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Abstract
This paper demonstrates how to discover the whole causal graph from the second derivative of
the log-likelihood in observational nonlinear additive Gaussian noise models. Leveraging scalable
machine learning approaches to approximate the score function ∇ log p(X), we extend the work
of Rolland et al. (2022) that only recovers the topological order from the score and requires an ex-
pensive pruning step removing spurious edges among those admitted by the ordering. Our analysis
leads to DAS (acronym for Discovery At Scale), a practical algorithm that reduces the complexity
of the pruning by a factor proportional to the graph size. In practice, DAS achieves competitive
accuracy with current state-of-the-art while being over an order of magnitude faster. Overall, our
approach enables principled and scalable causal discovery, significantly lowering the compute bar.
Keywords: High dimensional causal discovery; Score matching; Scalability

1. Introduction

Causal discovery from observational data is a central problem affecting virtually all scientific do-
mains, such as biology, genetics, economics, and machine learning (Sachs et al. (2005); Koller and
Friedman (2009); Pearl (2009); Peters et al. (2017)). Given a causal model one can predict the effect
of interventions on the system’s variables without the need of accessing interventional data which
might be costly, unfeasible or unethical to collect. On the other hand, inferring causal relations from
observational data is generally non-identifiable and requires additional assumptions. In traditional
causality research, algorithms to discover causal relationships from observations can be divided in
three classes (Glymour et al. (2019); Schölkopf et al. (2021)). Constraint-based approaches like
PC (Spirtes and Glymour (1991)), FCI and SGS (Spirtes et al. (2000)) test the conditional indepen-
dence between the variables and search for graphs structures that satisfies them under a faithfulness
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assumption. Usually they do not output a unique graph but an equivalence class. The main bottle-
neck of these approaches is that conditional independence testing is notoriously difficult (Shah and
Peters (2020)). Score-based methods define a suitable score function, and search for the graph that
best fits the data. Greedy approaches, such as GES (Chickering (2002)), are used to search in this
large space, which size grows super-exponentially with the number of nodes (thus limiting scala-
bility). Finally, a restricted model class assumption, e.g., nonlinear relations and additive Gaussian
noise, allows to identify the Directed Acyclic Graph (DAG) underlying the observations (Peters
et al. (2017); Bühlmann et al. (2014); Lachapelle et al. (2020); Zheng et al. (2018); Shimizu et al.
(2006)).

One main challenge affecting the discovery of the causal graph is that enforcing the DAG con-
straint has a cubic per-iteration cost in the number of variables, making the optimization the com-
putational bottleneck. One approach to reduce the computational requirements, is to decouple the
causal discovery task in two steps: first, a topological ordering is found, such that a node can be
a parent only of its successors in the ordering, thus enforcing the acyclicity constraint. Then, a
pruning step selects the correct subset of edges among those admitted by the inferred ordering,
removing all spurious connections in the graph. In this setting, a step towards better scalabil-
ity is the work of Rolland et al. (2022) that recently proposed the SCORE algorithm: first they
efficiently estimate the score function ∇ log p(X), then they recover the topological order from
the Jacobian of the score, and finally they prune the fully connected DAG by the method pro-
posed in CAM (Bühlmann et al. (2014)). The pruning step is the bottleneck of SCORE, amount-
ing to 95% of the runtime on graphs with 50 nodes and scaling cubic in the number of nodes.
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Figure 1: Execution time of different meth-
ods versus d number of nodes for dense graphs
(ER4 data).

In this work, we show that the second deriva-
tive of the log-likelihood allows to recover both
the skeleton and the direction of the edges in
the causal DAG. Theoretically, this implies that
we can get rid of the costly pruning step in
SCORE (Rolland et al. (2022)) as all information
about the causal structure is already contained in
the Jacobian of the score. While our analysis
yields a practical algorithm, we found it benefi-
cial to first identify few candidate edges and still
retain a final cheap pruning step. This is now
much more efficient as most of the edges have al-
ready been detected and it is only needed to cor-
rect mistakes from the finite samples approxima-
tion of the score, reducing the complexity by a
factor proportional to the number of nodes in the
graph. This advantage is clearly visible in prac-

tice, reducing the runtime of SCORE by over an order of magnitude as shown in Figure 1.
Our contributions can be summarized as follows:

• We demonstrate how to theoretically recover the full causal DAG from the score of the data
distribution. This extends prior work showing that the topological order can be recovered
from the score (Rolland et al. (2022)).
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• We introduce DAS1 (acronym for Discovery At Scale), an algorithm for efficient and scalable
causal discovery. As we lower the computational bar to apply causal discovery techniques on
large numbers of variables, we also present clear examples and highlight when our algorithm
is expected to fail. We expect these to be useful for practitioners interested in using DAS on
their data as well as researchers working on scalable causal discovery.

• Our analysis yields a practical approach to filter the candidate edges in the final pruning step.
While our method is marginally less accurate than (Rolland et al. (2022)) it improves the
runtime by an order of magnitude in the graph size. We demonstrate the speedup improvement
on synthetic graphs with up to a thousand nodes.

2. Background knowledge

We introduce the background needed for our analysis starting from the formalism of structural
causal models.

2.1. Structural Causal Models

One way to formalize causal relationships between variables is with an additive Structural Causal
Model (SCM). Consider a set X = {Xi}di=1 of observable vertices of a DAG. We assume that the
structure of the graph can be expressed in the functional relationship

Xi = fi(pai(X)) + ϵi, ϵi ∼ N (0, σi), ∀i = 1, . . . , d , (1)

with pai(X) set of parent nodes of Xi in the directed network. We will assume Xi ∈ R, additive
and independently drawn Gaussian noise elements ϵi, as well as fi to be twice continuously differ-
entiable and nonlinear in every component.

Recursive application of (1) allows to derive the joint probability distribution p(X1, X2, . . . , Xd).
As this probability is over vertices of a directed acyclic graph, the following factorization holds
(Pearl (2009); Lauritzen (1996)):

p(X) =

d∏
i=1

p(Xi|pai(X)) . (2)

The additive noise model (1) is known to be identifiable under mild assumptions (Hoyer et al.
(2009); Zhang and Hyvärinen (2009)), meaning that we can recover uniquely the causal graph from
observational data generated according to the joint distribution over X.

Problem definition Usually the form of the fi in the model (1) is not known and neither is the
probability in (2), while we can only access a set of observations from the joint distribution. Given
these observations the task is to identify the causal structure of the graph underlying the SCM. This
problem is known as causal discovery. One solution is to use data to estimate a topological ordering
of the variables in X, and then to choose edges of the DAG between those admitted by such ordering.
In our approach we select edges that satisfy constraints derived from the Jacobian of the score.

1. The code for DAS is available as part of the DoDiscover library https://www.pywhy.org/dodiscover/
dev/index.html
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2.2. Topological ordering of a graph

Given a set of nodes X = {Xi}di=1, let G = (X, E) be a DAG. A topological order relative to G
is a permutation Xπ of the nodes such that an edge (i, j) in G implies Xi appearing before Xj in
Xπ, denoted as Xj ≻ Xi. Intuitively, a node can be a parent only of its successors in the ordering.
According to this definition more than one topological ordering is allowed for a given DAG. On
the other hand, there is a one to one correspondence between a given permutation Xπ and a fully
connected graph Gπ where we draw edges (i, j) for each i, j = 1, . . . , d such that Xj ≻ Xi in Xπ.
If Xπ is equal to X∗, one of the correct permutations of the real DAG G, then Gπ = (X, Eπ) is a
supergraph of G meaning that its set of edges satisfies E ⊆ Eπ. In the next section we provide an
overview of CAM edges selection procedure, that allows to correctly identify E given a topological
ordering Xπ and its corresponding dense set Eπ.

2.3. Preliminary Neighbours Search (PNS) and CAM-pruning

Now we briefly describe the two-steps pruning method of CAM (Bühlmann et al. (2014)), namely
Preliminary Neighbours Search (PNS) followed by CAM-pruning, which is used to remove spurious
edges of Gπ, the dense graph induced by a permutation Xπ.

PNS PNS is a neighbours selection method for nonlinear additive Gaussian noise models, follow-
ing the idea of variable selection in graphs presented in Meinshausen and Bühlmann (2006) for the
linear Gaussian case. In particular, given an order Xπ, variable selection is performed by fitting for
each j = 1, . . . , d an additive model of Xj versus all the other variables {Xi : Xj ≻ Xi in Xπ},
and choosing the K most important predictor variables as possible parents of Xj . This restricts the
number of possible incoming edges of Xj to an arbitrary fixed amount K, reducing the total com-
plexity of the edges search procedure and the workload of CAM-pruning step. PNS is implemented
by the authors with a boosting method for additive models fitting (Bühlmann and Hothorn (2007);
Bühlmann and Yu (2003)). The total complexity of PNS is therefore O(dt r(n, d)) as for each node
1, . . . , d the boosting algorithm fits t models of complexity r(n, d), with n the number of samples
in the dataset. The complexity term r(n, d) depends on the choice of the additive model fitting
technique, amounting to O(nd2) using Iteratively Reweighted Least Squares (Minka (2003)).

CAM-pruning After Preliminary Neighbours Search, a final pruning step is performed by apply-
ing significance testing of covariates to remove superfluous edges and thus reducing the number of
false positives. In this case the computational complexity is negligible being bounded by the fixed
parameter K decided in PNS.
Our work aims at replacing PNS with a novel approach making CAM-pruning application scal-
able to high dimensional graphs. In particular we reduce asymptotic complexity of the edge search
procedure from O(nd3) to O(d2).

3. Deducing causal structure from the score

For the causal discovery problem under analysis we consider an observable X ∈ Rd whose entries
Xi are vertices of a graph generated according to the model in (1). In the next section, we show how
the score function is in principle sufficient to solve this task. First we illustrate the ideas behind the
SCORE algorithm, which can estimate the score’s Jacobian and find a topological ordering of the
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variables of interest. Then we derive additional constraints on the Jacobian matrix of the score that
allows to identify the edges of the causal graph.

3.1. SCORE overview

Rolland et al. (2022) introduces a method for efficiently estimating the score function s(X) and its
Jacobian exploiting the Stein identity (Stein (1972)). Complementary to this, they propose a method
to identify leaf nodes in a causal graph generated according to (1) by inspection of the diagonal el-
ements of the Jacobian of the score.
In order to derive the leaf identification procedure, first we need to find a closed form of s(X) =
∇ log p(X). Starting from Equation (2), we have:

log p(X) =
d∑

i=1

log p(Xi| pai(X)) =

= −1

2

d∑
i=1

(
Xi − fi(pai(X))

σ2
i

)2

− 1

2

d∑
i=1

log(2πσi)
2 .

(3)

The j-th entry of∇ log p(X) therefore is

sj(X) = −
Xj − fj(paj(X))

σ2
j

+
∑

i∈chj (X)

∂fi
∂xj

(pai(X))
Xi − fi(pai(X))

σ2
i

, (4)

with chj(X) denoting the set of children of node Xj . Now, let Xj be a leaf node: being the set of
children nodes chj(X) = ∅, from Equation (4) we notice that the score simplifies as follow:

sj(X) = −
Xj − fj(paj(X))

σ2
j

. (5)

Moreover, it is easy to verify that ∂sj(X)
∂xj

= − 1
σ2
j

, such that the diagonal entry of the score’s Jacobian

associated to a leaf node is a constant. Based on this relation, Lemma 1 of Rolland et al. (2022)
provides a formal criterion to identify leaves in a causal graph. Given a node Xi, the following holds:

∂si(X)

∂xi
= c⇐⇒ Xi is a leaf, ∀i = 1, . . . , d, (6)

where c ∈ R is a constant scalar value. This relation directly implies that

Var

[
∂si(X)

∂xi

]
= 0⇐⇒ Xi is a leaf, ∀i = 1, . . . , d. (7)

In order to find the complete topological ordering, SCORE algorithm of Rolland et al. (2022) is
designed as follow: first it estimates the Jacobian of the score Ĵ(s(X)), that is used to identify a
leaf in the graph by (7). Then, it removes the leaf from the graph, assigning it a position in the order
vector. By iteratively repeating this two steps procedure up to the source node, all variables in X
end up being assigned a position in the causal ordering.

In the following section we show that given that a topological ordering is known, we can derive ad-
ditional constraints on the off-diagonal elements of the score’s Jacobian that identify directed edges
in the graph.
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3.2. Deriving constraints for edge selection

We observe that for a leaf node l, Xl ∈ X, the partial derivative of (4) over Xj with j ̸= l is:

∂sl(X)

∂Xj
=


1
σ2
l

∂fl
∂Xj

(pal(X)) ̸= 0 if Xj ∈ pal(X)

0 else
. (8)

It is worth to notice that 1
σ2
l

∂fl
∂Xj

(pal(X)) might still be vanishing for some values of pal(X) even

if Xj ∈ pal(X), for instance if the function has a maximum or a minimum: given the assumption
on fl nonlinear even when considered on a restricted interval, these events happen with probability
zero, such that 1

σ2
l

∂fl
∂Xj

(pal(X)) ̸= 0 holds almost surely. We prove that the condition in Equation
(8) allows to derive a criterion to identify parents of a given leaf node by slightly adapting the result
of Rolland et al. (2022).

Lemma 1 (Adapted from Rolland et al. (2022)) Let p be the probability density function of a
random variable X ∈ Rd defined via nonlinear additive Gaussian noise model (1). Let also
s(X) = ∇ log p(X) be the associated score function. Without loss of generality, assume a topolog-
ical ordering Xπ = (X1, . . . , Xd). Then given a leaf l:

E

[∣∣∣∣∂sl(X)

∂Xj

∣∣∣∣] ̸= 0⇐⇒ Xj ∈ pal(X), ∀j ∈ {1, . . . , l − 1} . (9)

The proof is provided for completeness in the Appendix A.

Difference of Lemma 1 with Rolland et al. (2022) The formulation in Rolland et al. (2022) re-
quires Var

[
1
σ2
l

∂fl
∂Xj

(pal(X))
]
̸= 0 ⇔ Xj ∈ pal(X), where Xl is a leaf node. We illustrate the

problem with this considering a simple two variables case with graph X1 −→ X2: if parent node
X1 has zero variance, their selection condition would break, predicting a graph with X1 and X2

independent. While this case would be ruled out by the assumption of variance larger than zero for
every node, in practice it can be a problem. Given a finite sample X ∈ Rn×d and its topological
ordering Xπ, if parents of a leaf Xl show small variance in the sample, we might still mistake the
oscillation observed in 1

σ2
l

∂fl
∂Xj

(pal(X)) for statistical error due to finite set estimates, discarding an
existing edge. To estimate the edges we need higher statistical accuracy compared to the topological
order since in the former case we do not know how many parents a node has while in the latter we
know there is always at least one leaf. This is why we adapted the Lemma of Rolland et al. (2022)
to a theoretically equivalent but practically more robust formulation. We rely on the sample mean of
the absolute value of the score’s Jacobian entries 1

σ2
l

∂fl
∂Xj

(pal(X)) for the implementation of Lemma
1: this estimator is potentially subject to the same issues, but shows better robustness properties than
the sample variance (due to the absolute value) and estimating a lower moment yields lower error
(estimating variance requires estimating the mean first, so any statistical error in the mean estimator
affects the variance estimator), making it a preferable choice.

In practice we can exploit Lemma 1 to reconstruct the entire graph only if an ordering Xπ is
provided. To see why, consider the last entry Xl of Xπ: by definition of topological ordering Xl is
a leaf. Then we can apply Lemma 1 doing partial derivatives of sl(X) over all nodes {Xj : Xj ≺
Xl in Xπ} and identify as parents those that satisfy the required constraint. At this point, we remove
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Xl from the ordering Xπ and repeat the procedure on the pruned graph with vertices X \ Xl. By
iterating these steps over each node in the ordering from last to source we can identify the exact
graph.

Example 1 To clarify these ideas we discuss a simple three variables example illustrating how the
results in Lemma 1 enables edges discovery.

Let X = (X1, X2, X3) with Xi ∈ R generated according to model (1). Consider the topological
ordering Xπ = (X3, X2, X1) to be given. The goal is to recover the real causal graph with X3 as
source node, pa1(X) = {X2} and pa2(X) = {X3}.

(a) Graph Gπ admitted by Xπ

X3

X2

X1

(b) Correct causal graph of X

X3

X2

X1

We proceed analyzing the Jacobian of the score function for X1 and X2, while we easily see
from the ordering Xπ that X3 has no parents.

• X1: according to (5) its score is simply s1(X) = −X1−f1(X2)
σ2
1

. Its off diagonal partial
derivatives are

∂s1
∂X2

(X) =
1

σ2
1

∂f1
∂X2

(X2) ,

∂s1
∂X3

(X) = 0 .

Applying Lemma 1 we correctly conclude that the set of parents of X1 is pa1(X) = {X2}.

• X2: in order to apply Lemma 1 also to X2 we need to discard X1 from the graph, such that
X2 is a leaf node. Given the set of variables X̃ = X \ {X1} we get the graph of Figure 3.
Then s2(X̃) = −X2−f2(X3)

σ2
2

and the partial derivative is

∂s2
∂X3

(X̃) =
1

σ2
2

∂f2(X3)

∂X3
.

By Lemma 1 we see that E
[∣∣∣ 1

σ2
2

∂f2(X3)
∂X3

∣∣∣] ̸= 0, such that X3 is a parent of X2.

The algorithm recovers the exact structure.

Discussion These findings on identifiability of the causal structure from the score function are not
completely surprising in the light of previous results on Markov networks (Spantini et al. (2018);
Morrison et al. (2017)). Given a collection of random variables X = (X1, X2, . . . , Xd) with joint
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Figure 3: Causal graph of X̃ = (X2, X3).

X3

X2

density p(X), the information of conditional independencies between the variables of X can be
embedded in a simple undirected Markov network G = (V, E), where edges (i, j) encode some
sort of probabilistic interaction between the pairs of random variables Xi, Xj . In particular Spantini
et al. (2018) proved how to construct a Markov graph reading the conditional independence of pairs
of random variables as follow:

Xj |= Xi |XV\{i,j} ⇐⇒ ∂ij log p(X) = 0 , (10)

where ∂ij(·) denotes the ij-th mixed partial derivative and ∂ij log p(X) is an entry of the Jacobian
of the score. By adding edges between each couple of nodes that appears not to satisfy Equation
(10), we obtain an undirected graph encoding all and only the existing conditional independencies
between the variables of X.

Equation (8) of our work discovers the same constraint in a slightly different setting: rather than
evaluating ∂ij log p(X) for each node against every other, we follow an iterative approach where
first we identify a leaf Xl and then we test its mixed derivatives only against nodes coming before in
the topological ordering. By the time we find an edge we know its direction as we know that Xl is a
leaf, which breaks the symmetry in the relation. Moreover Lemma 1 ensures correct identification
of directed v-structures like i → j ← k that instead in the conditional independence map are
moralized with an additional link (i, k), thus allowing to recover all edges and their direction.

Next we derive an algorithm for causal discovery based on Lemma 1, and show how it retains
performance with respect to other state of the art methods, while showing better scalability in the
number of nodes.

3.3. DAS: an algorithm for causal Discovery At Scale

We want to use the constraint of Lemma 1 on the score function to derive an algorithm for causal
discovery which is faster and exhibits better scaling properties in the number of nodes than any
other technique to our knowledge. Given a set X ∈ Rn×d of n observations generated according
to model (1), first we estimate a topological ordering X̂π via the SCORE algorithm. Then, we
iterate over each node Xl of such ordering starting from the last, which we know to be a leaf,
and identify incoming edges of Xl as follow: to begin we estimate the score’s Jacobian Ĵ via the
SCORE algorithm; we have now n estimates of the Jacobian of the score, one for each of the n data
points. According to Lemma 1, we consider the absolute value of the l-th row of the n Jacobian
matrices, and look for entries with non-zero mean: this can be achieved by statistical hypothesis
testing, where the idea is to test for the mean of a sample to be different from zero. In practice, we
perform hypothesis testing according to the following heuristic method: we compute the average of
the absolute value of the entries in the l-th row, and select as potential parents of Xl the K+1 nodes
associated to largest averages. This parameter K is the same that we find in PNS algorithm, which
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limits the maximum number of nodes fed to the pruning algorithm. Between these K+1 entries, we
find a reference node Xref whose samples of

∣∣∣Ĵl,ref ∣∣∣ have the average closest to zero: at this point,
for each of the remaining K nodes, we perform Welchs’s t-test with the null hypothesis of equality
of the population means H0 : E[|Jl,j |] = E[|Jl,ref |] and the alternative H1 : E[|Jl,j |] > E[|Jl,ref |],
with Xj potential parent of Xl. If we reject the null with p-value ≤ 0.01, then Xj is added to the
parents of Xl in an adjacency matrix representing the inferred graph.
Eventually, Xl column is removed from the matrix of the data X , and the procedure is repeated
for another leaf node found in the ordering. Once every node in Xπ is considered, we prune the
resulting adjacency matrix via CAM-pruning (Section 2.3), simply with the goal of reducing the
number of false positives.
The implementation details of DAS are illustrated in the pseudo-code of Algorithm 1.

3.4. Algorithmic complexity

Considering an input matrix n × d with n the number of samples and d the number of nodes, the
overall complexity of DAS is O(dn3 + d2). Indeed estimating the topological order with SCORE
involves inverting a n×n matrix for d times, one for each iteration necessary to identify a leaf node:
hence, the O(dn3) contribute. Additionally the edge search step requires iterating over the d ele-
ments of the ordering, each time selecting the K largest entries on a list of size ≤ d (see Algorithm
1) yielding a O(d2) contribution.
On the other hand SCORE, arguably the most scalable state-of-the-art algorithm for causal dis-
covery, uses PNS and CAM-pruning to select edges while shares the same ordering of DAS. The
bottleneck in SCORE execution is the preliminary neighbours search step, whose complexity has
been studied in detail in Section 2.3 and amounts toO(dt r(n, d)) with r(n, d) the number of opera-
tions to fit a generalized additive model (O(nd2) (Minka (2003)) with Iteratively Reweighted Least
Squares). Therefore our use of the score function for candidate edges selection dramatically im-
proves the execution time allowing to scale causal discovery in high dimensions by a factor ofO(d).

Non identifiability of the linear model Next we further highlight the consistency of our algo-
rithm by showing how it fails in identifying the causal graph under the assumption of linear fj in
model (1), ∀j = 1, . . . , d. Indeed it has been proven that observational data generated according to
a linear additive Gaussian noise model do not allow for recovery of the underlying causal structure
(Peters et al. (2017); Comon (1994)) unless additional assumptions are made (Peters and Bühlmann
(2013)). In the simplest setting of two variables X,Y linked in a causal graph, unidentifiability
amounts to the impossibility of choosing the edge direction, i.e., it is not possible to decide whether
X is the cause or the effect of Y .
Given that the topological ordering between variables itself disambiguates the direction of edges in
the DAG, we have to show that our topological ordering method on a set X ∈ Rd fails in the linear
setting. SCORE algorithm identifies leaf nodes by finding terms with zero variance in the diagonal
of the score’s Jacobian, as specified in Equation (7). In case of an SCM as defined in (1) but with
linear functions fj , we find that ∂sj

∂Xj
(X) = − 1

σ2
j
+ constant for every node j in the graph. Thus it

can be easily seen that

Var

[
∂sj
∂Xj

(X)

]
= 0, ∀j = 1, . . . , d . (11)
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Algorithm 1: DAS
Input: data matrix X ∈ Rn×d, K ∈ R

Xπ ← SCORE(X) (Xπ[d] leaf node)

Xπ ← reverse(Xπ) (Xπ[d] source node)

A← d× d zeros adjacency matrix

for Xl in Xπ do

Ĵ ←
[∣∣∣ ∂sl

∂Xj

∣∣∣]
Xj≺Xl in Xπ

(estimate from SCORE)

K ← min(K, length(Ĵ))

topK = topK(Average(Ĵ)) ( topK(·) : return indices of the K largest values of the input)

jref = topK[argmin Ĵ [topK]]

for k in topK do
p = p-value for the test H0 : µJk = µJref , H1 : µJk > µJref (µ = mean)

if p < 0.01 then
A[k, l] = 1

end

end

Remove l-th column from X

end

Ĝ ← CAM-pruning(A)

return Ĝ

Since the variance in (11) vanishes for each node j rather than for leaves only, then the criterion of
Equation (7) does not hold anymore. This implies failure of the topological ordering method for the
linear case in accordance with our claim.

In the next section we study the algorithmic complexity of DAS and we highlight the better effi-
ciency with respect to SCORE.

4. Experiments

Now we summarize experimental outcomes of DAS method in comparison with several state of the
art algorithms for causal discovery. We report results of SCORE-ordering with PNS and CAM-
pruning steps (named simply SCORE in the table) (Rolland et al. (2022)), CAM 2 (Bühlmann et al.
(2014)) and GraNDAG (Lachapelle et al. (2020)). Other algorithms such as PC and FCI are omitted
as they perform much worse (Bühlmann et al. (2014); Lachapelle et al. (2020)). Up to 200 nodes
we ran experiments on a machine with 16GB RAM and 8 processors Intel(R) Core(TM) i5-8265U
CPU at 1.60GHz. For 500 or more nodes we used a machine with 256GB RAM and 64 processors
AMD EPYC 7301 16-Core Processor at 2.20GHz.

The metrics used are precision, recall, Structural Hamming Distance (SHD) – which is computed
as the sum of false positive, false negative and wrongly directed edges – and Structural Intervention
Distance (SID) (Peters and Bühlmann (2015)) – accounting for the number of miscalculated inter-

2. CAM refers to both topological ordering and pruning steps introduced in the original paper. PNS is applied only for
d ≥ 50.
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Figure 4: SHD versus d number of nodes for different methods on dense (left) and sparse (right)
graphs. For higher values of d some methods are missing as they were too much time expensive to
run. Number of samples is n = 1000.

ventional distributions that would result from the inferred graph.

We focus our experiments on synthetic data to show the scalability properties of DAS with increas-
ing number of nodes. In order to sample data from the nonlinear additive Gaussian noise model
of Equation (1) we mimic the experimental setting of Rolland et al. (2022). The causal graphs are
generated using the Erdös-Renyi model (Erdos and Renyi (1960)). We run experiments fixing the
number of nodes d as well as the sparsity of the graph by setting the expected amount of edges to
be equal to d (ER1) or 4d (ER4). For d > 200 we drop the SID metric as it is too slow to compute.
Whenever results for some method are not appearing in the table this means we could not perform
these runs in a reasonable time. We repeat the experiments for 10 times and report empirical mean
and standard deviation over the metrics. The number of samples is maintained fixed at n = 1000
and we set K = 20 (same value found SCORE and CAM experimental settings).

From Table 1 we can see that on denser graphs (ER4) our method maintains similar performance
with respect to the other three for nodes up to 50, while being considerably faster in particular with
respect to GraNDAG and CAM. As d increases, the gap with SCORE reduces up to the point that for
200 nodes we observe better SID for our algorithm. At d ≥ 500 it becomes arguably impossible to
run SCORE on a personal computer in a finite amount of time, whereas DAS is the only reasonable
option.
Similarly, the performances across the different methods are comparable when running inference
on sparser graphs (ER1), as reported in Table 2. These results are directly observable in Figure 4:
each algorithm shows a similar degrade in performance with the number of nodes increasing, and
bars set to close SHD values. Nevertheless, in Figure 1 it clearly appears that DAS achieves these
metrics in a significantly smaller amount of time, supporting the claim of better efficiency in terms
of velocity and scalability of our approach.

In Appendix B we provide additional empirical results, focused on the stability of DAS with respect
to changes in the threshold for hypothesis testing of mean larger than zero. Moreover, we signif-
icantly extend our experiments testing DAS on Scale-free synthetic graphs (Barabasi and Albert
(1999), Appendix C), and on Sachs real data (Sachs et al. (2005)) and semi-synthetic data sampled
from SynTReN generator (Van den Bulcke et al. (2006))), Appendix D).
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Table 1: Experiments on ER4 data. For CAM and GraNDAG we report results found in Rolland
et al. (2022). For higher values of d some methods are missing as they were too much time expensive
to run.

Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 27.0± 2.2 43.6± 5.8 1.00± 0.00 0.33± 0.02 7.7± 0.1
SCORE 26.5± 1.5 42.3± 2.9 0.99± 0.00 0.33± 0.02 7.9± 0.1
CAM 24.4± 3.1 45.2± 10.2 − − 30.1± 3.7
GraNDAG 22.2± 2.6 42.0± 6.2 − − 185± 26

d=20

DAS (Ours) 56.4± 2.5 213± 28 0.99± 0.00 0.27± 0.04 16.1± 0.3
SCORE 57.17± 3.1 229± 23 0.99± 0.01 0.30± 0.04 40.7± 1.8
CAM 54.2± 5.4 202± 29 − − 313± 80
GraNDAG 49.3± 4.5 211± 37 − − 357± 47

d=50

DAS (Ours) 156± 4 1460± 67 0.96± 0.02 0.24± 0.03 48.3± 1.1
SCORE 144± 6 1346± 57 0.97± 0.01 0.30± 0.03 245± 5
CAM 141± 6 1337± 94 − − 1143± 79
GraNDAG 141± 10 1432± 110 − − 1410± 73

d=100
DAS (Ours) 335± 5 6695± 224 0.91± 0.03 0.21± 0.04 114± 2
SCORE 313± 11 5965± 273 0.91± 0.03 0.27± 0.06 779± 13

d=200
DAS (Ours) 691± 13 25147± 835 0.89± 0.06 0.21± 0.05 279± 4
SCORE 626± 14 25707± 891 0.88± 0.04 0.30± 0.05 4142± 35

d=500
DAS (Ours) 1761± 15 − 0.80± 0.04 0.19± 0.03 1308± 7
SCORE3 1642 − 0.82 0.27 25307

d=1000 DAS (Ours) 3951± 9 − 0.76± 0.05 0.08± 0.00 5539± 81

2 For d = 500 and SCORE method no standard deviation appears because experiments could not be
repeated in a reasonable time. The values in the table refer to a single run.

5. Conclusion

Under the assumption of nonlinear additive Gaussian noise model of the data we showed how to
theoretically recover the exact causal graph from the Jacobian of the score function. Our finding
extends the work of Rolland et al. (2022), using the score to learn the topological ordering of the
variables from the data. In addition to this, we showed that all edges can be discovered and oriented
from the score. Based on our analysis, we designed an algorithm that is more efficient by a factor
of O(d) compared to Rolland et al. (2022), yielding significant speed up in practice while retaining
comparable accuracy.

While we already obtained a significant speed up, further improvement could be achieved by amor-
tizing the score computation over subgraphs or even multiple graphs (Löwe et al. (2020)) or using
more scalable estimators. However, the main blocker for future work (and biggest limitation of our
work) is the lack of a public, highly curated, and large benchmark for causal discovery. In fact, our
scalability experiments were limited to inference on synthetic data. Without real data it is hard to
evaluate algorithms’ performance outside of a controlled synthetic setting. As huge and fully anno-
tated causal graphs may never become available, we identify three important directions for future
work. First, extending our approach to input variables outside of the model assumptions, in partic-
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Table 2: Experiments on ER1 data. For CAM and GraNDAG we report results found in Rolland
et al. (2022). For higher values of d some methods are missing as they were too much time expensive
to run.

Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 1.0± 0.8 3.3± 3.7 0.97± 0.01 0.84± 0.05 7.8± 0.1
SCORE 0.7± 0.5 4.5± 4.3 0.98± 0.01 0.98± 0.01 8.0± 0.2
CAM 1.7± 1.0 6.4± 4.2 − − 30.1± 3.7
GraNDAG 1.5± 1.4 6.5± 7.2 − − 185± 26

d=20

DAS (Ours) 3.2± 1.4 18.1± 10.1 0.98± 0.02 0.85± 0.03 16.7± 0.4
SCORE 2.0± 1.8 8.3± 9.9 0.99± 0.01 0.91± 0.03 36.4± 1.8
CAM 3.5± 1.6 14.3± 9.8 − − 313± 80
GraNDAG 7.6± 4.2 31.6± 22.7 − − 357± 47

d=50

DAS (Ours) 17.3± 3.4 99.6± 42.1 0.96± 0.04 0.77± 0.04 49.2± 2.1
SCORE 9.8± 3.8 69.6± 41.3 0.98± 0.01 0.87± 0.03 251± 7
CAM 8.3± 2.9 53.7± 31.9 − − 1143± 79
GraNDAG 20.2± 6.1 135± 456 − − 1410± 73

d=100
DAS (Ours) 46.6± 9.1 327± 47 0.92± 0.06 0.68± 0.04 111± 6
SCORE 27.5± 6.9 288± 115 0.97± 0.02 0.83± 0.05 776± 12

d=200
DAS (Ours) 110± 6.6 899± 191 0.88± 0.07 0.68± 0.06 282± 4
SCORE 59.9± 8.5 495± 161 0.95± 0.03 0.85± 0.07 4237± 22

d=500
DAS (Ours) 291± 13 − 0.78± 0.07 0.65± 0.05 1329± 7
SCORE4 209 − 0.8 0.85 25115

d=1000 DAS (Ours) 994± 15 − 0.59± 0.02 0.09± 0.00 5544± 73

3 For d = 500 and SCORE method no standard deviation appears because experiments could not be
repeated in a reasonable time. The values in the table refer to a single run.

ular considering data coming from interventions and with latent confounders. Second, evaluation
protocols with partially annotated causal graphs and externally collected interventional distribu-
tions. Third, merging many smaller and annotated data sets that share similar but non-overlapping
variables (Mejia et al. (2022)).
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Appendix A. Proof of Lemma 1

In this section we provide a proof of the statement of Lemma 1 for completeness.
Proof For a leaf l the score of Equation (4) becomes sl(X) = −Xl−fl(pal(X))

σ2
l

. We compute the
partial derivative

∂sl(X)

∂Xj
=

1

σ2
l

∂fl
∂Xj

(pal(X)) (12)

and observe that:

(i) E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] ̸= 0 ⇒ Xj ∈ pal(X). By contradiction, consider Xj ̸∈ pal(X): being

fl(pal(X)) constant in Xj , then ∂fl(pal(X))
∂Xj

= 0 for every X ∈ Rd by definition of derivative.

Then, E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] = 0, which contradicts the hypothesis.

(ii) Xj ∈ pal(X) ⇒ E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] ̸= 0: we observe from Equation (8) that ∂fl
∂Xj

(pal(X)) ̸= 0

almost surely, such that
∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣ > 0 almost surely. Being the probability of vanishing∣∣∣ ∂fl

∂Xj
(pal(X))

∣∣∣ equals to zero, then the expectation E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] is equivalent to the integral∫
X+

∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣dP (X), with X+ ⊆ Rd the subset of values where

∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣ is

strictly positive. Since the integral of a strictly positive function is strictly positive itself, then
E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] > 0.

Appendix B. DAS stability with respect to hypothesis testing threshold

In our experiments of Section 4, we fix the α threshold for hypothesis testing of non-zero mean
to 0.01. Standard α values are 0.1 or lower. In absence of specific information on the data, most
of causal discovery methods based on conditional independence testing employ default threshold
of 0.05 (for instance, see FCI and PC implementations on DoDiscover and causal-learn
well known libraries): for comparison, in Table 3 we provide experimental results of DAS with α
threshold set to 0.05. We run 10 experiments with different seeds and report empirical mean and
standard deviation. Experiments show that α = 0.05 doesn’t significantly affect the performance of
DAS (distance to the average SHD with α = 0.01 is always within error bars).

Appendix C. SF Experiments

In this section we present experimental results on Scale Free graphs, both on sparser (Table 4) and
denser graphs (Table 5).
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Table 3: DAS experiment on ER1 and ER4 data with different α cutoff thresholds for hypothesis
testing.

Nodes Threshold SHD (ER1) SHD (ER4)

d = 10
α = 0.01 1.0± 0.8 27.0± 2.2
α = 0.05 0.9± 0.9 26.7± 2.0

d = 20
α = 0.01 3.2± 1.4 56.4± 2.5
α = 0.05 3.1± 1.6 58.2± 2.5

d = 50
α = 0.01 17.3± 3.4 156± 4
α = 0.05 17.1± 3.7 155± 5

d = 100
α = 0.01 46.6± 9.1 355± 5
α = 0.05 47.6± 5.3 339± 6

d = 200
α = 0.01 110± 6 691± 13
α = 0.05 114± 8 698± 9

Table 4: Experiments on SF1 data. For SCORE, CAM and GraNDAG we report results found in
Rolland et al. (2022).

Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 0.4± 0.7 2.2± 3.4 0.99± 0.04 0.84± 0.15 7.6± 0.1
SCORE 0.3± 0.6 2.7± 5.8 − − −
CAM 0.4± 0.5 2.8± 3.6 − − −
GraNDAG 1.4± 1.0 12.5± 9.7 − − −

d=20

DAS (Ours) 1.9± 1.6 19.1± 7.4 0.99± 0.02 0.84± 0.11 16.6± 0.4
SCORE 0.9± 0.9 13.8± 12.6 − − −
CAM 0.9± 0.9 12.9± 14.0 − − −
GraNDAG 3.2± 1.9 25.5± 15.6 − − −

d=505

DAS (Ours) 10.9± 4.9 225.3± 72.1 0.96± 0.03 0.74± 0.08 53.1± 0.9
SCORE 4.6± 2.4 132.6± 75.8 − − −
CAM 3.6± 1.9 115.4± 72.6 − − −
GraNDAG 9.2± 3.3 281.8± 129.8 − − −

d=100 DAS (Ours) 39.4± 8.0 214± 42 0.94± 0.02 0.51± 0.07 102± 5

d=200 DAS (Ours) 112± 11 626± 83 0.97± 0.02 0.33± 0.03 279± 6

d=500 DAS (Ours) 271± 15 − 0.93± 0.09 0.68± 0.01 1315± 9

d=1000 DAS (Ours) 910± 12 − 0.59± 0.02 0.09± 0.00 5442± 61

4 For d > 50 experiments are executed only for DAS.

Appendix D. Real and semi-synthetic data

In addition to experiments on synthetic graphs, we test the empirical performance of DAS on Sachs
real data (Sachs et al. (2005), a common benchmark for causal discovery on biological data with 17
edges and 853 observations) and on semi-synthetic data sampled from SynTReN generator of gene
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Table 5: Experiments on SF4 data. For SCORE, CAM and GraNDAG we report results found in
Rolland et al. (2022).

Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 10.1± 2.39 35.7± 9.1 0.99± 0.01 0.75± 0.06 7.8± 0.1
SCORE 4.6± 1.7 21.5± 9.6 − − −
CAM 9.6± 2.0 40.4± 11.4 − − −
GraNDAG 4.7± 1.8 23.0± 7.3 − − −

d=20

DAS (Ours) 30.4± 5.78 248.1± 20.0 0.98± 0.02 0.59± 0.06 17.1± 0.7
SCORE 17.5± 3.5 179.2± 23.8 − − −
CAM 26.4± 3.9 253.7± 28.8 − − −
GraNDAG 14.7± 4.0 168.0± 39.2 − − −

d=506

DAS (Ours) 115.5± 10.8 703.1± 87.5 0.97± 0.01 0.45± 0.06 51.3± 1.2
SCORE 68.3± 3.6 1724± 109 − − −
CAM 85.3± 4.2 1935± 99 − − −
GraNDAG 63.8± 9.7 1677± 118 − − −

d=100 DAS (Ours) 295.3± 10.8 3212± 145 0.97± 0.01 0.25± 0.02 108± 2

d=200 DAS (Ours) 674.2± 16.6 21314± 891 0.95± 0.02 0.11± 0.01 283± 3

d=500 DAS (Ours) 1890± 7.1 − 0.97± 0.03 0.02± 0.01 1212± 31

d=1000 DAS (Ours) 3715± 21.3 − 0.92± 0.04 0.03± 0.01 5016± 53

5 For d > 50 experiments are executed only for DAS.

expression records (Van den Bulcke et al. (2006)). In Table 6 we see that DAS matches SCORE
performance on Sachs, whereas it is comparable to SCORE, CAM and GraNDAG on SynTReN
experiments (Table 7).

Table 6: Experiments on Sachs dataset.

Method SHD SID

DAS (Ours) 12 45
SCORE 12 45
CAM 12 55
GraNDAG 13 47

Table 7: Experiments on SynTReN data (20 nodes, 500 samples). Empirical mean and error are
computed over 10 runs on different seeds.

Method SHD SID

DAS (Ours) 38.0± 4.1 188.5± 71.2
SCORE 36.8± 4.7 193.4± 60.2
CAM 40.5± 6.8 152.3± 48.0
GraNDAG 34.0± 8.5 161.7± 53.4
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