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Abstract
Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure
structure identifiability. Moreover additional restrictions are often imposed in order to simplify the
inference task: this is the case for the Gaussian noise assumption on additive nonlinear models,
which is common to many causal discovery approaches. In this paper we show the shortcomings of
inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity
of the noise terms. Then, we propose a novel method for inferring the topological ordering of the
variables in the causal graph, from data generated according to an additive nonlinear model with
a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models),
a causal discovery algorithm with a minimal set of assumptions and state of the art performance,
experimentally benchmarked on synthetic data.
Keywords: Causal discovery; Arbitrary noise distribution; Score matching

1. Introduction

Inferring cause-effect relationships from observational data is a central goal of causality research,
as it enables formal reasoning about interventions on a system (Peters et al. (2017), Pearl (2009))
when these are expensive, unethical, or even impossible to perform. Structure identifiability results
posit limits to what part of the causal graph can be inferred from pure observations from the joint
distribution, and provides formal guidelines on which assumptions are needed to fully identify the
causal graph underlying the data. Traditional causal discovery methods usually are limited to iden-
tify Markov equivalence classes (Glymour et al. (2019)), which is the case for PC, FCI (Spirtes et al.
(2000)) and GES (Chickering (2002)). More recently, methods based on properly defined Structural
Causal Models (SCMs) have been proposed to distinguish the correct graph underlying the observed
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data, by mean of additional assumptions on the functional class of the SCM: Hoyer et al. (2009) and
Zhang and Hyvärinen (2009) show that nonlinear additive noise models typically yield an identifi-
able setting. This is the case for SCORE (Rolland et al. (2022)) and CAM (Bühlmann et al. (2014))
that, under the assumption of Gaussian disturbances, output a unique and asymptotically consistent
graph as result of the inference process. Under the condition of identifiable nonlinear additive mod-
els, Peters et al. (2014) and Mooij et al. (2009) show how to exploit independence of the estimated
residuals to infer causal effects without restrictions on the noise distributions. Their methods are
limited by the use of conditional independence testing, which is hard to perform (Shah and Peters
(2018)). Closer to our work, Bloebaum et al. (2018) compare regression errors to distinguish cause
and effect, but in the restricted setting of bivariate models. Other methods such as Lachapelle et al.
(2020) and Zheng et al. (2018) formulate a continuous optimization problem which results in a
unique directed acyclic graph (DAG).

In general, identifiability results require assumptions in order to infer the causal structure from
observational data with theoretical guarantees. The shortcoming of this approach is that constraints
in the form of assumptions reduce the scope of applicability of an algorithm. Instead it would
be desirable to have methods working on a broad range of problems under different conditions,
ideally showing a certain degree of robustness regarding violations of the model hypothesis. The
strength of this viewpoint is manifest in deep learning practice, where the dominant approach is to
apply algorithms that work on the task of interest, independently of the violation of the underlying
assumptions. The motivation behind this paper is to provide a causal discovery tool in between
these philosophies, by removing (from the identifiability perspective) unnecessary assumptions fre-
quently made by some of the most prominent computational methods available. With this goal in
mind, we design an algorithm for the inference of the causal graph underlying an additive nonlinear
model with generic noise terms, removing the common hypothesis of Gaussian distributions. This
constraint removal broadens the scope of applicability of principled causal discovery, providing a
state of the art method to practitioners interested in theoretical guarantees and operating in critical
settings where the validity of the Gaussian noise assumption is hard to verify.

The rest of the paper is organized as follow: Section 2 provides an overview of the model under
study, and a definition of the problem at hand; Section 3 analyzes the risk of inferring inversed edges
under violation of the Gaussian noise assumption; Section 4 introduces a theoretically principled
method to find the topological ordering of a causal graph by iteratively identifying its leaf nodes: in
particular we prove an important relation between the score function (i.e. the gradient of the log-
likelihood) and the residuals’ estimators; Section 5 defines NoGAM1, an algorithm for inference of
the causal graph from the data; Section 6 is an overview of the experimental performance of such
method with respect to classical and state of the art benchmarks.

2. Background knowledge

Model definition Let V = {1, . . . , d} be the vertices of a directed acyclic graph G, and X ∈ Rd

be a set of random variables generated according to the Structural Causal Model (SCM)

Xi := fi(PAi(X)) +Ni, ∀ i ∈ V , (1)

1. The code for NoGAM is available as part of the DoDiscover library https://www.pywhy.org/dodiscover/
dev/index.html
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where PAi(X) is the vector of parents of node i in the graph G. Model (1) is known as the non-
linear Additive Noise Model (ANM, Hoyer et al. (2009)). We assume causal mechanisms fi to be
nonlinear functions continuously differentiable, and causal minimality to be satisfied. Noise terms
Ni ∈ R are continuous random variables with density pi(Ni), mean µi = 0 and variance σ2

i > 0.
We assume them to be independent such that their joint distribution is pN(N) =

∏
i pi(Ni). Under

these assumptions the model (1) induces a joint distribution pX(X) which is Markov with respect
to G, such that it admits the following factorization:

pX(X) =
d∏
i

pi(Xi | PAi(X)) , (2)

where with an abuse of notation we distinguish the marginal pi(Ni) from pi(Xi | PAi(X)) by the
argument.

In the remainder of this paper we will use Xi to denote both the random variable and the corre-
sponding node i ∈ V.

Identifiability assumptions In order to ensure identifiability of the causal graph from observa-
tional data, such that knowing the joint distributions of X is enough to distinguish causes and effects
in the underlying causal graph, we need to make additional assumptions on the functional mech-
anisms fi of the ANM and on the distribution of the noise terms. In what follows, we provide
identifiability conditions for a bivariate graph as in Peters et al. (2014). These can be seamlessly
generalized to the multivariate case, which is discussed in Appendix A.

Condition 1 (Condition 19 of Peters et al. (2014)) Given a bivariate model Xi := Ni and Xj :=
fj(Xi) + Nj with {i, j} = {1, 2} generated according to (1), we call the SEM an identifiable
bivariate ANM if the triple (fj , pNi , pNj ) does not solve the following differential equation for all
pairs xi, xj with f ′

j(xi)g
′′(xj − fj(xi)) ̸= 0:

k′′′ = k′′
(
−g′′′f ′

g′′
+

f ′′

f ′

)
− 2g′′f ′′f ′ + g′f ′′′ +

g′g′′′f ′′f ′

g′′
− g′(f ′′)2

f ′ . (3)

Here, f := fj , k := log pNi , g := log pNj . The arguments xj − fj(xi), xi and xi of g, k and f
respectively, have been removed to improve readability.

Hoyer et al. (2009) is the first to prove that if Condition 1 is satisfied, then the graph associated with
the bivariate ANM is identifiable from the joint distribution pX (Theorem 20 Peters et al. (2014)).

Intuitively, we expect that Condition 1 is satisfied for generic triples (fj , pNi , pNj ). More for-
mally, this is true because, for a fixed pair (fj , pNj ), the space of continuous distributions pNi such
that Condition 1 is violated is contained in a three dimensional space. Since the space of continuous
distributions is infinite dimensional, we can say that Condition 1 is satisfied for ”most” choices of
pNi . For a rigorous statement see Proposition 21 in Peters et al. (2014).

In practice, identifiability is satisfied if the noise terms have strictly positive densities pNi , pNj and

f ′
j(xi)g

′′(xj − fj(xi)) ̸= 0 (4)

for all but a finite subset of points (xi, xj) (Zhang and Hyvärinen (2009), Proposition 23 Peters et al.
(2014)). Additionally, we explicit that Condition 1 implies that

∂xi(k
′(xi)− f ′

j(xi)g
′(xj − fj(xi)) ̸= 0 , (5)
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for all xi, xj such that f ′
j(xi)g

′′(xj − fj(xi)) ̸= 0. This can be directly verified in the proof of
Theorem 20 (Equation 14) in Peters et al. (2014): if left hand side of (5) is null, then Equation (3)
is always satisfied for xi, xj with f ′

j(xi)g
′′(xj − fj(xi)) ̸= 0, which contradicts the conditions for

identifiability.

In the reminder of the work we consider these requirements (and their counterpart in the multivariate
case as discussed in Appendix A) to be satisfied by assumption in the SCM (1).

Topological ordering definition Let G = (X, E) be a DAG. An ordering of the nodes Xπ =
Xπ1 , . . . , Xπd

is a topological ordering relative to G if, whenever we have Xπi → Xπj ∈ E , then
i < j (Koller and Friedman (2009)).

Problem definition Given an i.i.d. sample from the joint distribution pX, we want to infer the true
causal graph G underlying the model that generated the data. One approach to solve this problem
is to divide the task in two steps: first we find a topological ordering for the vertices in the graph,
and then we prune the fully connected graph obtained drawing an edge from each node to all its
successors in the ordering. In this paper, we use the score function ∇ log pX(X) to propose a
consistent method of inference of the topological ordering that works without assuming any specific
distribution of the noise terms Ni in Equation (1).

In practice, classical and state of the art causal discovery algorithms like SCORE (Rolland et al.
(2022)), CAM (Bühlmann et al. (2014)), GES (Chickering (2002)) and GraN-DAG (Lachapelle
et al. (2020)) assume the noise terms to be normally distributed. In the next section we show the
limitations of this assumption, and how the topological ordering can be wrongly inferred when it is
violated, leading to the estimation of a graph with inverted edges.

3. Limitations of the Gaussian noise assumption

It has been shown that for data generated by nonlinear models and additive noise, generally speak-
ing, the causal direction between two variables is identifiable because in the reverse direction, one
cannot find an independent residual (Hoyer et al. (2009); Zhang and Hyvärinen (2009)), and hence
the data likelihood given by the regression model (which assumes independent residuals) in the
reverse direction is lower than that in the causal direction. The identifiability results (Zhang and
Hyvärinen (2009)) imply that if the noise term in the causal model is Gaussian while the function
is nonlinear, causal direction between two variables is identifiable. That is, the likelihood of the
regression model in the correct direction is higher than that in the reverse direction, or equivalently,
the total entropy of the estimated noise terms (including the hypothetical cause variable) is smaller
in the causal direction (Zhang and Hyvärinen (2009)).

However, this result does not imply that when the noise distribution is assumed to be Gaus-
sian, the correct causal direction can always give a higher likelihood or lower total entropy of the
estimated noise terms.

Proposition 1 Given a ground truth identifiable nonlinear additive causal model, any inference
algorithm based on observational data that wrongly assumes Gaussianity of the noise terms is not
guaranteed to recover the correct direction of the edges in the underlying graph.
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(a) Scatter plot of X1 and N2 (b) Scatter plot of X1 and X2 (c) Scatter plot of X2 and X1

and regression curve
(d) Scatter plot of X2 and es-
timated N1

Figure 1: Example to illustrate the limitations of the Gaussian noise assumption on the graph X1 → X2.

In the reminder of the paper we consider Proposition 1 to be true, and justify our claim with an
example. We generate data from a bivariate model with additive uniform noise, and perform in-
ference of the causal effects by comparing the total entropy of the residuals, as proposed in Zhang
and Hyvärinen (2009). We show that assuming Gaussianity of the noise terms leads the method to
failure, causing inference in the reversed direction. Additional details on the experimental design of
the example can be found in Appendix E.

Example 1 We start defining an example for a linear additive noise model, such that closed form
solutions for the regression problems at hand can be found. Then, we generalize the example to the
nonlinear case.

Let X1 → X2 with X2 := X1+N2, where X1 and N2 are both uniformly distributed, as shown
in Figure 1a. Figure 1b shows the scatter plot of X1 and X2. Figure 1c gives the scatter plot of X2

and X1, together with the regression curve, which, in this example, is piecewise linear. Figure 1d
shows the scatter plot of X2 and N̂1, the estimated regression noise in the reverse direction.
One can find the correct causal direction by comparing the total entropy of the estimated noise
terms. Let H(·) denote the differential entropy. One can calculate that

H(X1) +H(N2) = 2.708 < H(X2) +H(N̂1) = 2.954

where H(X1), H(X2) are calculated exploiting knowledge of the marginal distributions. H(N̂1) is
estimated from the data, while we use H(N2) in place of H(N̂2) estimate as using the exact entropy
makes computations more precise. Let HG(·) denote the differential entropy under the Gaussianity
assumption. One can then calculate that

HG(X1) +HG(N2) = 3.061 > HG(X2) +HG(N̂1) = 3.043.

That is, under the Gaussianity assumption, the reverse direction gives a lower total entropy (or
equivalently, a higher likelihood), and hence a wrong causal direction is inferred.
Why does it happen? Notice that for a variable with a fixed variance, the Gaussian distribution
gives the highest differential entropy. So naturally, HG(X1) + HG(N2) > H(X1) + H(N2) and
HG(X2) + HG(N̂1) > H(X2) + H(N̂1). Furthermore, it is totally possible (which is clearly the
case in this example) that compared to the original independent variables X1 and N2, X2 and N̂1

are respectively closer to Gaussian. That is, the change induced by the Gaussianity assumption
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in the total entropy of the estimated noise terms is smaller in the reverse direction. As a conse-
quence, under the Gaussianity assumption, the reverse direction may give lower total entropy of the
estimated noise terms, in contrast to the case using their true distributions.

Now consider the nonlinear model X2 := X1+δ
1 +N2, with δ > 0 and noise terms X1 and N2

uniformly distributed. Clearly, for δ = 0 this is equivalent to the linear example already discussed:
here we set δ = 0.1 to introduce a weak nonlinearity in the generative process. Again, the ground
truth causal direction can be identified by comparing the total entropy of the estimated noise terms
in the correct and reversed direction. One can calculate that

H(X1) +H(N2) = 2.708 < H(X2) +H(N̂1) = 2.926 .

Similarly, under Gaussianity assumption one obtains

HG(X1) +HG(N2) = 3.061 > HG(X2) +HG(N̂1) = 3.001 ,

showing that the inversion statement of Proposition 1 holds.

Given the shortcomings of the Gaussian assumption, we now propose a causal discovery method
on additive nonlinear models with generic noise terms, such that the inferred causal ordering (and
hence, the edges direction) is guaranteed to be correct with respect to the causal graph.

4. Causal discovery via the score function

In this section we derive a principled approach to identify leaf nodes from the score function s(X) =
∇ log pX(X), without assuming any distribution of the noise random variables in the generative
model (1) of X.

4.1. Score function of a data distribution

Given the distribution pX(X) induced by model (1), we can define the vector of the score function
as s(X) = ∇ log pX(X). Exploiting the factorization of the joint distribution of Equation (2), we
can write:

log pX(X) =
d∑

i=1

log pi(Xi | PAi) . (6)

such that a single entry si(X) of the score is equal to:

si(X) = ∂Xi
log pi(Xi | PAi) +

∑
k∈CHi

∂Xi
fk(PAk)∂Xk

log pk(Xk | PAk) . (7)

Under parents conditioning, the marginal of Xi is the same as the distribution of Ni shifted by
the value of the mechanism fi(PAi), meaning that pi(Xi | PAi) can be replaced by pi(Ni =
Xi − fi(PAi) | PAi). This allows to rewrite the score as:

si(X) = ∂Ni
log pi(Ni)−

∑
k∈CHi

∂Xi
fk(PAk)∂Nk

log pk(Nk) . (8)
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Then, for each i = 1, . . . , d we define a function gi(Ni) := log pi(Ni), such that the i-th score entry
is

si(X) = ∂Ni
gi(Ni)−

∑
k∈CHi

∂Xi
fk(PAk)∂Nk

gk(Nk) . (9)

For a leaf node Xl, Equation (9) of the score becomes

sl(X) = ∂Nl
gl(Nl) , (10)

telling us that, if gl were known, we could predict the score of a leaf sl(X) from the noise Nl. In the
next section, with this idea in mind, we define a regression problem for each variable Xi, where the
input variables are all the remaining entries X\{i} := X \ {Xi}: then we show that if Xi target of
the prediction is a leaf, the residuals of this learning problem are consistent estimators of the noise
term in the corresponding structural equation of model (1).

4.2. Residuals estimation

Given an i.i.d. sample X ∈ Rn×d from pX, for each i = 1, . . . , d we define a regression problem
predicting Xi from the remaining variables X\{i}:

min
q∈Q

L(q), L(q) =

∫
Rd

(q(X\{i})−Xi)
2dpX(X)

given D =
{(

Xk
\{i}, X

k
i

)}n

k=1

, (11)

where Q is the space of measurable functions from the input space to R. For all X\{i} in the input
space, the minimizer q∗ ∈ Q of L is the conditional expectation E[Xi | X\{i}], which by linearity
of the mean is equivalent to:

q∗(X\{i}) = E[fi(PAi) | X\{i}] +E[Ni | X\{i}] . (12)

Given that PAi ⊂ X\{i}, we can simply remove the expectation operator from the first term of the
sum, obtaining:

q∗(X\{i}) = fi(PAi) +E[Ni | X\{i}] . (13)

Now we define the residual of the learning problem in (11) as the difference between the response
and the target function:

Ri := Xi − q∗(X\{i})

= Ni −E[Ni | X\{i}] ,
(14)

where the second equality holds from Equation (13). We can further manipulate the residual expres-
sion by noticing that X\{i} = DEi ∪NDi, with DEi and NDi respectively the set of descendants
and non-descendants of a node Xi: Equation (14) then becomes

Ri = Ni −E [Ni | DEi ∪NDi] . (15)

For a leaf node Xl we can exploit the fact that DEl = ∅ in order to simplify the above expression of
the residual in Rl = Nl−E [Nl | NDl]. Additionally, we can use d-separation criterion to conclude
that Nl is unconditionally independent of NDl, as shown in Figure 2: the expectation on the error
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NDlNl

Xl

Figure 2: Consider a leaf node Xl generated according to the SCM defined in (1): by d-separation the noise
term Nl is unconditionally independent from the set of non-descendants NDl, as the only path between the
two nodes contains a collider, namely Xl.

term of a leaf is then E [Nl | NDl] = E [Nl]. Finally, under the assumption of zero mean of the
noise of model (1), we conclude that the residual of Equation (15) is

Rl = Nl . (16)

Exploiting this equivalence we can rewrite the score of a leaf in Equation (10) as a function of Rl,
such that the score entry sl satisfies:

sl(X) = ∂Nl
gl(Rl) . (17)

By substituting the residual of Equation (14) in Equation (9), we can derive an analogous expression
of the score entry si associated to a non leaf node Xi:

si(X) = ∂Ni
gi(Ri +E

[
Ni | X\{i}

]
)−

∑
k∈CHi

∂Xi
fk(PAk)∂Nk

gk(Rk +E
[
Nk | X\{k}

]
)) . (18)

Discussion For a leaf node Xl, Equation (17) shows that the associated score entry is a function
of a single variable, namely the residual Rl: this suggests that we can hope to consistently estimate
the score sl(X) from such residual. On the other hand, if we consider a non-leaf node Xi, the form
associated to its score si(X) is more complicated (i.e. depending on a larger number of variables),
as shown by Equation (18): intuitively we can see that Ri, as a predictor, is not sufficient to find
a consistent estimator of si(X). In the next section, we want to formalize these intuitions that will
allow us to derive a theoretically principled method to identify leaf nodes by looking at the error of
score entries predictions from their corresponding residual.

4.3. Identifying leaf nodes

Consider a leaf node Xl: given a set of i.i.d. observations
{
(Rk

l , sl(X
k))

}n

k=1
, we want to find an

estimator of the score using the residuals as input. Similarly to (11) we define a regression problem

min
h∈H

L(h), L(h) =

∫
R×Rd

(h(Rl)− sl(X))2dp(Rl,X) , (19)

with H set of measurable functions from input to output space. For every Rl ∈ R, the target function
minimizing the expected risk is

h∗(Rl) := E [sl(X) | Rl]

= E
[
∂Nl

gl(Rl) | Rl

]
.

(20)
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It is immediate to see that, since we are conditioning on Rl, we can remove the expectation operator,
obtaining:

h∗(Rl) = ∂Nl
gl(Rl), ∀Rl ∈ R . (21)

Then, given a sample (Rl, sl(X)), the difference between the prediction h∗(Rl) and the ground
truth sl(X) = gl(Rl) is

h∗(Rl)− sl(X) = 0 . (22)

Similarly, the regression problem of (19) can be defined for a non-leaf node Xi: the resulting
regression function is h∗(Ri) = E [si(X) | Ri], the conditional expectation of Equation (18). Now,
we can exploit these results to define a criterion for identification of leaf nodes.

Lemma 1 Let X be a random vector generated according to model (1), and let Xi ∈ X. Then

E
[
(h∗(Ri)− si(X))2

]
= 0 ⇔ Xi is a leaf.

Discussion With Equation (22), we show that we can find a consistent estimator h∗ that can ex-
actly predict the score function associated to a leaf Xl, given that we observe the residual Rl. In
general, this is not the case for a node Xi that is not a leaf. This intuition is formalized in Lemma 1,
by considering the mean of the squared error of the prediction over all input and output realizations.
The proof of the lemma can be found in Appendix B.

Based on the results of this section, we now introduce an algorithm for causal discovery that
runs on nonlinear additive models with generic distributions of the noise terms. Then, we compare
its experimental performance against several existing methods on synthetic data.

5. Method

In Section 4.3 we show how to identify leaf nodes in a causal graph underlying observations gener-
ated according to model (1), consistently with the number of samples: the idea is that, given a set
of observations, for each node i = 1, . . . , d we can predict the score si(X) from the correspond-
ing residual Ri, choosing as leaf the node l index of the entry where the generalization error is
minimized. Once a leaf is identified, it is removed from the graph, and the procedure is repeated
iteratively up to the source node, allowing to infer a topological ordering Xπ that is asymptotically
consistent. In practice, given a finite set of observations X ∈ Rn×d, first we estimate ∇ log p(X)
score function of the data using the Stein gradient estimator (Li and Turner (2017), see Appendix D
for details), whose output is the vector ŝ(X). Then, we estimate the residuals R̂ = (R̂1, . . . , R̂d) by
Kernel Ridge regression, solving the problem defined in (11). Next, we define the vector estimator
s̃(R̂) predicting ŝi(X) from R̂i, for each variable i = 1, . . . , d: in order to avoid overfitting, we
train K different models by K-fold cross validation (i.e. only on a subset of the observations), each
one predicting on its corresponding test set, unseen during the training. Finally we compute the
Mean Squared Error (MSE) between the predictions s̃(R̂) and the ground truth ŝ(X) provided by
SCORE’s output: we select as leaf the node corresponding to the argmin of the vector of MSEs.
This procedure is repeated such that at each iteration one leaf is identified and added to the topolog-
ical ordering estimate. More details on the implementation of the algorithm described can be found
in the box of Algorithm 1.

9
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Given the order estimated by Algorithm 1, we use a pruning method, namely the pruning proce-
dure of CAM (CAM-pruning, Appendix C), to remove superfluous edges from the fully connected
graph admitted by the ordering.

Algorithm 1: NoGAM causal discovery
Input: data matrix X ∈ Rn×d

Xπ ← [ ]

nodes← [1, . . . , d]

for i = 1, . . . , d do
ŝ← SCORE(X)

R̂← {X̂j}j=1 estimate from X\{i}

s̃← {s̃j}j=1 estimate from R̂i

MSE ← Avg [ŝ− s̃]2

lindex ← argminMSE

l← nodes[lindex]

Xπ ← [l,Xπ]

Remove lindex-th column from X; Remove l from nodes

end
Xπ ← reverse(Xπ) (first node is source, last node is leaf)
Ĝ ← CAM-pruning(Xπ) (CAM-pruning: pruning method of CAM algorithm)
return Ĝ

6. Experiments

In this section we empirically study the performance of NoGAM (Algorithm 1). The experimental
analysis is done on data synthetically generated using the Erdos and Renyi (1960) (ER) model.
Mimicking the setting of Rolland et al. (2022), Lachapelle et al. (2020) and Zhu et al. (2020), we
generate the mechanisms fi by sampling Gaussian processes with a unit bandwidth RBF kernel.
Experiments are repeated with the number of nodes d equals 10 and 20, and expected number of
edges equals to d (ER1) and 4d (ER4), to simulate inference on sparser and denser graphs. The
size of the datasets is N = 1000. Performance is tested on datasets generated with noise terms
under one of the following distributions: Beta, Exponential, Gamma, Gumbel, Laplace and Normal.
Comparing the performance of NoGAM with state of the art methods working under Gaussianity
assumption, we are able to provide empirical evidence of the robustness of our algorithm with
respect to changes in the distributions.

The residuals R̂ and the the score function entries s̃(R̂) are estimated by Kernel Ridge regres-
sion, using the scikit-learn (Pedregosa et al. (2011)) implementation of the algorithm, with
hyperparameters α = 0.01, γ = 0.1: these values are tuned minimizing the generalization error on
the estimated residuals, without using the performance on the causal graph ground truth. For the
CAM pruning step the cutoff threshold is set at 0.001.

The metrics used to assess the quality of the inferred graph are the Structural Hamming Dis-
tance (SHD), which is the sum of false positive, false negative and reversed edges, and Structural
Interventional Distance (SID, Peters and Bühlmann (2015)), accounting for the number of miscal-
culated interventional distributions from the inferred graph. We separately evaluate the quality of
the topological ordering estimation as follow: given an ordering π̂ and the ground truth adjacency

10
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(a) Beta distribution (b) Exponential distribution (c) Gamma distribution

(d) Normal distribution (e) Gumbel distribution (f) Laplace distribution

Figure 3: Boxplots over 10 runs showing topological ordering divergence Dtop (the lower the better) over
sparse graphs ER1. GES algorithm does not appear since it does not require an explicit estimate of the
topological ordering. Overall, NoGAM clearly outperforms CAM and SCORE.

matrix A, we use the topological ordering divergence defined in SCORE (Rolland et al. (2022)):

Dtop(π̂, A) =
d∑

i=1

∑
j:π̂i≻π̂j

Aij , (23)

with π̂i ≻ π̂j meaning the node i is successive to j in the order, and Aij = 1 if Xi ∈ PAj(X).
In words this is the sum of the edges that can not be recovered due to the choice of the topological
ordering. If π̂ is correct with respect to A, then Dtop(π̂, A) = 0.

We compare the experimental performance of our algorithm against SCORE (Rolland et al.
(2022)), CAM (Bühlmann et al. (2014)) and GES (Chickering (2002)), causal discovery methods
working under the assumption of Gaussian noise. We exclude PC and FCI since in general they
perform much worse (Bühlmann et al. (2014), Lachapelle et al. (2020)).

Figure 3 illustrate how in the sparse setting (ER1) topological ordering estimates of NoGAM
systematically outperform the Dtop results obtained by CAM and SCORE for every non-Gaussian
noise distribution. The accuracy gap closes only for datasets generated under Gaussianity of the
noise, coherently with our expectations. A similar performance gap in favor of our method is ob-
served in the dense case (ER4), as shown in Figure 5 of the Appendix. Overall SCORE and NoGAM
clearly show better SHD (Figure 4 and 6) with respect to the remaining methods. Note that the two
algorithms differ only for the topological order inference step, while they share the same pruning
method of CAM. A complete overview of the experimental results on ER graphs can be found in
the Appendix G.
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(a) Beta distribution (b) Exponential distribution (c) Gamma distribution

(d) Normal distribution (e) Gumbel distribution (f) Laplace distribution

Figure 4: Boxplots over 10 runs showing SHD performance over sparse graphs ER1. NoGAM is in general
better than all the other methods, with SCORE showing comparable performance.

In the Appendix we provide a significant extension on our experiments. NoGAM performance
is tested on Sachs real data (Sachs et al. (2005), Appendix H.1) and Scale-free synthetic graphs
(Barabasi and Albert (1999), Appendix H.2). In Appendix H.3 we analyze the performance of
NoGAM under restriction of the hypothesis space to linear functions for the regression problems
of Equations (11) and (20). Additionally, in Appendix F we compare with Mooij et al. (2009) and
Peters et al. (2014), which proposal rely on independence of the residuals to discover causal effects
on nonlinear ANM without restrictions on the noise terms distribution.

Discussion on SCORE robustness Despite being systematically outperformed by our method
(Figure 3 and 5), SCORE algorithm shows significant robustness across different distributions of
the noise terms. Here we want to provide a brief discussion on why this, in our opinion, is the case.
In Lemma 1 of Rolland et al. (2022), authors propose to identify a leaf node from the Jacobian ma-
trix of the score function s(X). In particular, computing the variance of the diagonal elements of the
Jacobian Var

[
∂Xi

si(X)
]
, ∀i = 1, . . . , d, it can be shown the following: under Gaussianity assump-

tion, leaf nodes are associated to zero variance, such that Var
[
∂Xl

sl(X)
]
= 0 ⇐⇒ CHl(X) = ∅,

i.e. if and only if Xl is a leaf. In practice, due to statistical error in the estimation, such expression
in general is never exactly zero. To account for this, the SCORE algorithm iteratively selects leaf
nodes as l = argmini∈{1,...,d}Var

[
∂Xi

si(X)
]
. We argue that such heuristic is key to determine

the robustness of the algorithm as empirically observed outside of the Gaussian assumption. If the
noise terms are not normally distributed, then the score function is equivalent to Equation (7). It is
clear that the variance of ∂Xisi(X) is proportional to the number of children in the summation term.
In particular, the total variance of a diagonal element of the Jacobian of the score is the sum of the
variances of the partial derivative of the two right-hand terms in Equation (7), plus their covariance:

12
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Method Ordering time [s] Total time [s]

d=10

NoGAM 6.98± 0.57 10.56± 0.84
SCORE 4.28± 0.28 7.72± 01.07
CAM 24.12± 1.58 27.98± 2.61
GES − 0.43± 0.11

d=20

NoGAM 25.75± 1.48 53.98± 2.01
SCORE 9.51± 1.12 37.3± 4.21
CAM 501.92± 11.92 529.61± 18.41
GES − 5.35± 1.67

Table 1: Experiments execution times. Empirical mean and deviation are calculated across 10 runs on ER1
data with fixed method, number of nodes and distribution of the noise terms.

if the covariance happens to be negative and with magnitude large enough, the variance associated
to a non-leaf node might be smaller than the one relative to all other nodes, leading to errors in the
inferred topological ordering. Nevertheless, in general, this doesn’t seem to be the case: despite the
guarantee of vanishing variance for leaf nodes doesn’t hold anymore, in practice the leaf selection
criterion based on the argmin operator can still be expected to work. In Appendix D we extend the
discussion on Rolland et al. (2022), focusing on the differences of our method.

6.1. Algorithmic complexity

We now provide an analysis of the algorithmic complexity of NoGAM topological ordering method.
We denote with n the number of samples and d the number of nodes. Considering the implementa-
tion of Algorithm 1, each iteration of the for loop needs to solve a regression problem with O(n3)
cost, for each of the d residuals R̂i estimated. The same analysis holds for the estimation of s̃ from
R̂. This provides an overall O(d2n3) complexity. Similarly to NoGAM, SCORE iteratively identi-
fies leaves one at the time: each iteration requires inverting the n×d dimensional matrix of the data,
such that the topological ordering inference time scales with O(dn3). An overview of the execution
times of the experiments is provided in Table 1.

7. Conclusion

The assumption of Gaussian noise terms in an additive nonlinear model, when violated, can lead
causal discovery algorithms to infer graphs with inverted direction of the edges. In this work we
prove such limitation, and in response to this problem we introduce NoGAM. Based on the interplay
between score matching and causal discovery introduced by Rolland et al. (2022), our algorithm
proposes a novel and consistent method of inference of the topological ordering that doesn’t assume
any distribution on the noise terms. We prove via systematic experiments that our approach out-
performs traditional and state of the art causal discovery algorithms on almost any synthetic dataset
generated under arbitrary distribution of the noise terms.
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Appendix A. Identifiability of the multivariate ANM

Peters et al. (2014) show that Condition 1 for the bivariate model suffices to prove identifiability in
the multivariate case. Intuitively, given d structural equations of the form Xj := fj(PAj) +Nj as
in model (1), to reproduce a bivariate ANM it is sufficient to fix all arguments of fj except for one
parent Xi and for the noise variable Nj . More formally, Definition 27 of Peters et al. (2014) define
a restricted additive noise model as an SCM such that for all nodes j ∈ {1, . . . , d}, i ∈ PAj , and
for all sets S ⊆ {1, . . . , d} where PAj \{i} ⊆ S ⊆ NDj \{i, j}, there is a value of XS with joint
density pXS

(xS) > 0 such that the triple

(fj(paj \{i}, Xi), pXi|Xs(Xi | xS), pNj
(Nj))

satisfies Condition 1. With an abuse of notation we use PAi to denote both the nodes in the causal
graph and the random variables associated to them. Also, we denote with paj the observed value
of the vector of random variables PAj , and in general we rely on upper case notation for random
variables and lower case notation for their realizations.
Theorem 28 of Peters et al. (2014) prove that if a distribution is generated according to a restricted
additive noise model that satisfies causal minimality (i.e. causal mechanisms fj non-constant in any
of their argument), then the causal graph is identifiable from observational data. We assume model
(1) to be a restricted ANM according to Definition 27 of Peters et al. (2014), ensuring identifiability
of the causal graph.

Appendix B. Proof of Lemma 1

(i) Xi leaf node ⇒ E
[
(h∗(Ri)− si(X))2

]
= 0: true by Equation (22).

(ii) E
[
(h∗(Ri)− si(X))2

]
= 0 ⇒ Xi leaf node: the zero expectation can be rewritten as∫
R×Rd

(h∗(Ri)− si(X))2 dp(Ri,X) = 0 .

Being the integral taken over a positive function, it is immediate that the equality with zero
holds if and only if h∗(Ri) = si(X) with probability 1, such that PX|Ri

(si(X) = h∗(Ri) |
Ri) = 1, ∀ Ri ∈ R. It follows that the conditional variance satisfies VarX[si(X) | Ri] = 0
for all Ri ∈ R, and that si(X) is almost surely constant given Ri observed. We are going to
explicit this fact by introducing additional notation. We define cRi

:= h∗(Ri) such that it is
clear that cRi

is a constant when Ri is fixed.

Now, we are going to prove that Xi must be a leaf for the bivariate case of model (1). Then,
we will generalize the arguments to the generic n variables case. Let (Xi, Xj) be the nodes of
a bivariate graph G. By contradiction, suppose that Xi is not a leaf in the graph. By equation
(18) the i-th entry of the score can be written as

si(Xi, Xj) = ∂Ni
gi(Ri +E[Ni|Xj ])− ∂Xi

fj(Xi)∂Nj
gj(Xj − fj(Xi)) =

=: g′i(Ri +E[Ni|Xj ])− f ′
j(Xi)g

′
j(Xj − fj(Xi)) .

(24)

Conditional on Ri the score entry is almost surely constant, i.e. si(Xi, Xj) | Ri = cRi
with

probability 1.
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By identifiability assumption on the generating ANM, f ′
j(xi)g

′′
j (x

∗
j − fj(xi)) ̸= 0 for all but

finite (xi, xj) ∈ R2 (Equation (4)). Let us define X as the set uncountable pairs (xi, xj) for
which such condition is verified, meaning that

X := {(xi, xj) ∈ R2 | f ′
j(xi)g

′′
j (xj − fj(xi)) ̸= 0} ⊂ R2 .

Our next goal is to show that, in contradiction with the fact that VarX[si(X) | Ri] = 0
(immediate consequence of the hypothesis of vanishing expectation), there is some value of
Ri such that si(xi, xj) ̸= si(x

∗
i , x

∗
j ) | Ri for distinct pairs (xi, xj), (x∗i , x

∗
j ) in the support of

X | Ri. By definition in Equation (14) we have Ri = Ni −E[Ni | Xj ], and by identifiability
assumption of strictly positive density of the noise terms we know that pNi

(ni) > 0 for each
supported ni. Then, it is clear that the support of X and of its transformation si(X) is not
restricted by the observation of Ri: in fact, for each observation Ri = ri, for any value of
Xj = xj , ∃ni s.t. pNi(ni) > 0 that allows ri = ni −E [Ni | xj ].
Therefore we know that there exists an uncountable set of points (xi, xj) ∈ X that satisfies
si(xi, xj) = cRi and f ′

j(xi)g
′′
j (xj − fj(xi)) ̸= 0, conditional on Ri. We also know by

Equation (5) that f ′
j(xi)g

′′
j (xj − fj(xi)) ̸= 0 implies that g′i(xi)− f ′

j(xi)g
′
j(xj − fj(xi)) has

non zero partial derivative on xi for all pairs (xi, xj) ∈ X , i.e. is never constant on xi. Given
that g′i(xi)−f ′

j(xi)g
′
j(xj −fj(xi)) is exactly the analytical expression of the i-th score entry,

then we have that si(xi, xj) ̸= si(x
∗
i , x

∗
j ) | Ri for any(xi, xj), (x∗i , x

∗
j ) ∈ X and xi ̸= x∗i ,

xj ̸= x∗j . Thus, conditional on Ri, we have that VarX[si(X) | Ri] > 0, which contradicts the
assumption.

Then Xi must be a leaf, which proves the claim of the Lemma for the bivariate case.

Now, we consider a multivariate restricted ANM as in (1). Again, by contradiction we assume
Xi to be a non-leaf node. Being the model identifiable, we know that for each node q ∈
{1, . . . , d}, u ∈ PAq, and for all sets S ⊆ {1, . . . , d} where PAq \{i} ⊆ S ⊆ NDq \{u, q},
there is a value of xS with joint density pxS

(xS) > 0 such that the triple

(fq(paq \{u}, Xu), pXu|Xs(Xu | XS), pNq(Nq))

satisfies Condition 1. Let ic be a children of node i with ic ̸∈ PAk for each k ∈ CHi.
Such node ic always exists due to the acyclicity constraint on the causal graph. Let S =
NDic \{i, ic}: conditioning on the set of random variables XS = xS , the score entry for
node i is

si(X) = g′i(Ri +E[Ni| chi\{Xic}
, Xic ])+

− ∂Xi
fic(pai\{Xi}

, Xi)g
′
ic(Xic − fic(paic\{Xi}

, Xi))+

−
∑

k∈CHi\{ic}

∂Xi
fk(pak\{Xi}

, Xi)∂Nk
gk(nk = xk − fk(pak\{Xi}

, Xi))
(25)

If we fix Xi = x∗i such that for all the uncountable pairs (x∗i , xic) such that g′i(Ni) −
∂Xi

fic(pai\{Xi}
, x∗i )g

′
ic
(Xic − fic(pai\{Xi}

, x∗i )) is not constant, then we can observe that:
the first two terms of Equation (25) are exactly analogous to Equation (24) in the bivariate
case, for which non vanishing variance under observation of Ri is proven; the summation on
the remaining children instead does not contribute to the variance under conditioning on xS

and x∗i . Thus, we know that VarX[si(X) | Ri] > 0, which contradicts the assumption. We
conclude that Xi must be a leaf.
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Appendix C. Pruning of the DAG with CAM

Once the DAG constraint is enforced by a topological order, our NoGAM algorithm removes su-
perfluous edges from the graph using CAM-pruning procedure (Bühlmann et al. (2014)). In fact,
a smaller DAG typically yields to statistically more efficient estimations of interventional distribu-
tions with respect to the fully connected graph compatible with the topological order. The idea is
that, under assumption of additive structure of fi nonlinear mechanisms in (1), one can perform
regression on potential parent nodes and use additive hypothesis testing (Marra and Wood (2011))
to decide about the presence of an edge. For more details, please refer to the original paper of
Bühlmann et al. (2014).

Appendix D. Comparison with SCORE

In this Section we provide a summary of the key differences of our work with respect to Rolland
et al. (2022), and a brief introduction to the Stein gradient estimator, the main ingredient common
to the implementation of SCORE and NoGAM algorithms. Rolland et al. (2022) proposes a method
for identification of leaf nodes by inspection of the diagonal elements of the Jacobian of the score
function: this is done identifying nonlinearities in the diagonal entries by estimation of their vari-
ance, which is possible only under assumption of Gaussian noise terms. Additionally, in order to
guarantee nonlinearities in Jacobian of the score, it is required that the causal mechanisms fi are
nonlinear in each of their arguments: this is a strong assumption which violation leads SCORE to in-
fer the wrong topological ordering. To better clarify this point, we explicitly consider the analytical
form of a diagonal entry of the Jacobian of the score function:

∂Xisi(X) = ∂2
Xi

log pi(Xi | PAi) +
∑

k∈CHi

∂Xi
(∂Xi

fk(PAk)∂Xk
log pk(Xk | PAk)) .

By writing pk(Xk | PAk) normal distribution explicitly, it is easy to see how terms in the summation
over the children are vanishing if fk is linear in Xi (due to the second order partial derivative of
fk(PAk)). Our paper instead develops the theory to identify leaf nodes in a causal graph with less
restrictive assumptions, both on the noise and on the functional mechanisms, based on minimization
of the generalization error in the prediction of the score entries from the residuals of Equation (14).

From a practical viewpoint, both SCORE and NoGAM methods rely on efficient approximation
of ∇X log p(X) using the score matching based Stein gradient estimator (Li and Turner (2017)),
which we briefly outline below.

Stein gradient estimator The estimator is based on the Stein identity, that was first developed
for Gaussian random variables (Stein (1972)) and then extended to the general case (Gorham and
Mackey (2017); Liu et al. (2016)). For any test function h : Rd → Rd′ such that limx→∞ h(x))p(x) =
0, the following identity holds:

Ep [h(x)∇x log p(x) +∇xh(x)] = 0.

We note that the quantity of interest ∇x log p(x) appears in the expression. Being the integral of
the expectation intractable, Li and Turner (2017) propose to exploit Monte Carlo approximation of
the expectation, and then show that it is possible to derive an estimator of the score consistent in the
large sample limit. For additional details, please refer to the original manuscript.
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Appendix E. Discussion on Example 1

Example 1 experimentally illustrates the shortcomings of inference under assumption of Gaussian
noise terms, when this is violated in the ground truth generative model. In what follows we are going
to provide a more detailed overview of the experimental design of the example and of the method
of inference of the causal effect direction. For both the linear and nonlinear settings we generate
2000 samples of the ground truth noise terms X1 and N2, uniformly distributed with support in the
[0, 5] and [1, 4] intervals, respectively (see Figure 1a). Theorem 1 of Zhang and Hyvärinen (2009)
proves that when fitting additive model (1) with the causal structure represented by a DAG, then the
total entropy of the disturbances, i.e.

∑d
i H(Ni), is minimized at the minimum of H(X1, . . . , Xd)

(which corresponds to the minimum in the negative log-likelihood). Thus, in the bivariate case of
Example 1, we can choose as the correct causal direction the one achieving the minimum in the total
entropy of the estimated noise terms.

Appendix F. Causal discovery with independence of estimated residuals

Mooij et al. (2009) and Peters et al. (2014) propose a causal discovery methodology comparable to
our Algorithm 1, as they operate on identifiable ANM without posing restrictions on the distribution
of the noise terms. In practice, they estimate the causal structure in an iterative way, performing
regression similarly to our Equation (11) and testing for independence of the inferred residuals
Ri and variables X\{i}. The main bottleneck of this approach is the use of independence testing,
which is hard to perform (Shah and Peters (2018)) as well as to scale to high dimensional graphs
and large size datasets. Additionally, it does not ensure consistency of the inferred graph in the
population case, unless an oracle independence test is assumed. In Table 2 we compare empirical
performance of NoGAM and RESIT method of Peters et al. (2014). We reproduce the experimental
setting of Peters et al. (2014) (Section 5.1.2), sampling the nonlinear mechanisms from a Gaussian
process with unitary bandwidth and independent noise terms under normal distribution and variance
uniformly chosen. Experiments are run with number of samples n ∈ {100, 500} and number of
variables d ∈ {4, 15}, in a sparse setting. We can see that NoGAM outperforms RESIT under any
of the experimental configurations.

Table 2: Experimental performance of NoGAM compared to RESIT. RESIT results are taken from Peters
et al. (2014), Table 3 and Table 4.

Method SHD (n=100) SHD (n=500)

d=4
NoGAM 1.6± 1.1 0.4± 0.4
RESIT 1.7± 1.3 0.8± 0.9

d=15
NoGAM 11.7± 2.4 7.6± 4.1
RESIT 15.4± 5.7 10.1± 5.7

Appendix G. Experiments on ER graphs

From Table 3 to 8 we provide the complete overview of the experiments described in section 6. Each
metric is averaged over 10 runs, for which we record the empirical mean and deviation. Figure 5
shows how in the dense setting (ER4) NoGAM method of inference of the topological ordering
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(a) Beta distribution (b) Exponential distribution (c) Gamma distribution

(d) Normal distribution (e) Gumbel distribution (f) Laplace distribution

Figure 5: Boxplots over 10 runs for topological ordering divergence Dtop over dense graphs (ER4). GES
algorithm doesn’t appear since it does not require an explicit estimate of the topological ordering. From the
illustrations we can see how NoGAM, in general, outperforms CAM and SCORE.

outperforms CAM and SCORE, similarly to what observed in the sparse setting (ER1) illustrated in
Figure 3. In Figure 6 we can see that SCORE and NoGAM have overall comparable SHD.

Table 3: Beta noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 1.1± 1.5 4.2± 5.4 0.6± 0.8 5.1± 1.3 11.4± 7.1 0.1± 0.3
SCORE 1.6± 1.0 4.9± 3.5 0.6± 0.7 6.1± 2.0 9.6± 5.4 0.4± 0.7
CAM 3.4± 1.9 13.8± 8.6 2.2± 1.4 14.4± 5.1 51.0± 14.3 7.7± 5.1
GES 6.5± 2.0 22.0± 7.6 − 27.0± 5.2 72.0± 8.7 −

d=20

NoGAM 2.0± 1.6 8.0± 9.0 0.5± 0.5 30.0± 4.2 121.5± 22.6 0.9± 0.9
SCORE 2.0± 1.5 8.0± 5.2 1.0± 0.3 33.1± 6.8 111.9± 29.1 1.4± 1.0
CAM 9.5± 4.8 45.3± 16.0 5.7± 2.3 45.1± 7.2 220.8± 29.1 12.2± 7.0
GES 12.9± 4.7 52.0± 14.4 − 78.5± 9.2 290.6± 25.9 −

Appendix H. Additional experiments

H.1. Experiments on Sachs data

We test NoGAM on Sachs dataset (Sachs et al. (2005)), a common causal discovery benchmark
made of real-world biological data. In the results of Table 9, we can see how NoGAM retains state
of the art performance with respect to the alternative methods.
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(a) Beta distribution (b) Exponential distribution (c) Gamma distribution

(d) Normal distribution (e) Gumbel distribution (f) Laplace distribution

Figure 6: Boxplots over 10 runs showing SHD performance over dense graphs (ER4).

Table 4: Exponential noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 1.2± 1.4 4.3± 5.2 0.3± 0.6 24.1± 2.0 43.3± 5.2 0.8± 0.8
SCORE 2.3± 1.2 4.1± 4.2 0.8± 0.9 25.1± 3.0 40.9± 6.6 1.1± 0.6
CAM 3.4± 1.4 14.8± 5.8 2.4± 1.0 24.6± 2.0 54.1± 11.9 4.4± 2.1
GES 9.0± 3.0 33.1± 12.2 − 33.9± 3.7 80.6± 5.8 −

d=20

NoGAM 2.5± 1.4 11.3± 9.1 0.7± 0.6 54.2± 4.5 218.1± 28.7 3.6± 1.6
SCORE 4.2± 2.8 19.7± 13.6 1.4± 1.4 54.1± 4.0 215.1± 40.4 6.1± 1.3
CAM 8.2± 1.8 46.4± 24.4 5.5± 2.1 54.8± 4.3 258.4± 57.4 18.8± 7.5
GES 19.8± 3.5 87.8± 24.4 − 72.9± 5.4 336.2± 24.0 −

H.2. Experiments on Scale Free graphs

From Table 10 to 15 we provide additional experimental results on Scale Free (SF) graphs (Barabasi
and Albert (1999)). Datasets are generated with 1000 samples, number of nodes equals 10 and 20,
average number of edges per node equals 1 (sparse graphs) and 4 (dense graphs).

H.3. NoGAM with linear regression

In this section we discuss potential robustness issues of our methodology. In particular, according
to Equations (11) and (20), our algorithm requires minimization over the space of all measurable
functions for the estimation of the residuals and of the score function from such residuals. It is well
known that, in practice, due to computational limitations we need to further restrict the hypothesis
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Table 5: Gamma noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 1.2± 1.2 3.9± 5.4 0.3± 0.5 24.2± 1.8 41.4± 5.3 0.7± 0.8
SCORE 1.6± 1.5 4.8± 6.3 1.4± 0.9 24.2± 0.9 41.6± 2.5 1.0± 1.1
CAM 3.3± 1.6 17.3± 8.2 2.6± 1.7 26.5± 3.8 59.3± 15.1 8.0± 4.5
GES 9.8± 2.2 34.6± 13.2 − 35.9± 3.6 80.8± 6.5 −

d=20

NoGAM 3.9± 1.7 13.5± 10.1 0.7± 0.8 52.7± 2.8 203.1± 24.9 3.7± 1.6
SCORE 4.0± 1.8 14.8± 8.2 2.5± 1.3 56.5± 2.3 214.7± 21.7 4.7± 1.7
CAM 8.3± 3.0 48.9± 23.3 5.1± 2.5 54.0± 3.5 264.5± 17.6 16.2± 4.6
GES 18.8± 2.5 89.0± 19.4 − 73.9± 3.2 332.8± 19.2 −

Table 6: Gauss noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.4± 0.5 0.0± 0.0 0.0± 0.0 26.4± 2.5 43.9± 4.8 0.8± 0.9
SCORE 0.9± 0.7 3.2± 2.4 0.1± 0.3 26.1± 3.0 43.7± 8.7 0.7± 0.6
CAM 0.6± 0.7 1.3± 1.6 0.0± 0.0 26.9± 2.2 47.4± 5.2 5.1± 3.4
GES 8.3± 1.8 31.9± 9.5 − 36.2± 2.4 85.3± 3.8 −

d=20

NoGAM 2.0± 1.0 10.1± 5.7 0.3± 0.5 54.0± 3.0 195.0± 17.0 3.1± 2.0
SCORE 2.3± 1.3 11.6± 6.9 0.4± 0.7 56.5± 2.9 197.8± 22.3 5.0± 1.3
CAM 2.1± 1.8 9.8± 9.9 0.8± 1.0 57.1± 1.9 204.1± 34.2 21.4± 8.4
GES 17.1± 3.7 70.0± 22.1 − 71.9± 3.8 340.1± 20.9 −

Table 7: Gumbel noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 1.3± 1.4 3.3± 4.2 0.2± 0.4 24.9± 2.7 41.4± 4.8 0.6± 0.7
SCORE 1.6± 1.4 6.3± 5.2 0.5± 0.5 26.1± 2.1 42.6± 5.7 0.5± 0.7
CAM 1.4± 1.3 7.9± 8.8 0.8± 1.1 26.5± 1.9 55.9± 12.4 7.1± 4.3
GES 9.7± 1.2 41.0± 11.1 − 38.2± 1.3 86.8± 2.5 −

d=20

NoGAM 2.7± 2.4 11.3± 6.8 0.6± 0.7 56.1± 3.9 207.9± 20.4 4.7± 2.4
SCORE 3.5± 1.6 15.9± 17.4 1.3± 1.3 56.9± 2.2 205.6± 25.0 5.4± 1.6
CAM 4.3± 1.4 29.7± 12.3 2.3± 1.4 57.0± 4.3 225.5± 24.7 17.6± 6.3
GES 21.1± 1.9 95.4± 28.5 − 78.2± 2.4 348.5± 15.9 −

space of the class of functions over which we search the solution for the regression problems, and
that this can induce irreducible error. Regardless, we find that the iterative identification of leaves
with the argmin of the Mean Squared Error (as proposed in Algorithm 1) makes NoGAM robust
with respect to the error introduced by a restrictive hypothesis space. We can intuitively justify this
as follow: in order to get a wrong leaf at a specific iteration, the irreducible error on the prediction
of the score of each leaf needs to be larger than the total prediction error of a generic non-leaf node,
which is also increased by the hypothesis space restriction. However, if some variables have target
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Table 8: Laplace noise ER graphs

ER1 (sparse) ER4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.6± 0.7 2.2± 2.9 0.0± 0.3 24.5± 2.0 42.9± 6.5 0.8± 0.9
SCORE 1.4± 1.0 3.0± 3.0 0.3± 0.4 27.9± 2.3 46.5± 6.1 1.1± 0.5
CAM 1.1± 1.0 4.6± 4.9 0.4± 0.5 24.7± 1.7 43.8± 4.3 6.0± 3.1
GES 10.0± 1.7 37.5± 10.1 − 35.6± 2.4 85.0± 2.3 −

d=20

NoGAM 2.0± 2.2 9.1± 6.4 0.4± 0.7 54.5± 3.4 204.2± 20.1 3.9± 1.5
SCORE 3.1± 1.3 16.1± 6.6 1.3± 0.6 56.1± 1.9 209.6± 21.4 4.6± 2.0
CAM 3.4± 1.2 11.1± 9.1 0.5± 0.7 54.8± 2.6 200.4± 16.1 18.5± 6.5
GES 19.7± 2.4 90.4± 32.0 − 73.4± 3.1 329.4± 13.9 −

Table 9: Experimental results on Sachs dataset (11 variables, 17 edges, 853 observables).

Method Dtop SHD SID

NoGAM 8 12 45
SCORE 8 12 45
CAM 7 12 55
GES − 17 62

Table 10: Beta noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 2.6± 2.1 13.7± 15.9 1.7± 1.6 7.3± 2.3 12.9± 9.1 0.6± 0.7
SCORE 2.3± 1.4 4.5± 4.0 0.7± 0.8 6.2± 1.4 16.0± 8.3 0.3± 0.5
CAM 4.5± 1.2 29.9± 6.7 3.3± 0.8 14.3± 4.0 47.7± 18.6 6.4± 4.5
GES 9.8± 2.9 56.3± 17.4 − 27.6± 5.8 73.7± 5.4 −

d=20

NoGAM 2.5± 1.7 24.8± 22.0 0.9± 1.0 31.1± 6.9 60.3± 20.0 0.8± 0.6
SCORE 2.1± 1.4 5.8± 3.9 0.1± 0.3 31.6± 5.8 108.4± 18.7 1.2± 1.2
CAM 6.3± 2.8 84.1± 40.8 4.6± 2.1 37.7± 7.4 178.9± 44.4 6.8± 4.2
GES 21.3± 6.9 157.8± 48.5 − 93.3± 13.8 303.2± 13.1 −

function much closer to the hypothesis space than others, this can induce very different irreducible
errors for different variables. If such error introduced by the biased space of functions happens to be
larger for leaves, it can cause mistakes in the ordering, as it could be confused with the estimation
residual. Nevertheless, we argue that often this is not the case: in order to experimentally prove our
claim, we run NoGAM topological ordering inference on ER4 synthetic data, replacing KernelRidge
regressor with the linear model Lasso of scikit-learn (Pedregosa et al. (2011)), that we use for
both residuals estimation and score prediction from the residuals. In Table 16 we see that NoGAM
doesn’t suffer from the restriction of the search space to linear function (as in Lasso regression
algorithm), despite mechanisms of the generative model being highly nonlinear: comparing the
results obtained with linear and nonlinear regression, we observe that they are almost always close
and comparable within error bars.
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Table 11: Exponential noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 1.5± 1.1 7.7± 6.7 0.9± 0.8 8.3± 2.1 31.6± 6.0 0.6± 0.8
SCORE 0.7± 0.8 2.4± 3.6 0.3± 0.6 8.0± 2.6 39.4± 6.1 0.4± 0.5
CAM 3.6± 2.0 26.6± 12.6 2.8± 1.3 11.7± 3.3 54.0± 9.1 4.8± 4.0
GES 11.7± 2.6 59.0± 10.7 − 26.2± 3.0 81.0± 5.9 −

d=20

NoGAM 5.3± 2.5 61.7± 28.5 3.6± 1.7 24.5± 3.9 233.3± 24.4 4.8± 2.4
SCORE 3.4± 1.7 14.8± 7.0 1.3± 0.9 24.7± 3.7 209.4± 29.3 4.2± 1.2
CAM 7.7± 2.6 114.0± 37.8 5.8± 1.8 29.2± 3.2 271.5± 38.4 10.1± 5.2
GES 26.8± 3.5 203.5± 48.5 − 59.0± 4.1 350.1± 10.6 −

Table 12: Gamma noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.7± 1.2 6.0± 12.0 0.6± 1.2 7.5± 2.6 36.4± 12.4 0.8± 1.2
SCORE 0.7± 0.9 3.6± 4.7 0.5± 0.7 7.2± 2.5 41.3± 7.9 0.6± 1.0
CAM 2.8± 2.4 19.3± 16.7 2.1± 1.8 10.4± 3.2 48.8± 14.8 4.2± 3.3
GES 10.5± 2.5 58.5± 14.7 − 25.6± 2.3 80.4± 3.7 −

d=20

NoGAM 6.1± 2.3 71.5± 40.0 4.2± 1.9 26.6± 5.0 237.8± 21.4 4.3± 2.3
SCORE 3.1± 2.1 13.2± 10.2 0.8± 0.6 27.1± 4.1 204.4± 23.3 3.7± 1.7
CAM 8.6± 2.7 100.0± 38.3 5.6± 1.6 29.0± 6.6 270.7± 41.7 8.6± 4.3
GES 27.1± 3.1 187.3± 31.1 − 59.8± 5.1 348.6± 11.1 −

Table 13: Gauss noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.3± 0.5 2.0± 4.0 0.2± 0.4 6.4± 1.9 34.1± 5.3 0.0± 0.0
SCORE 0.3± 0.6 2.7± 5.8 0.1± 0.3 7.6± 2.9 31.6± 9.4 1.1± 0.7
CAM 0.2± 0.4 1.5± 3.0 0.0± 0.0 9.8± 2.3 39.7± 9.9 1.0± 0.9
GES 10.6± 3.0 49.7± 15.2 − 24.1± 3.3 80.7± 3.5 −

d=20

NoGAM 1.2± 0.9 14.2± 16.3 0.7± 0.6 15.8± 4.6 224.6± 22.4 2.3± 1.6
SCORE 0.9± 0.9 13.8± 12.6 0.7± 0.8 17.5± 3.5 179.2± 23.8 4.9± 3.0
CAM 0.3± 0.5 1.9± 5.7 0.0± 0.0 24.8± 3.3 240.7± 29.8 3.1± 2.4
GES 28.1± 7.6 212.6± 51.0 − 58.5± 3.6 360.5± 2.7 0.0± 0.0
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Table 14: Gumbel noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.9± 0.9 6.0± 5.2 0.6± 0.7 7.2± 2.3 28.1± 7.5 0.2± 0.4
SCORE 1.2± 1.3 5.0± 5.1 0.7± 0.6 7.6± 3.2 44.0± 9.3 0.5± 0.5
CAM 0.4± 0.5 4.0± 4.9 0.4± 0.5 8.0± 3.0 37.5± 13.4 1.5± 2.3
GES 10.5± 2.6 55.1± 13.0 − 24.0± 3.4 80.3± 6.1 −

d=20

NoGAM 2.1± 1.4 26.5± 20.0 1.5± 0.9 25.3± 3.7 237.3± 21.0 2.7± 2.0
SCORE 3.2± 1.9 20.0± 13.6 1.1± 1.4 28.1± 4.1 212.3± 19.7 5.6± 2.4
CAM 1.5± 1.6 13.7± 16.6 0.8± 0.8 26.0± 4.5 247.0± 31.6 4.7± 2.2
GES 28.0± 8.7 195.9± 34.7 − 58.9± 4.8 353.3± 12.7 −

Table 15: Laplace noise SF graphs

SF1 (sparse) SF4 (dense)

Method SHD SID Dtop SHD SID Dtop

d=10

NoGAM 0.1± 0.3 0.9± 2.7 0.1± 0.3 8.0± 2.1 30.4± 8.3 0.5± 0.9
SCORE 0.5± 1.2 1.5± 3.4 0.0± 0.0 8.2± 1.7 43.6± 6.5 0.5± 0.7
CAM 0.4± 0.5 1.9± 3.8 0.1± 0.3 7.0± 2.2 34.0± 12.1 1.0± 1.3
GES 12.8± 4.7 60.4± 19.7 − 26.1± 1.9 82.4± 2.8 −

d=20

NoGAM 1.7± 0.9 12.6± 8.6 0.7± 0.6 25.9± 3.3 244.3± 22.9 2.5± 2.3
SCORE 2.6± 1.1 16.7± 15.7 1.1± 1.0 27.4± 3.0 207.6± 18.4 4.8± 2.2
CAM 1.1± 0.9 3.9± 7.8 0.1± 0.3 23.7± 3.9 227.2± 15.1 2.5± 1.8
GES 29.0± 6.7 207.3± 34.7 − 58.0± 6.6 353.4± 7.7 −

Table 16: Experimental performance of NoGAM using KernelRidge and Lasso regression methods for the
estimation of the residuals and of the score function from the residuals. (In bold we remark the regression
method giving best performance.)

Noise Nodes Regression method Dtop

Beta

d = 10 KernelRidge 0.1± 0.3
d = 10 Lasso 0.2± 0.4
d = 20 KernelRidge 0.9± 0.9
d = 20 Lasso 4.6± 2.9

Gamma

d = 10 KernelRidge 0.7± 0.8
d = 10 Lasso 0.6± 0.7
d = 20 KernelRidge 3.7± 1.6
d = 20 Lasso 4.0± 1.9

Gauss

d = 10 KernelRidge 0.8± 0.9
d = 10 Lasso 0.6± 0.7
d = 20 KernelRidge 3.1± 2.0
d = 20 Lasso 3.7± 1.7

Noise Nodes Method Dtop

Gumbel

d = 10 KernelRidge 0.6± 0.7
d = 10 Lasso 0.8± 1.0
d = 20 KernelRidge 4.7± 2.4
d = 20 Lasso 3.8± 2.2

Exponential

d = 10 KernelRidge 0.8± 0.8
d = 10 Lasso 0.6± 0.7
d = 20 KernelRidge 3.6± 1.6
d = 20 Lasso 3.5± 1.7

Laplace

d = 10 KernelRidge 0.8± 0.7
d = 10 Lasso 0.7± 0.6
d = 20 KernelRidge 3.9± 1.5
d = 20 Lasso 3.1± 1.5

26


	Introduction
	Background knowledge
	Limitations of the Gaussian noise assumption
	Causal discovery via the score function
	Score function of a data distribution
	Residuals estimation
	Identifying leaf nodes

	Method
	Experiments
	Algorithmic complexity

	Conclusion
	Identifiability of the multivariate ANM
	Proof of Lemma 1
	Pruning of the DAG with CAM
	Comparison with SCORE
	Discussion on Example 1
	Causal discovery with independence of estimated residuals
	Experiments on ER graphs
	Additional experiments
	Experiments on Sachs data
	Experiments on Scale Free graphs
	NoGAM with linear regression


