated.

We investigated this more systematically using our simulation setting, in the same conditions than
in Table 1, but by constraining the perturbations to cover only a specific number of latent variables
(varying from 1 to 15) out of the 15 latent variables. Those results, reported in Table 10, indicate that
performance lower considerably when a large fraction of latent variables are not intervened upon, as
expected from the theory.

Appendix I. Noise models for scRNA-seq

Gene expression data captured by single-cell RNA sequencing can be composed as technical noise, as
well as biological signal. The technical noise is complex, but usually described by two components:
(a) the number of RNA transcripts captured in a single-cell is (mostly) treated as an artifact of
the assay, and must be factored out of the learned representation. (b) the data takes the form of
counts, with overdispersion. The best noise distribution is (still) a topic of active research, however,
there is a general consensus that the noise model presented by (Lopez et al., 2018), with a scaled
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Table 10: Evolution of Pearson MCC metric for sVAE+ when the interventions only cover a strict
subset of latent units (d=15).

# targeted
latent variables

Pearson
MCC

1 0.5
4 0.59
7 0.71
12 0.85
15 0.88

negative binomial distribution provides satisfactory results. For more details on the noise in scRNA
measurements, we refer the reader to Grün et al. (2014).
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