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Abstract
Causal abstraction provides a theory describing how several causal models can represent the same
system at different levels of detail. Existing theoretical proposals limit the analysis of abstract
models to “hard” interventions fixing causal variables to be constant values. In this work, we extend
causal abstraction to “soft” interventions, which assign possibly non-constant functions to variables
without adding new causal connections. Specifically, (i) we generalize τ -abstraction from Beckers
and Halpern (2019) to soft interventions, (ii) we propose a further definition of soft abstraction to
ensure a unique map ω between soft interventions, and (iii) we prove that our constructive definition
of soft abstraction guarantees the intervention map ω has a specific and necessary explicit form.
Keywords: Causal Abstraction, Soft Interventions, Structural Causal Models

1. Introduction

Causal modeling is a crucial tool to represent, reason, and act on systems composed of causally
connected independent mechanisms (Peters et al., 2017; Bareinboim et al., 2022). A causal analysis
requires a choice of variables; that is, we must choose the level of abstraction in which to couch an
analysis (Woodward, 2015). The question becomes especially salient with a large number of densely
connected variables that are difficult to analyze or understand. As such, the fundamental concept
of causal abstraction has played a key role in the scientific investigation of complex phenomena,
including weather patterns (Chalupka et al., 2016), brains (Dubois et al., 2020a,b), and deep learning
artificial intelligence models (Chalupka et al., 2015; Geiger et al., 2020, 2021).

Within causal modeling, there is a recent growing body of literature on formal theories of causal
abstraction (Chalupka et al., 2017; Rubenstein et al., 2017; Zennaro, 2022). However, following
the widespread do-operator (Pearl, 2009), existing theories of causal abstraction only consider hard
interventions, where a variable is fixed to a single value. Not all mechanistic changes to a real-world
system can be represented by a hard intervention. For instance, increasing network weights in a deep
learning model is not a matter of fixing the values in representations; the causal mechanisms have
been altered, but not fixed. In this context, soft interventions formalize the replacement of causal
mechanisms with different and possibly non-constant mechanisms (Eberhardt and Scheines, 2007).

In this paper, we extend previous work on τ -abstraction (Beckers and Halpern, 2019) to address
the description of non-constant abstracted mechanisms. In Section 5, we introduce a generalization
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Figure 1: A visual depiction of constructive soft abstraction. The alignment between the high and
low-level models is given by a map Π from high-level variables to sets of low-level vari-
ables and functions τ mapping exogenous and endogenous settings. The surjective partial
function ω maps a low-level intervention i to a high-level intervention ω(i). Notably, the
function ω is uniquely induced by the functions τ , and we provide its explicit form. In-
terventions may be hard (indicated by the red slash through the dashed red arrow) or
soft (indicated by a solid red arrow with no slash). Observe that an intervention being
performed on the connection between low-level clusters does not necessarily result in
high-level interventions.

of the underlying formal concepts and we prove that, while correctly handling low-level soft in-
terventions, the resulting definition of τ -abstraction is ambiguous for high-level soft interventions.
Consequently, we propose a novel definition of soft abstraction by strengthening the consistency
requirement of τ -abstraction on endogenous settings. Notably, we are able to prove that our exten-
sion maintains desirable properties of τ -abstraction and that is equivalent to it whenever the two
models are hard-intervened. Finally, in Section 6, we specialize our definition to the constructive
case, where each high-level variable depends on a subset of the low-level variables, as in Figure 1.
As a further contribution, we prove that constructive soft abstraction implies a unique explicit form
on the function mapping interventions from the lower- to the higher-level model.

2. Related Work

Rubenstein et al. (2017) introduce the notion of an “exact transformation” to understand when a
probabilistic causal model can be transformed into another model in a causally consistent way. The
core mathematical objects in an exact transformation are τ , a map between total settings of the
causal models, and ω, a surjective and order-preserving map between hard interventions. Beckers
and Halpern (2019) build on this work, introducing the notion of τ -abstraction, which requires
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τ to induce a specific function ω in order to rule out unintuitive aspects of exact transformation.
Our work directly extends their definitions to handle soft interventions. Since our work focuses on
redefining foundations of causal abstraction for soft interventions, we do not tackle the problem of
measuring approximate abstraction (Beckers et al., 2019; Rischel and Weichwald, 2021). Therefore,
we limit to the scenario where higher-level abstract variables can be exactly retrieved as a function
of low-level ones. For an in depth survey of similar abstraction relations, we refer the reader to
Zennaro (2022), which reviews various causal abstraction proposals for hard intervened models.

3. Structural Causal Models

Throughout the paper, we use notation X to denote a fixed set of variables, each V ∈X with
domain Val(V ) of possible values. We refer to the set of all possible subsets of variables as the
power set P(X). The domain of any subset of variables V ⊆ X is the Cartesian product of
the members domains Val(V ) =×V ∈V Val(V ). We refer to the values v ∈ Val(V ) as partial
settings. Similarly, we call x ∈ Val(X) a total setting. Finally, given a total setting x ∈ Val(X)
and a set of variables V ⊆X , we define the projection Proj(x,V ) ∈ Val(V ) as the partial setting
on variables V matching x.

Structural Causal Models (SCMs) express causal connections as functional relations between
variables (Bongers et al., 2021). In particular, SCMs distinguish between endogenous variables, for
which the causal mechanism is determined, and exogenous random variables.

Definition 1 (Structural Causal Model) A Structural Causal ModelM is a tuple (X,E,F ,PE)
such that

1. X is a set of endogenous variables with domain Val(X) for each X ∈X ,

2. E is a set of exogenous variables with domain Val(E) for each E ∈ E,

3. F is a set of functions with form FX : Val(X)×Val(E)→ Val(X) for each X ∈X ,

4. PE is a probability measure on Val(E).

For each endogenous variable X ∈X , the structural equation FX depends only on a subset of
variables. We refer to this subset as the parents Pa(X) ⊆ X ∪E of the variable X . In line with
the definition of semi-Markovian SCMs (Squires and Uhler, 2022), we assume the resulting causal
graph to be acyclic, but we do not require exogenous variables to be independent. Consequently,
endogenous settings are fully determined by exogenous settings. Therefore, each model can be
considered as a functionM : Val(E)→ Val(X) from exogenous to endogenous values.

An intervention describes an operation on an SCM that produces a possibly different causal
model by modifying its structural equations. We refer to interventions fixing structural equations to
constant values as “hard” interventions (Pearl, 2009).

Definition 2 (Hard Intervention) Given an SCM M = (X,E,F ,PE), a subset of endogenous
variables V ⊆X , and a partial setting v ∈ Val(V ), a hard intervention i = (V ← v) produces
an SCMMi = (X,U ,F i,PE) such that

F i
X(x, e) =

{
Proj(v, X) X ∈ V

FX(x, e) otherwise
(1)

for each endogenous variable X ∈X ,
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By constraining one or more endogenous variables, a hard intervention reduces the set of values
possibly assumed by an SCM. Following Beckers and Halpern (2019), given an intervention on a
model, we refer to the resulting subset of assumable values as its restriction set.

Definition 3 (Restriction Set) The restriction Rst(Mi) of a hard intervention i = (V ← v) on a
modelM is the subset of total settings on X ⊇ V matching the partial setting v. Formally,

Rst(Mi) = {x ∈ Val(X) | v = Proj(x,V )}. (2)

4. Causal Abstraction with Hard Interventions

Intuitively, Beckers and Halpern (2019) define an abstraction between two causal models whenever
a function on their variables settings induces a function between interventions. The intervention map
must be consistent: intervening on the higher-level abstraction should be equivalent to abstracting
the intervened lower-level model.

Definition 4 (Abstraction) Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two SCMs,
I and J be their respective sets of admissible hard interventions, τY : Val(X) → Val(Y ) be
a surjective function between endogenous settings, and τU : Val(E) → Val(U) be a surjective
function between exogenous settings. We can use τY to induce ω : I → J , a partial function
from low-level hard interventions to high-level hard interventions. Specifically, ω is defined on the
low-level intervention i ∈ I whenever there exists an high-level intervention ω(i) ∈ J such that

Rst(Hω(i)) = {τY (x) | x ∈ Rst(Li)}. (3)

The model H is a τ -abstraction of L whenever ω is surjective and, for any intervention i ∈ I and
exogenous setting e ∈ Val(E) at the lower level, it holds

τY (Li(e)) = Hω(i)(τU (e)). (4)

Given Definition 4, whenever the function ω between interventions exists, it is unique. Fur-
thermore, by ensuring consistency on all exogenous settings, abstraction entails that the high-level
model is an exact transformation (Rubenstein et al., 2017) between SCMs for every possible exoge-
nous distribution. Therefore, whenever a model abstracts another, the intervention mapping ω has a
fixed point in the empty intervention and preserves the following intervention ordering.

Definition 5 (Hard Interventions Ordering) A hard intervention i1 = (V ← v) on an SCMM
precedes another intervention i2 = (W ← w) whenever the former sets to the same values a subset
of the variables intervened by the latter. Formally,

i1 ⊑ i2 ⇐⇒ V ⊆W ∧ v = Proj(w,V ). (5)

5. Causal Abstraction with Soft Interventions

In this section, we extend τ -abstraction to relate causal models according to their response to non-
constant interventions on their endogenous variables. Firstly, we generalize the necessary definitions
of restriction set and partial ordering between hard interventions (Subsection 5.1). Then, we define
low soft abstraction to handle soft interventions on the low-level model (Subsection 5.2). In this
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context, we introduce a running example showing how our definition correctly characterizes low-
level soft abstracted models. Then, we prove that this preliminary definition is ambiguous for soft
interventions on the higher-level model. Therefore, we modify our example to display an ambigu-
ous scenario. Finally, we present our definition of soft abstraction, which correctly disambiguates
higher-level soft interventions (Subsection 5.3). Consequently, we showcase how our contribution
correctly solves the critical scenario in our running example.

5.1. Soft Interventions

Existing definitions of abstraction explicitly build on “hard” interventions that fix the structural
equation of each intervened variable to a constant. A soft intervention is a generalization of a hard
intervention that instead replaces structural equations with new and possibly non-constant functions.

Definition 6 (Soft Intervention) Given an SCM M = (X,E,F ,PE), a subset of endogenous
variables V ⊆X , and a set of functions f , a soft intervention i = (V ← f) produces an SCM
Mi = (X,E,F i,PE) such that

F i
X(x, e) =

{
fX(x, e) X ∈ V

FX(x, e) otherwise
(6)

for each endogenous variable X ∈X .

For our purposes, we will impose two constraints on soft interventions. First, for each vari-
able X ∈ V the function fX must share domain and codomain with the non-intervened structural
equation FX . In this way, we enforce that a soft intervention does not alter the “type” of a vari-
able. Second, we require intervened structural equations to depend at most on the same parents
Pa(X) from the non-intervened model, meaning no new causal dependencies are formed between
variables. Given this formalization, hard interventions are a special case of soft interventions where
structural equations are replaced by constant functions.

To define causal abstraction between soft-intervened models, we must first extend the interven-
tion map ω to be a partial function between soft interventions. Abstraction uniquely induces such
function given the restrictions of hard interventions on the lower- and higher-level models. To this
end, we propose the following generalization of restriction set for soft interventions on an SCM.

Definition 7 (Soft Restriction Set) The soft restriction SoftRst(Mi) of a soft intervention i =
(V ← f) on a modelM is the subset of total settings on X ⊇ V matching any partial setting from
the image of f . Formally,

SoftRst(Mi) = {x ∈ Val(X) | Proj(x, V ) ∈ Image(f)} (7)

Previous work introduced partial ordering between hard interventions according to constants
assigned to intervened variables (Rubenstein et al., 2017). Furthermore, preserving intervention
ordering constitutes a desirable property of causal abstraction. Therefore, we propose the following
partial ordering on soft interventions.

Definition 8 (Soft Interventions Ordering) Given two soft interventions i1 and i2 on an SCMM,
the intervention i1 precedes i2 whenever the soft restriction of the former contains that of the latter.
Formally,

i1 ⪯ i2 ⇐⇒ SoftRst(Mi1) ⊇ SoftRst(Mi2). (8)
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Our definition of restriction for soft interventions is a strict generalization of the corresponding
definition on hard interventions. Our partial ordering on soft interventions is also a strict general-
ization of the ordering on hard interventions. See Appendix A.1 for proofs.

5.2. Low-Level Soft Interventions

The definition of τ -abstraction induces a unique transformation ω between interventions whenever
the restrictions of any pair of lower- and higher-level interventions are related by τ . Given our
generalization, we can use soft restriction in place of strict restriction for a definition of abstraction
immediately supporting low-level soft interventions.

Definition 9 (Low Soft Abstraction) Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two
SCMs, I and J be their respective sets of admissible interventions, τY : Val(X) → Val(Y ) be
a surjective function between endogenous settings, and τU : Val(E) → Val(U) be a surjective
function between exogenous settings. The model H is a low soft τ -abstraction of L whenever there
exists a surjective function ω : I → J such that, for any intervention i ∈ I it holds

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (9)

and for every lower-level exogenous setting e ∈ Val(E), it holds

τY (Li(e)) = Hω(i)(τU (e)). (10)

As proved in Appendix A.2, by assuming that the high-level model admits only hard interven-
tions, the induced mapping ω is uniquely defined, order-preserving, and has a fixed point in the
empty intervention. Furthermore, whenever admissible interventions on both models are hard, low
soft τ -abstraction reduces to τ -abstraction. As the following example shows, Definition 9 effec-
tively represents abstraction whenever a low-level soft intervention results in a hard intervention on
the abstract model.

Example 1 Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two SCMs with structural
equations as reported in Figure 2. At the lower-level, every endogenous or exogenous variable
X ∈ X ∪E is integer with domain Val(X) = Z. The high-level model H consists instead of
Boolean variables Y ∈ Y ∪U with domain Val(Y ) = B. Given a function τ composed by element-
wise mapping a function Even: Z→ B testing the parity of each integer,H is a τ -abstraction of L
for every hard intervention at the lower-level. Furthermore, any soft intervention at the lower-level
that always produces either even or odd integers also results in an abstract hard intervention. For
instance, let us take the soft intervention i = (X2 ← 2E2): its soft restriction SoftRst(Li) is the
set of integer triples {(x1, x2, x3) | Even(x2) = T}. Consequently, the result of applying τ to the
soft restriction of i is the set of Boolean triples {y1, y2, y3 | y2 = T}. The set coincides exclusively
with the restriction of the high-level hard intervention j = (Y2 ← T). Furthermore, the consistency
requirement holds as in

τY (Li([e1, e2])) = τY ([e1, 2e2, e1e2])

= [Even(e1), T,Even(e1e2)]

= [Even(e1), T,Even(e1) ∨ Even(e2)]

= Hj(τU ([e1, e2])).

(11)

Therefore,H low soft abstracts L and ω uniquely maps the low level intervention i to j.
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H
Y1 := U1

Y2 := U2

Y3 := Y1 ∨ Y2

L
X1 := E1

X2 := E2

X3 := X1X2

Li

X1 := E1

X2 := 2E2

X3 := X1X2

Hω(i)

Y1 := U1

Y2 := T

Y3 := Y1 ∨ Y2

X2 ← 2E2

Y2 ← T

τ τω

Figure 2: The low-level model L multiplies two integers. The high level model H computes
whether one of two Boolean variables are true. The model H abstracts the model L
with a map τ that computes the parity of each integer at the low-level, where Xn deter-
mines Yn. This is because when two integers are multiplied, the product is even if and
only if at least one of the integers is even. The soft intervention i = (X2 ← 2E2) doubles
the value of a low-level variable X2 making it always even. Therefore, it is mapped to
a constant hard intervention ω(i) = (Y2 ← T) that fixes the high-level variable Y2 to be
always true.

Crucially, the intervention map ω is only guaranteed to be unique whenever the set of admis-
sible interventions at the higher level contains exclusively hard interventions. The definition of
abstraction provided by Beckers and Halpern (2019) ensures consistency for all exogenous settings.
Nonetheless, whenever structural equations are non-surjective, consistency is not enforced on all
endogenous settings. Therefore, an intervention on the low level model might be mapped to multi-
ple distinct abstract soft interventions that coincide for any exogenous-induced endogenous setting.
Consequently, as proved in the following theorem, there exist different maps ω for each possible
choice of high-level intervention.

Theorem 10 (Ambiguity in Low Soft Abstraction) Let H = (Y ,U ,G,PU ) be an SCM with
admissible interventions J . Given a variable V ∈ Y , if J contains two distinct interventions
j = (V ← g) and j′ = (V ← g′) such that

1. ∀u ∈ Val(U) : Proj(Hj(u), V ) = Proj(Hj′(u), V ),

2. Image(g) = Image(g′),

then, for any causal model L with admissible interventions I, whenever H low soft τ -abstracts L,
the corresponding function ω : I → J is not uniquely defined.

Proof We report the proof in Appendix A.3.

In the following, we alter the previous example to report a scenario where non-surjective struc-
tural equations lead to a possibly non-unique intervention map ω.
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H
Y1 := V1

Y2 := V2 ∨ ¬Y1
Y3 := Y1 ∨ Y2

Hj

Y1 := V1

Y2 := V2 ∨ ¬Y1
Y3 := [Y1 = Y2]

Hj′

Y1 := V1

Y2 := V2 ∨ ¬Y1
Y3 := Y1 ∧ Y2

L
X1 := U1

X2 := U2(X1 + 1)

X3 := X1X2

Li

X1 := U1

X2 := U2(X1 + 1)

X3 := X1 +X2

τ

i = (X3 ← X1 +X2)

j

j′

ω

ω′

Figure 3: The low-level model L performs arithmetic operations on two integers. The high level
model H computes a Boolean proposition. The model H abstracts the model L with a
map τ that computes the parity of each integer at the low-level, where Xn determines Yn.
Given the intervention i = (X3 ← X1 +X2), there exist two distinct intervention maps
satisfying low soft abstraction: ω(i) = (Y3 ← [Y1 = Y2]) and ω′(i) = (Y3 ← Y1 ∧ Y2),
where the former tests equality. Intuitively, this occurs since the two interventions differ
only when Y1 and Y2 are both false, but this condition is never reached for any exogenous
setting.

Example 2 Let L = (X,E,F ,PE) andH = (Y ,U ,G,PU ) be two SCMs with structural equa-
tions as reported in Figure 3. As in previous Example 1, Boolean-valued model H τ -abstracts
integer-valued model L given a function τ element-wise testing the parity of each integer. Differ-
ently from before, the structural equations of X1 and X2 are jointly not surjective. In fact, for any
exogenous setting, X1 and X2 will never be both odd. Similarly, at the higher-level, variables Y1
and Y2 will never be both false. We define a low-level soft intervention i = (X3 ← X1 +X2) and
two high-level soft interventions j = (Y3 ← [Y1 = Y2]), j′ = (Y3 ← Y1 ∧ Y2). Exploiting the un-
realized endogenous values, we can show that exist a function ω mapping i to j and a function ω′

mapping i to j′, both satisfying the requirements for low soft abstraction.
The function for intervention i outputs even and odd numbers and the functions for j and j′

output both true and false values, so we know that

SoftRst(Hj′) = SoftRst(Hj) = {τY (x) | x ∈ SoftRst(Li)}.

Furthermore, for any low-level exogenous setting e ∈ Val(E), it holds that

τY (Li(e)) =Mj(τU (e))

τY (Li(e)) =Mj′(τU (e)).

Consequently, given a function ω witnessing that H low soft τ -abstracts L, we can construct a
distinct map ω′ that differs on input i and also witnesses the same abstraction relationship.
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5.3. High-Level and Low-Level Soft Interventions

Intuitively, ambiguity in low soft abstraction arises whenever there exist two distinct soft interven-
tions on a variable whose parents have non-surjective structural equations. Therefore, two distinct
functions could be assigned to the same variable if they agree at least on the image of the struc-
tural equations of their parents. We address this problem by requiring consistency not only for all
exogenous settings, but also for every endogenous settings.

Definition 11 (Soft Abstraction) Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two
SCMs, I and J be their respective sets of admissible interventions, τY : Val(X) → Val(Y )
be a surjective function between endogenous settings, and τU : Val(E) → Val(U) be a surjective
function between exogenous settings. The model H is a soft τ -abstraction of L whenever it exists a
surjective function ω : I → J such that, for any intervention i ∈ I it holds

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (12)

and for every lower-level exogenous e ∈ Val(E) and endogenous x ∈ Val(X) setting, it holds

τY (F i(x, e)) = Gω(i)(τY (x), τU (e)). (13)

Given this definition, the intervention mapping ω is unique for every combination of hard and
soft interventions. Notably, our definition specializes to low soft τ -abstraction when all high-level
interventions are hard. Similarly, soft τ -abstraction implies τ -abstraction, and vice versa, when all
admitted interventions are hard interventions. We report in Appendix A.4 the proofs on uniqueness,
fixed point, and order-preserving properties of the intervention mapping ω in soft abstraction. Fur-
ther, we continue the previous Example 2 to highlight how soft abstraction disambiguates high-level
soft interventions.

Example 3 Recall the previous Example 2, where there were two intervention maps ω and ω′ that,
given the two SCMs in Figure 3, witnessed H being an abstraction of L. Given the exogenous
setting e = (1, 1) and the endogenous setting x = (1, 1, 1), it is immediate that

τY (F i(x, e)) = [F, T, T]

Gj(τY (x), τU (e)) = [F, T, T]

Gj′(τY (x), τU (e)) = [F, T, F].

(14)

Therefore, mapping the intervention i to j′ would break consistency on the provided setting. Thus,
we no longer have an ambiguous intervention map ω.

6. Constructive Soft Abstraction

Our definition of Soft Abstraction relates two distinct SCMs at different levels of detail according
to their response to possibly soft interventions. In this way, we can determine abstraction whenever
an intervention at the lower level produces a non-constant effect at the higher level, vice versa, or
both. One critical result is the uniqueness of the function mapping interventions between SCMs.
Therefore, whenever a model abstracts another, each lower-level manipulation corresponds to a
unique abstract intervention. In this section, we build on the uniqueness of the intervention mapping
to derive its closed and explicit form.

9
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To this end, we require grouping endogenous and exogenous variables on the lower-level model.
Therefore, we consider the existence of an alignment function mapping high-level variables into
subsets of low-level variables.

Definition 12 (Alignment) Given two SCMs H = (Y ,U ,G,PU ) and L = (X,E,F ,PE) such
thatH soft τ -abstracts L, we define an alignment to be a map Π: Y ∪U → P(X ∪E) that satis-
fies the following: (1) There exist a set of functions {τY }Y ∈Y such that, for each endogenous high-
level variable Y ∈ Y and low-level endogenous setting x ∈ Val(X), it holds Proj(τY (x), Y ) =
τY (Proj(x,Π(Y ))), where Π(Y ) ⊆ X and τY : Val(Π(Y ))→ Val(Y ); (2) There exist a set of
functions {τU}U∈U such that, for each exogenous high-level variable U ∈ U and low-level exoge-
nous setting e ∈ Val(E) it holds Proj(τU (e), U) = τU (Proj(e,Π(U))), where Π(U) ⊆ E and
τU : Val(Π(U))→ Val(U).

Assuming the existence of a map from high-level to low-level variables is coherent with pre-
vious definitions of constructive abstraction (Beckers and Halpern, 2019) and model transforma-
tion (Rischel and Weichwald, 2021) for hard-intervened causal models. In particular, construc-
tive abstraction further specializes causal abstraction to address the problem of clustering micro-
variables into distinct causal variables at the higher-level. Given our definition of Soft Abstraction,
a similar extension is immediate in our framework. Therefore, we define Constructive Soft Abstrac-
tion whenever the abstraction partitions lower-level variables.

Definition 13 (Constructive Soft Abstraction) An SCM H = (Y ,U ,G,PU ) is a constructive
soft τ -abstraction of another SCM L = (X,E,F ,PE) wheneverH τ -abstracts L and there exists
an alignment Π partitioning a subset of low-level variables.

Since constructive soft abstraction extends soft abstraction, the function ω between interventions
is unique. Therefore, we seek an explicit form of ω returning, for an intervention (Π(Y ) ← f) on
the partition of an high-level variable Y , the corresponding higher-level intervention (Y ← g). With
the following theorem, we prove that the target function gY necessarily consists of the composition
of three operations: (i) mapping the inputs of the function on the partitions of the parents Π(Pa(Y ));
(ii) computing the value of the partition Π(Y ) on the intervened model Li; and (iii) finally mapping
back the partition to the higher-level variable Y (Figure 1).

Theorem 14 (Explicit Intervention Map) Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be
two SCMs and I and J their corresponding sets of admissible interventions. Whenever H soft
τ -abstracts L with alignment Π, ω maps the low-level intervention i = (V ← f) to an intervention
j = (W ← g) on the high-level variables W ⊆ {Y | V ∩Π(Y ) ̸= ∅} such that

gY (y,u) = τY (F
i
Π(Y )(τ

−1
Y (y), τ−1

U (u))), (15)

for any variable Y ∈W and any partial inverse τ−1, where gY depends on its parents Pa(Y ) only.

Proof We report the proof in Appendix A.5.

Remarkably, Theorem 14 does not require the alignment Π to partition low-level variables and
thus applies to constructive soft abstraction and constructive τ -abstraction as special cases. Further,
since the empty intervention is a fixed point of ω, the theorem provides a closed form to determine
high-level structural functions given the lower-level model and the abstraction function. In the
following example, we showcase how the explicit definition of the intervention map ω can be applied
to determine high-level interventions.
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L
X1 := U1

X2 := U2

X3 := X1 ∧X2

X4 := X1 ⊕X2

H
Y1 := V1

Y2 := V2

Y3 := Y1 + Y2

Li

X1 := U1

X2 := U2

X3 := X1 ∧X2

X4 := T

Hω(i)

Y1 := V1

Y2 := V2

Y3 := 2Y1Y2 + 1

X4 ← 1

Y3 ← 2Y1Y2 + 1

τ τω

Figure 4: The SCM Lmodels a binary adder of two exogenous bits U1, U2, where⊕ is the Boolean
XOR operator. The model H adds two integers and stores the sum in a single integer
Y3. Performing a hard intervention on L, for instance by fixing the least significant bit
X4 ← T, results in a soft intervention at the higher-level Y3 ← 2Y1Y2 + 1.

Example 4 Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two SCMs with structural
equations as reported in Figure 4. At the low-level, every endogenous and exogenous variable
X ∈X ∪E has Boolean domain Val(X) = {F, T}. At the high level, Val(Y3) = {0, 1, 2, 3}, while
every other exogenous or endogenous variable Y ∈ Y ∪U \{Y3} has domain Val(Y ) = {0, 1}. We
consider the alignment Π where Π(Y3) = {X3, X4}, while Π(Yn) = {Xn} for every other high-
level exogenous or endogenous variable Yn. Let φ be a function that maps true values to the integer
1, and false values to 0. We define the abstraction as τY3(x) = 2φ(x3) + φ(x4), τY1(x) = φ(x1),
and τY2(x) = φ(x2). Given the low-level intervention i = (X4 ← T), the corresponding high-level
intervention is ω(i) = (Y3 ← g), where

g(y,u) = τY3(F
i
Π(Y3)

(τ−1
Y (y), τ−1

U (u)))

= τY3(F
i
{X3,X4}((φ

−1(y1), φ
−1(y2), x3, x4), e))

= τY3(φ
−1(y1) ∧ φ−1(y2), T)

= 2φ(φ−1(y1) ∧ φ−1(y2)) + φ(T)

= 2y1y2 + 1

(16)

Since g depends only on its parents, the explicit form works for any choice of the remaining endoge-
nous {X3, X4} or exogenous E lower-level variables.
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7. Conclusion

Hard interventions constitute one of the core concepts of causality. Existing theories of abstraction
build on the assumption that a causal model abstracts another whenever there is a correspondence
between their sets of admissible hard interventions. We generalize this theory to soft interven-
tions to support non-constant change at different levels of abstraction. To this end, we prove how
generalizing constructs based on hard interventions in the definition of τ -abstraction from Beck-
ers and Halpern (2019) does not suffice. Therefore, we propose to enforce causal consistency for
all exogenous and endogenous settings. Together with our generalization effort, this strengthened
requirement results in our novel definition of soft abstraction. As proved and exemplified, soft ab-
straction induces a unique function ω mapping low-level interventions to high-level interventions in
the soft-intervened scenario. Finally, we report that our constructive definition of soft abstraction
implies a unique explicit form for the intervention map ω. Since soft abstraction correctly reduces to
τ -abstraction in the hard-intervened scenario, this result effectively extends previous formulations
that exclusively proved the uniqueness of ω. By demonstrating the explicit form as a necessary con-
dition, our contribution opens up practical applications for assessing abstraction without requiring
an evaluation of each exogenous or endogenous configuration for any possible intervention map. In
practice, we enable testing τ -abstraction given the function τ only, without searching for the corre-
sponding unique map ω between interventions. In this context, we believe our formulation might
aid learning higher-level causal models from low-level observations by reducing the problem to a
single optimization problem.
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CAUSAL ABSTRACTION WITH SOFT INTERVENTIONS

Appendix A. Proofs

A.1. Soft Generalization of Hard Constructs

Given an SCMM, for any hard intervention i on the model, it holds that

1. SoftRst(Mi) = Rst(Mi),

Proof Given a subset V ⊆X of endogenous variables, a hard intervention i = (V ← v)
constraints each intervened variable X to a constant value v. Equivalently, we can consider
the same intervention as a function f : Val(X) × Val(E) → Val(V ) whose output is the
constant v. Therefore, Image(f) = {v} and, consequently,

SoftRst(Mi) = {x ∈ Val(X) | Proj(x, V ) ∈ Image(f)}
= {x ∈ Val(X) | Proj(x, V ) = v}
= Rst(Mi).

(17)

2. For any hard intervention i′, i ⊑ i′ ⇐⇒ i ⪯ i′.

Proof Given the previous property, we prove that soft intervention ordering implies hard
intervention ordering for any pair of hard interventions i = (V ← v) and i′ = (W ← w).
In fact,

i ⪯ i′ ⇐⇒ SoftRst(Mi) ⊇ SoftRst(Mi′)

⇐⇒ Rst(Mi) ⊇ Rst(Mi′),
(18)

whenever i, i′ are hard interventions. If the restriction of Mi contains that of Mi′ , then
Mi allows more values for some variables. Equivalently, i′ intervenes on a larger set of
variables than i and sets them to the same constants, otherwise they would not have been in
the restriction ofMi. Consequently,

Rst(Mi) ⊇ Rst(Mi′) ⇐⇒ V ⊆W ∧ v = Proj(w,V )

⇐⇒ i ⊑ i′.
(19)

A.2. Low Soft Abstraction

Definition 9: Let L = (X,E,F ,PE) andH = (Y ,U ,G,PU ) be two SCMs, I and J be their re-
spective sets of admissible interventions, τY : Val(X)→ Val(Y ) be a surjective function between
endogenous settings, and τU : Val(E) → Val(U) be a surjective function between exogenous
settings. The model H is a low soft τ -abstraction of L whenever it exists a surjective function
ω : I → J such that, for any intervention i ∈ I it holds

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (20)
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and for every lower-level exogenous setting e ∈ Val(E), it holds

τY (Li(e)) = Hω(i)(τU (e)). (21)

Given Definition 9 of Low Soft Abstraction, we prove that, whenever the set of admissible
high-level intervention J contains only hard interventions and H low soft τ -abstracts L, it holds
that

1. ω is unique,

Proof For any distinct surjective function ω′ ̸= ω, H does not τ -abstracts L. Since ω, ω′ are
defined on the domain I, they are distinct whenever there exist at least one intervention i ∈ I
such that

ω(i) ̸= ω(i′).

Thus, there must exist two distinct high-level interventions j, j′ ∈ H such that,

SoftRst(Hj) = {τY (x) | x ∈ SoftRst(Li)} (22)

SoftRst(Hj′) = {τY (x) | x ∈ SoftRst(Li)} (23)

Consequently, it must hold that

SoftRst(Hj) = SoftRst(Hj′). (24)

Further, since j, j′ are hard interventions,

Rst(Hj) = Rst(Hj′). (25)

In other terms, the high-level interventions must be distinct but their restrictions must be
equal. When j, j′ are hard interventions this is not possible, thus ω is unique.

2. ω(ε) = ε,

Proof Given an empty intervention , its soft restriction on the lower-level model contains all
possible endogenous values. Formally,

SoftRst(Mε) = Val(X). (26)

Since τ is surjective, it also holds that

SoftRst(Hj) = {τY (x) | x ∈ SoftRst(Lε)}
= Val(Y ).

(27)

In the same way, the empty restriction Rst(Hε) on the high-level model coincides with its
domain. So, SoftRst(Hε) = Val(Y ) implies

SoftRst(Hε) = {τY (x) | x ∈ SoftRst(Lε)} (28)

Therefore, by definition of low soft causal abstraction, it holds that ω(ε) = ε.

16



CAUSAL ABSTRACTION WITH SOFT INTERVENTIONS

3. i1 ⪯ i2 =⇒ ω(i1) ⪯ ω(i2),

Proof By ordering interventions according to their soft restriction, it follows that

i1 ⪯ i2 =⇒ SoftRst(Li1) ⊇ SoftRst(Li2)
=⇒ {τY (x) | x ∈ SoftRst(Li1)} ⊇ {τY (x) | x ∈ SoftRst(Li1)}
=⇒ SoftRst(Hω(i1)) ⊇ SoftRst(Lω(i2))
=⇒ ω(i1) ⪯ ω(i2).

(29)

4. There exists a subset of admissible hard interventions Ĩ such that H τ -abstracts L given a
subset of high-level interventions J̃ .

Proof Let Ĩ be the subset of hard interventions in I and J̃ = {ω(i) | i ∈ Ĩ}. Then,
sinceH low soft τ -abstracts L for each intervention i ∈ I with there exists a partial function
ω′ : Ĩ → J̃ such that for any intervention i ∈ Ĩ it holds

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (30)

and for every lower-level exogenous setting e ∈ Val(E), it holds

τY (Li(e)) = Hω(i)(τU (e)). (31)

Thus,H τ -abstracts L given the interventions sets Ĩ, J̃ .

A.3. Ambiguity in Lower Soft Abstraction

Theorem 10: Let H = (Y ,U ,G,PU ) be an SCM with admissible interventions J . Given a
variable V ∈ Y , if J contains two distinct interventions j = (V ← g) and j′ = (V ← g′) s.t.

1. ∀u ∈ Val(U) : Proj(Hj(u), V ) = Proj(Hj′(u), V ),

2. Image(g) = Image(g′),

then, for any causal model L with admissible interventions I, whenever H low soft τ -abstracts L,
the corresponding function ω : I → J is not uniquely defined.
Proof Since H lower soft τ -abstracts L, the function ω is surjective. Therefore, since j1, j2 ∈ J ,
there must exist two lower-level intervention i1, i2 such that ω(i1) = j1 and ω(i2) = j2. Therefore,
it holds that

SoftRst(Mj1) = {τY (x) | x ∈ SoftRst(Li1)} (32)

SoftRst(Mj2) = {τY (x) | x ∈ SoftRst(Li2)} (33)

τY (Li1(e)) = Hj1(τU (e)) (34)

τY (Li2(e)) = Hj2(τU (e)). (35)

Since the images Image(g) = Image(g′) of the two high-level function coincide, it also holds that

SoftRst(Mj1) = SoftRst(Mj2), (36)
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Furthermore, since g, g′ output the same values given every possible configuration of their parents,
for every low-level exogenous setting e ∈ Val(E), it holds that

GHj1 (τU (e)) = GHj2 (τU (e)). (37)

Consequently, while distinct, the two functions are equivalent given the constraints imposed by the
definition of low soft abstraction. Therefore, there exist a function ω′ such that

ω′(i) =


ω(i1) i = i2

ω(i2) i = i1

ω(i) otherwise

, (38)

andH still lower soft τ -abstracts L. Consequently, ω is not unique.

A.4. Soft Abstraction

Definition 11: Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two SCMs, I and J be
their respective sets of admissible interventions, τY : Val(X) → Val(Y ) be a surjective function
between endogenous settings, and τU : Val(E) → Val(U) be a surjective function between ex-
ogenous settings. The model H is a soft τ -abstraction of L whenever it exists a surjective function
ω : I → J such that, for any intervention i ∈ I it holds

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (39)

and for every lower-level exogenous e ∈ Val(E) and endogenous x ∈ Val(X) setting, it holds

τY (F i(x, e)) = Gω(i)(τY (x), τU (e)). (40)

Given Definition 11 of Soft Abstraction, we prove that wheneverH soft τ -abstracts L, it holds that

1. ω is unique.

Proof We wish to show that for any distinct surjective function ω′ ̸= ω, H is not a soft
τ -abstraction of L. Since ω and ω′ are defined on I, they are distinct if there exists at least
one intervention i ∈ I such that ω(i) ̸= ω′(i). Thus, there must be two distinct high-level
interventions j = (V ← g) and j′ = (W ← g′) in J such that ω(i) = j and ω′(i) = j′.
Consequently, for every low-level exogenous setting e ∈ Val(E) and endogenous setting x ∈
Val(X), it must hold

τY (F i(x, e)) = Gj(τY (x), τU (e)) (41)

τY (F i(x, e)) = Gj′(τY (x), τU (e)). (42)

Therefore, it must also hold

Gj
Y (τY (x), τU (e)) = Gj′

Y (τY (x), τU (e)). (43)

for any high-level endogenous variable Y ∈ Y , including those in V , W , or both. Conse-
quently, since the output of the intervened functions match for any possible input, the high-
level interventions j, j′ are not distinct and ω is unique.
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2. ω(ε) = ε.

Proof Same proof to Point 2 in Appendix A.2.

3. i1 ⪯ i2 =⇒ ω(i1) ⪯ ω(i2).

Proof Same proof to Point 3 in Appendix A.2.

4. Given the subset of admissible high-level hard interventions J̃ ,H low soft τ -abstracts L.

Proof Since H soft τ -abstracts L, and J̃ ⊆ J , for any j ∈ J̃ there exists i ∈ I such that
ω(i) = j. Therefore, we define

Ĩ = {i ∈ I | ω(i) ∈ J̃ }. (44)

Consequently, for any i ∈ Ĩ it holds that

SoftRst(Hω(i)) = {τY (x) | x ∈ SoftRst(Li)} (45)

and for every lower-level exogenous e ∈ Val(E) and endogenous x ∈ Val(X) setting, it
holds

τY (F i(x, e)) = Gω(i)(τY (x), τU (e)). (46)

Therefore, it also holds
τY (Li(e)) = Hω(i)(τU (e)). (47)

for any e ∈ Val(E). Thus,H low soft τ -abstracts L.

5. Given the subset of admissible low and high-level hard interventions Ĩ, J̃ ,H τ -abstracts L.

Proof The proof is equal to the previous, except we define the set of low-level admissible
interventions as Ĩ = {i ∈ I | ω(i) ∈ J ∧ i is “hard” ∧ ω(i) is “hard}, and consequently
J̃ = {ω(i) | i ∈ Ĩ}.

A.5. Explicit Intervention Transformation

Theorem 14: Let L = (X,E,F ,PE) and H = (Y ,U ,G,PU ) be two SCMs and I and J
their corresponding sets of soft interventions. Whenever H soft τ -abstracts L with alignment Π, ω
maps the low-level intervention i = (V ← f) to an intervention j = (W ← g) on the high-level
variables W ⊆ {Y | V ∩Π(Y ) ̸= ∅} such that

gY (y,u) = τY (F
i
Π(Y )(τ

−1
Y (y), τ−1

U (u))), (48)

for any variable Y ∈W and any partial inverse τ−1.
Proof Since H soft τ -abstracts L, for each exogenous setting e ∈ Val(E), for each endogenous
setting x ∈ Val(X), and each intervention i ∈ I, it holds

τY (F i(x, e)) = Gω(i)(τY (x), τU (e)). (49)
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To simplify the notation, we denote as x ∈ Val(X∪E) any combination of exogenous and endoge-
nous settings on the lower-level model. Therefore, without loss of generality, the previous equation
is equivalent to

τY (F i(x)) = Gω(i)(τ(x)). (50)

Given the mapping Π, the equation is also equivalent to

τY (F
i
Π(Y )(x)) = G

ω(i)
Y (τ(x)). (51)

for any Y ∈ Y . In the following, we prove that this equation is necessarily satisfied by our ex-
plicit definition of ω for any intervention i and any exogenous and endogenous configuration x ∈
Val(X ∪E).

Given any setting x, applying a partial inverse τ−1(x) returns a possibly different value x′ such
that τ(x) = τ(x′). Therefore, for any x′ possibly different from x, it holds that

τ(x) = τ(x′)

=⇒ Proj(τ(x),Pa(Y )) = Proj(τ(x′),Pa(Y ))

=⇒ G
ω(i)
Y (τ(x)) = G

ω(i)
Y (τ(x′))

(52)

given that the structural equation G
ω(i)
Y depends only on parents Pa(Y ). Consequently, whenever

H soft τ -abstracts L,

G
ω(i)
Y (τ(x)) = G

ω(i)
Y (τ(x′))

=⇒ τY (F
i
Π(Y )(x)) = τY (F

i
Π(Y )(x

′)).
(53)

Therefore, the necessary explicit form from Equation 15, results from

G
ω(i)
Y (τ(x)) = τY (F

i
Π(Y )(x))

= τY (F
i
Π(Y )(τ

−1(τ(x))))
(54)

for any exogenous and endogenous configuration x ∈ Val(X ∪E). Since, τ is surjective, for any
high-level setting y ∈ Val(Y ∪ U), there exist a low-level setting x ∈ Val(X ∪ E) such that
τ(x) = y, therefore

G
ω(i)
Y (y) = τY (F

i
Π(Y )(τ

−1(y))). (55)

Finally, we want to prove that intervening on a subset V of lower-level variables results at most
in an high-level intervention on the variables W ⊆ {Y | V ∩ Π(Y ) ̸= ∅} whose clusters intersect
with V . In fact, for any high-level variable Y such that Π(Y ) ∩ V = ∅, it holds that

G
ω(i)
Y (τ(x)) = τY (F

i
Π(Y )(x))

= τY (FΠ(Y )(x))

= GY (τ(x)).

(56)

Therefore, applying ω results in the original structural equation GY given an intervention i not on
in the cluster Π(Y ). Consequently, the variable Y is not intervened by ω(i) and Y ̸∈W .
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