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Abstract

Local dependence graphs for discrete time processes encapsulate information concerning the de-
pendence relationships between the past of the multidimensional process and its present state and
as such can represent feedback loops. Even in the discrete time setting some natural questions re-
lating the conditional (in)dependence statements in the stochastic process to separation properties
of the underlying local dependence graph are scattered throughout the literature. We provide an
unifying view and fill in certain gaps. In this paper we examine graphical characteristics for two
kinds of conditional independences: those occurring in Markov chains under the stationary regime
and independences between the past of one subprocess and the future of another given the past of
the third subprocess.

Keywords: Local dependence graphs, dynamic Bayesian networks, composable Markov processes

1. Introduction

Probabilistic models of causality were originated in 1960s by Granger (1969) in the context of time
series. Granger’s definition explicitly and essentially involved ordering of events in time, assuming
that a cause always precedes an effect. The pioneering work of Pearl (1985) dating from 1980s
introduced graph-theoretic representation of causal relations. The Pearl’s theory did not involve
time. In its original form this theory was restricted to directed acyclic graphs (DAGs), and thus
did not encompass the phenomena of feedback in cause-effect dependences. Later work initiated in
Pearl and Dechter (1996) generalised graphical models of causality allowing for cycles in directed
graphs. Models based on “structural equations” have been intensively examined and extended. The
monograph Peters et al. (2017) is an excellent overview. Recent developments, with focus on mixed
graphs and marginalisation, can be found in Bongers et al. (2021). However, this approach leads
to certain difficulties and paradoxes (c.f. Neal (2000)), if the cycles are present in the underlying
graph. A priori it is not clear whether a given set of structural equations has a unique solution and
this makes the task of building models rather hard.

On the other hand, a class of “composable Markov processes” (CMPs) introduced as early as in
1970 by Schweder (1970) provides natural and flexible examples of causality models which include
time and use directed cyclic graphs (DCGs) to represent “local” (causal) dependences. Research on
CMPs was pursued by Nodelman et al. (2002) (who independently introduced these processes under
the name of CTBNs) and by Didelez (2007a). Local dependence graphs have been also defined and
examined for other classes of structured stochastic processes, such as point processes (Didelez,
2008; Mogensen and Hansen, 2022) and diffusion processes (Mogensen and Hansen, 2020).
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Presumably the simplest causal temporal models are those based on discrete time processes, as
in Eichler and Didelez (2010) and Eichler (2007). Local dependence graphs for such processes
were considered e.g. in Eichler and Didelez (2007) and Eichler and Didelez (2010). In a sense,
investigation of a discrete time graphical model can be reduced to considering a space-time graph
representing a dynamic Bayesian network (DBN), cf. Figure 1. The structure of conditional inde-
pendences in such a model is widely regarded as perfectly understood. Nonetheless, in our paper
we point out several facts that are scattered throughout the literature and we provide an unifying
view. We give simple independent proofs of “Markov properties of the graph of local dependence”
concerning some natural questions. Put differently, Markov properties translate probabilistic state-
ments about conditional (in)dependence into separability characteristics of the underlying graph.
In particular we describe conditional dependence of the whole sub-processes under the assumption
of independent initialisation (Theorem 3.2) and the dependence of the future of some variables on
the past of other variables (Theorem 3.9). These results are already present in the literature (e.g.
Eichler (2007, Theorem 4.5)) but usually without the ‘only if’ part. Moreover the role of the initial
distribution is often overlooked. We show that the assumption of stationary initialisation leads to
a different graphical characterisations of the independences of whole subprocesses (Theorem 3.4).
To our knowledge this last result is new.

We conjecture that most our results can be generalised to the case of continuous time processes
(under a suitable definition of the local dependence graph). For example, Theorem 3.2 remains true
for also for CTBNs. Generalisations of Theorem 3.9 and Theorem 3.4 to continuous time setting
remain open questions, as far as we know.

The results presented in this paper can be used in designing the tests of local independence that are
crucial for structure learning algorithms.

2. The setup

Let X “ pXvptq, v P V, t “ 0, 1, . . .q be a multivariate discrete time stochastic process with
components indexed by elements of a finite set V . Assume that random variables at node v, that
is Xvptq, take values in a measure space Sv (in most examples Sv is either R equipped with the
Lebesgue measure or a finite set with the counting measure); moreover let S “

ś

vPV Sv. We will
use the notations Xv “ pXvptq, t “ 0, 1 . . .q and Xptq “ pxvptq, v P Vq. Note that processes
are denoted in bold, contrary to random variables with values in S. For C Ď V we will write
XC “ pXv : v P Cq and XCptq “ pXvptq : v P Cq.
Let G “ pV, Eq be a directed graph with possible cycles. We write v Ñ w or, equivalently, w Ð v
if pv, wq P E ; we write v ­Ñ w otherwise. For v P V we put papvq “ tw : w Ñ vu. Assume that all
the vertices of G have self-loops (v Ñ v for every v P V).1

Our standing assumption is the following. For arbitrary measurable subsets Ev of Sv and t ą 0:

P
`

@vPV Xvptq P Ev
ˇ

ˇXpsq, s ă t
˘

“
ź

v

PpXvptq P Ev|Xpapvqpsq, s ă tq. (1)

1. This assumption is made mostly to simplify notation and is not essential so far as only discrete time processes are
concerned. On the other hand it seems to be natural and needed for generalisations to some continuous time processes
(e.g. Continuous Time Bayesian Networks).

2
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Thus, we assume that the “mechanism of generating” Xvptq, given the past of the whole process,
acts independently for every node v and depends only on parents of this node. This can be expressed
as the following two conditional independence statements.

pXvptq, v P Vq are conditionally independent given pXpsq : s ă tq for t ą 0, (2)

Xvptq is conditionally independent of pXVzpapvqpsq : s ă tq given pXpapvqpsq : s ă tq. (3)

Condition (3) formalises the relation between the graph G and the process X. It says that only
variables Xwpsq with w Ñ v and s ă t have potential causal influence on Xvptq. Condition (2)
excludes “contemporaneous local dependence” and basically boils down to the assumption that our
model contains all relevant “confounding variables”.2

Definition 2.1 If (1) holds then we say that G is a local dependence graph for X.3
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Figure 1: A very simple local dependence graph on the set V “ tx, y, zu (left panel) and its space-time graph
with the set of vertices V ˆ t0, 1, 2, . . .u and the set of edges of the form pv, sq Ñ pw, tq where
s ă t and v Ñ w is an edge of the local dependence graph. For better readability only edges
pv, t´ 1q Ñ pw, tq are shown and self-loops in the local dependence graph are not indicated.

3. Conditional Independence Properties

We are going to examine conditional independence statements about process X and to find corre-
sponding statements in terms of graph G.

We will have to consider several types of separability relations in graph G. Some of them are well-
known, whereas the notion of c-separation (Definition 3.3) is new. To begin with, we define a trail4

between u P V and w P V as a sequence

u “ v0, e1, v1, e2, v2, e3, . . . , en´1, vn´1, en, vn “ w,

where v0, v1, . . . , vn are distinct nodes and e1, . . . , en are edges, where ei “ pvi´1 Ñ viq or
ei “ pvi´1 Ð viq.5 Let vi be a non-end node in the trail, that is i ‰ 0 and i ‰ n. We say that

2. If (2) is omitted then the relevant graph must include, apart from arrows, also another type of edges (c.f. undi-
rected “dashed edges” in Eichler and Didelez (2007), “bidirected edges” and “blunt edges” in Mogensen and Hansen
(2020)).

3. The term “local” refers here to time adjacency and not to space adjacency. We follow the terminology introduced by
Didelez (2007a, 2008) and prevailing in the literature, despite the fact that this terminology might be misleading.

4. What we call a trail is sometimes called a path in the literature, but in our opinion this last name is better suited for
directed connections.

5. Definition of a trail requires some caution, because there are subtle differences between several definitions appearing
in the literature.
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There is a chain connexion at vi if we have vi´1 Ñ vi Ñ vi`1 or vi´1 Ð vi Ð vi`1.

There is a fork connexion at vi if we have vi´1 Ð vi Ñ vi`1.

There is a collider connexion at vi if we have vi´1 Ñ vi Ð vi`1.

A directed path from u to w is a trail such that all arrows are directed to the right, i.e. ei “ pvi´1 Ñ
viq. We define the set of ancestors and the set of descendants as follows:

anpvq “ tvu Y tw : there exists a directed path from w to vu,

depvq “ tvu Y tw : there exists a directed path from v to wu.

Moreover, for A Ď V we put papAq “
Ť

vPA papvq, anpAq “
Ť

vPA anpvq, depAq “
Ť

vPA depvq.

Below A,B, C stand for any three disjoint subsets of V with C possible empty. A trail (directed
path) from A to B is a trail (directed path) from an a P A to a b P B.

Let us begin with the classical definition of d-separation (Pearl, 1985).

Definition 3.1 Let us say that B is d-blocked from A by C if every trail from A to B

• contains a chain Ð c Ð a chain Ñ c Ñ or a fork Ð c Ñ with c P C or a collider Ñ v Ð
with depvq X C “ H.

We will then write A Kd B|C.

a b

x y

p q r

Figure 2

Example In the graph shown on Figure 2 tbu is d-blocked from tau by H or tx, y, p, ru. It is not
d-blocked by tyu.

Not only does Definition 3.1 apply to directed graphs with cycles but also a version of Pearl’s
seminal result remains true in this more general setup. In the following theorem we consider a
process with independent initial distribution,

P p@vPV Xvp0q P Evq “
ź

v

PpXvp0q P Evq. (4)
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Theorem 3.2

(a) Consider a discrete time process X which satisfies (1) and (4) with respect to G. If B is
d-blocked from A by C then XBKKXA|XC .

(b) If B is not d-blocked from A by C then there exists a process X satisfying (1) and (4) such
that XBKK{ XA|XC .

Let us emphasise that in the above theorem XA, XB and XC stand for the whole sub-processes,
e.g. XC “ pXCptq : t “ 0, 1, . . .q and so on. Several results similar to Theorem 3.2 can be found
in the literature and they date back to 1996 (Pearl and Dechter, 1996; Neal, 2000). Didelez (2007a,
Proposition 5) has an analogous result for continuous time Markov processes. However, these
results are obtained in different setups under different sets of assumptions. Although Theorem 3.2
seems to be known and can be easily deduced from an analogous result for DAGs by analysing the
space-time graph, we were not able to find an exact reference. Therefore we provide a self-contained
proof in the Appendix A (it is essentially identical to the proof given in (Koski and Noble, 2009,
Theorem 2.2) for the case of DAGs). This proof covers also the case of continuous time Markov
processes (cf. the last Remark in the Appedix A).

Note that condition (4) is essential in Theorem 3.2. It can be replaced by a weaker assumption but
cannot be entirely omitted.6 For example, to obtain conclusion paq, it is sufficient to assume that the
probability distribution of Xp0q factorises along a DAG, say G0, obtained by removing some edges
from G.

More interesting is the case of X being a strictly stationary process. For simplicity assume that
X is a homogeneous (in time) ergodic Markov chain starting from the stationary distribution π.
It is hardly surprising that in this situation there are less conditional independences than under
independent initial distribution. We proceed to define a notion of c-separation which describes
conditional independences in the stationary regime.

Definition 3.3 Let us say that B is c-blocked from A by C if every trail from A to B

• contains a colliderÑ v Ð with depvq X C “ H.

We will then write A Kc B|C.

Example In the graph shown on Figure 2 tbu is c-blocked from tau by any subset of tx, q, ru. It is
not c-blocked by tx, y, p, ru (note that it is d-blocked by this set).

Theorem 3.4 Consider a homogeneous Markov chain X “ pXvptqq satisfying (1) with respect to
graph G. Assume that X is ergodic, has unique stationary distribution π and Xp0q „ π, that is the
process X is strictly stationary. If A is c-blocked from B by C then

• XAptqKKXBptq|XCptq for all t ě 0.

• XAKKXB|XC .

6. The role of the initial distribution is sometimes overlooked, as e.g. in the cited above Proposition 5 in Didelez (2007a).
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Note that the first item above concerns a random variable X with values in S with law π, while the
second item refers to the whole process X.

Remark We conjecture that c-separation is also necessary for conditional independence in the
following weak sense: if A is not c-blocked from B by C then there exist a stationary Markov chain
satisfying (1) such that

• XAp0qKK{ XBp0q|XCp0q,

• XAKK{ XB|XC .

We proceed to describe the properties of “predictive conditional (in)dependence”, that is structural
dependence of the present and future of the process on its past. Let us write

Xpă tq “ pXpsq : s ă tq, Xpě tq “ pXpsq : s ě tq,

and similarly define XCpă tq and XCpě tq for C Ď V . Note that the very notion of local dependence
graph in Definition 2.1 is based on the idea of predictive independence.

Proposition 3.5 Assume that process X satisfies conditions (1) and (4). Then v ­Ñ w implies
conditional independenceXvptqKKXwpă tq|XVzwpă tq. More generally, if A ­Ñ B, that is papBqX
A “ H, then XBptqKKXApă tq|XVzApă tq.

To find graph statements corresponding to more general predictive (in)dependence it is necessary to
define asymmetric separability relations. Let us begin with a notion of δ-separation introduced by
Didelez (2008, Definition 7).

Definition 3.6 Let us say that B is δ-blocked from A by C if every trail from A to B which ends
with an arrowÑ b P B

• contains a chain Ð c Ð a chain Ñ c Ñ or a fork Ð c Ñ with c P C or a collider Ñ v Ð
with depvq X C “ H.

We will then write A ­Ñδ B|C.

Example In our running example from Figure 2 tbu is δ-blocked from tau by tyu (whereas it is
not d-blocked by this set). The only non-δ-blocking set is tpu.

The relevance of the above definition is explained by the following result.

Theorem 3.7

(a) Consider a process X “ pXvptqq satisfying (1) and (4) with respect to graph G. If B is
δ-blocked from A by C then XBptqKKXApă tq|XBYCpă tq.

(b) If B is not δ-blocked from A by C then there exists a process X satisfying (1) and (4) such
that XBptqKK{ XApă tq|XBYCpă tq.
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A result exactly analogous to Theorem 3.7 paq in a setting of continuous time processes can be found
in (Didelez, 2008, Theorem 1). Theorem 3.7 seems to belong to the folklore. Therefore we omit its
proof, noting that it can also be obtained by a simple modification of the proof of the forthcoming
Theorem 3.9.

The “local dependence” in the sense of Definition 2.1 considered in Theorem 3.7 deals with de-
pendence of the present on the past. To describe dependence of the future on the past we need
yet another notion of separability which appears (without a name) in (Eichler and Didelez, 2007,
Theorem 4.8).

Definition 3.8 Let us say that B is ε-blocked from A by C if every trail from A to B which ends
with an arrowÑ b P B

• contains a chain Ð c Ð or a fork Ð c Ñ with c P C or a collider Ñ v Ð such that
depvq X C “ H, or

• contains a chain Ñ c Ñ with c P C that occurs earlier than some collider Ñ v Ð with
depvq X C ‰ H.

We will then write A ­ãε B|C.

Example In the graph shown on Figure 2 tbu is ε-blocked from tau by tyu (but it is not d-blocked
by this set). It is not ε-blocked by tp, ru (although it is d-blocked).

In other words, we can traverse through chains, forks and colliders as in the usual sense of Pearl’s
d-separation (Ð xÐ,Ñ xÑ,Ð xÑ for x R C orÑ v Ð for depvqXC ‰ H), moreover we can
move through Ñ c Ñ for c P C but only after the last collider (this is an empty condition if there
are no colliders).

Note that A ­ãε B|C is equivalent to A ­ãδ anpBq|C. Part (a) of the following Theorem can be
easily recognized as (Eichler and Didelez, 2007, Theorem 4.8), part (b) is new.

Theorem 3.9

(a) Consider a process X “ pXvptqq satisfying (1) and (4) with respect to graph G. If B is
ε-blocked from A by C then XBpě tqKKXApă tq|XBYCpă tq.

(b) If B is not ε-blocked from A by C then there exists a process X satisfying (1) and (4) such
that XBpě tqKK{ XApă tq|XBYCpă tq.

4. Proofs

Proof [Proof of Theorem 3.4]

We are going to define three disjoint sets A2, B2 and C2 such that

• No arrows enter A2 from VzA2, no arrows enter B2 from VzB2, no arrows enter C2 from
VzC2.
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In this proof the phrases ‘open’/‘blocked’ always refer to Definition 3.3.

To begin with, let

A1 “ tv P V : there is a trail from a P A to v not blocked by a collider c R anpCqu.

By convention we assume that A Ď A1 (degenerate trail is not blocked) and also that A1 contains
all nodes connected to some a P A by a single edge (whatever its direction). Note that A1 can
contain nodes in anpCq. Now we put

A11 “ tv P A1 : there is a trail from r R A1 to v not blocked by a collider c R anpCqu,

and
A2 “ A1zA11.

To verify that there are no arrows entering A2 from outside, suppose the contrary, i.e. w Ñ v with
v P A2 and w R A2. By definition of A2, we see that we cannot have w R A1, so w P A11. But the
trail leading from some r R A1 to w can be augmented by adding the arrow w Ñ v. This trail from
r to v is not blocked at w, just because w is not a collider. Thus v P A11, contrary to our assumption.

Sets B1, B11 and B2 are defined analogously. Our next step is verifying that

• A2 X B2 “ H.

Indeed, if v P A2 Ď A1 then there is an open trail from a P A to v. If moreover we had v P B2 Ď B1

then there would exist an open trail from b P B to v. Since b R A1, we would obtain that v P A11
which is a contradiction.

Now we are ready to define
C2 “ anpCqzpA2 Y B2q

and to verify that no arrows enter C2 from outside. Indeed, if we had an arrow A2 Q aÑ c P anpCq
then this would imply c P A1 (because a in not a collider on a trail from A to c) and moreover
c R A11 for otherwise there would exist an open trail from A to c to r R A1 (c P anpCq never blocks
a trail). Therefore c must belong to A2. For the same reason, if B2 Q b Ñ c P anpCq then c must
belong to B2. Finally if VzpA2 Y B2q Q v Ñ c P anpCq then obviously v P anpCq.
The basic observation is that XA2 , XB2 and XC2 are Markov chains. For readability, in the following
we assume that all the transition probabilities and the stationary distribution have densities with
respect to some reference measure. If we denote the set VzpA2 YB2 Y C2q by R then the transition
probabilities (transition densities) of X have the following form:

P px1, xq “ P px1A2
, xA2qP px

1
B2
, xB2qP px

1
C2 , xC2qP px

1
V , xRq.

The stationary probability distribution (density) π satisfies

πpxq “

ż

x1

πpx1qP px1, xqdx1,

i.e.

πpxA2 , xB2 , xC2 , xRq

“

ż

x1

πpx1A2
, x1B2

, x1C2 , x
1
RqP px

1
A2
, xA2qP px

1
B2
, xB2qP px

1
C2 , xC2qP px

1, xRqdx
1.
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Marginalising w.r.t. firstly xR and then x1R we get

πpxA2 , xB2 , xC2q

“

ż

x1
A2
,x1

B2
,x1

C2

πpx1A2
, x1B2

, x1C2qP px
1
A2
, xA2qP px

1
B2
, xB2qP px

1
C2 , xC2qdx

1
A2

dx1B2
dx1C2 .

Iterating the above equation we obtain

πpxA2 , xB2 , xC2q

“

ż

x1
A2
,x1

B2
,x1

C2

πpx1A2
, x1B2

, x1C2qP
npx1A2

, xA2qP
npx1B2

, xB2qP
npx1C2 , xC2qdx

1
A2

dx1B2
dx1C2 ,

wherePn denotes n-step transition probabilities. Since the chain is ergodic, we havePnpx1, xq ÑnÑ8

πpxq. We can first pass to the limit and then marginalise w.r.t. x1A2
, x1B2

, x1C2 to obtain

πpxA2 , xB2 , xC2q “ πpxA2qπpxB2qπpxC2q.

Thus XA2 , XB2 and XC2 are π-independent. In particular, pXA, XA2XCq, pXB, XB2XCq and XC2XC
are independent. It is clear that C “ pA2 X Cq Y pB2 X Cq Y pC2 X Cq, hence

πpxA, xB, xCq “ πpxA, xA2XCqπpxB, xB2XCqπpxC2XCq.

It follows that XA and XB are conditionally independent given XC .

Analogous reasoning leads to the proof of the second conclusion (in the stationary regime we have
conditional independence of the whole subprocesses, XAKKXB|XC).

Proof [Proof of Theorem 3.9] It is clear that the joint probability distribution of X factorises along
the space-time graph rG with the set of vertices V ˆ t0, 1, 2, . . .u and the set of edges of the form
pv, sq Ñ pw, tq where s ă t and v Ñ w is an edge in G (cf. Figure 1). For U Ď V we define
Upď tq “ tpu, sq : u P U , s ď tu. We similarly define Upă tq, Uptq and Upě tq.

Proof of part (a) Fix t P N0. For now on we refer to times less that t as ‘the past’ and to the
remaining times as ‘the future’. Take any trail

pa, t0q, e1, pv1, t1q, e2, pv2, t2q, e3, . . . , en´1, pvn´1, tn´1q, en, pb, tnq

in rG from pa, t0q to pb, tnq, where a P A, b P B, t0 ă t ď tn and ei is either Ñ or Ð for each
i “ 1, 2, . . . , n. Let us denote this trail by rτ and suppose it is not d-blocked by pB Y Cqpă tq.

We show that this leads to a contradiction, which by the classical theory of d-separation implies
XBpě tqKKXApă tq|XBYCpă tq.

Clearly
"

ti`1 ą ti if ei`1 “Ñ
ti`1 ă ti otherwise

(5)

This implies that for any 1 ď k ď n

if tk ě t then ek “Ñ (6)

9
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Figure 3: Local dependence graph on 7
nodes (the first line) and its space-time
graph (for better readability only edges
pv, sq Ñ pw, s ` 1q are included). Nodes
in gray are observed up to time t “ 3
(excluded). The lower path cannot be a
d-open path between apă tq and bpě tq
since it has an arrow Ð in the future (e.g.
pw, 4q Ð pb, 3q) which inevitably leads
to a collider to the left of it (pz, 4q Ñ
pv, 5q Ð pw, 4q) whose center is by ne-
cessity unobserved with all its descendands
(as they belong to the future) and hence it
is d-closed.

0

1

2

3

4

5

a x y z v w b

(cf. Figure 3). Indeed, assume that tk ě t. As tk ě t0, by (5) we have ei “Ñ for some 1 ď i ď k.
Let em be the furthestÑ to the left of vk (i.e. m “ maxti ď k : ei “Ñu). Then m “ k, otherwise
Ñ pvm, tmq Ð would be a collider with neither the middle node, nor any of its descendants, not in
pB Y Cqpď tq (as tm ě tk ě t). That would d-block rτ .

In particular from (6) we obtain en “Ñ and the trail τ defined by

a, e1, v1, e2, v2, e3, . . . , en´1, vn´1, en, b,

is a trail in G that connects A and B and ends in an arrow Ñ b. Since B is ε-blocked from A by C,
this trail is ε-blocked. This implies one of the following

• There is a collider Ñ vk Ð such that neither vk nor any of its descendants in G are in C.
As a result, neither pvk, tkq nor any of its descendants are in pB Y Cqpă tq. This means that
Ñ pvk, tkq Ð d-blocks rτ , which is a contradiction. For example, in Figure 3 no connection
of the form px, sq Ñ py, s` 1q Ð pz, sq can be d-open since neither py, s` 1q nor any of its
descendants is in pB Y Cqpă tq.

• There is a forkÐ vk Ñ with vk P C. ThereforeÐ pvk, tkq Ñ is a fork in rτ and hence tk ě t
(otherwise pvk, tkq P Cpă tq would block rτ ). This contradicts (6).

For instance, in Figure 3 if py, sq Ð pz, s´ 1q Ñ pv, sq is d-open then it necessarily happens
in the non-observed future, but it impossible in the view of (6).

• There is a chain Ð vk Ð with vk P C. We obtain a contradiction in the same way, as in the
case of a fork.

• There is a chainÑ vk Ñwith vk P C and a colliderÑ vl Ðwith depvlqXC ‰ H that occurs
afterwards (k ď l). We can consider the earliest such collider (i.e. ei “Ñ for i “ k`1, . . . , l).
This means that tk ď tl. On the other hand, Ñ pvk, tkq Ñ is open in rG which means that
tk ě t (otherwise pvk, tkq P pB Y Cqpă tq). Similarly, tl ă t since the collider Ñ pvl, tlq Ð
is open in rG and hence pvl, tlq or one of its descendants is in pB Y Cqpă tq. We obtained
tk ď tl and tk ě t ą tl, a contradiction.
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E.g. in Figure 3 the connection px, sq Ñ pz, s ` 1q Ñ pv, s ` 2q Ð pw, s ` 1q cannot be
d-open since that would mean that the center of the chain connection is in the future and the
center of the collider connection is in the past.

All the possibilities implied by the assumption that rτ is not d-blocked by pB Y Cqpă tq have led us
to a contradiction. This implies that Apă tq and Bpě tq are d-blocked by pB Y Cqpă tq, which
finishes the proof.

Proof of part (b) Take any trail in G that connects a P A to b P B and is not ε-blocked by C:

a, e1, v1, e2, v2, e3, . . . , en´1, vn´1, en, b,

where en “Ñ. Let us denote this trail by τ and let rτ be the trail in rG given by

pa, t0q, e1, pv1, t1q, e2, pv2, t2q, e3, . . . , en´1, pvn´1, tn´1q, en, pb, tnq

where t0 “ n and t1, . . . , tn are defined by e1, . . . , en via

ti`1 “

"

ti ` 1 if ei`1 “Ñ
ti ´ 1 otherwise

(7)

For any colliderÑ pvi, tiq Ð on rτ choose wi P depviqXC (such wi exists as τ is ε-open) and let dk
be the length of the shortest directed path from vi to wi in G. Set t “ t0 `maxi : Ñpvi,tiqÐtti ` diu
(any t that is larger from t0 and maxi : Ñpvi,tiqÐttk ` dku will do).

Figure 4: An exemplary ε-open path τ in
local dependence graph (upper diagram)
and its counterpart rτ in the space-time
graph. The start time t0 “ 5 is chosen
so that rτ has no chance to stop at nega-
tive time. The cut-off time t “ 8 is chosen
so that the descendant px, 7q of the collider
py, 6q is observed. Despite the fact that the
collider is d-open, the path rτ is d-closed
because of the chain pz, 5q Ñ pv, 6q Ñ
pw, 7q because it has an observed center.
This is why we ‘bypass it’ (dotted arrows)
to obtain a d-open path pτ from apă tq to
bpě tq

5

6

7

8

9

10

a x y z v w b

We now modify the trail rτ to obtain a new one. If there is a right-directed chain in τ with its
middle node in C, let r be the index of the earliest one. Otherwise let r “ n. If tr ă t, replace
pvr´1, tr´1q Ñ pvr, trq with

pvr´1, tr´1q Ñ pvr´1, tr´1 ` 1q Ñ . . .Ñ pvr´1, t´ 1q Ñ pvr, tq

and pvl, tlq with pvl, tl ` t´ trq for l ą r. It is clear that in this way we obtain a trail from pv0, t0q
to pvn, T q in rG, where T “ maxttn, tn ` t´ tru. Let us denote this trail by pτ .

Firstly we show that pτ connects Apă tq to Bpě tq. By the definition of t we have t0 ă t and
pa, t0q P Apă tq. Note that el “Ñ for l ě r; it follows from the fact that τ is ε-open and hence

11
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there can be no colliders to the right of vr. This implies tk ě tr for k ě r, in particular tn ě tr,
hence T ě t and pb, T q – which is the endpoint of τ̂ – belongs to Bpě tq.

Now we prove that τ̂ is not d-blocked by pBY Cqpă tq. Three consecutive nodes on pτ can be in the
one of the following forms:

(i) pvk´1, tk´1q, ek, pvk, tkq, ek`1, pvk`1, tk`1q for k ă r
Note that vk´1, ek, vk, ek`1, vk`1 is ε-open in G. This means that

• vk R C and pek, ek`1q P tpÑ,Ñq, pÐ,Ñq, pÐ,Ðqu. Then (i) is not d-blocked by
pB Y Cqpă tq as pvk, tkq R pB Y Cqpă tq

• pek, ek`1q “ pÑ,Ðq and there exists wk P depvkq X C. By the definition of t we have
pwk, tk ` dkq P deppvk, tkqq X Cpă tq and again (i) is not d-blocked by pB X Cqpă tq.

(ii) pvr´1, tr´1 ` i´ 1q Ñ pvr´1, tr´1 ` iq Ñ pvk`1, tr´1 ` i` 1q for i ě t´ tr
These are clearly d-open since by the definition of r we get vr´1 R C.

(iii) pvk´1, tk´1 ` t´ trq Ñ pvk, tk ` t´ trq Ñ pvk`1, tk`1 ` t´ trq for k ě r
As k ě r we have tk ě tr, hence tk ` t´ tr ě t and pvk, tk ` t´ trq R pB Y Cqpă tq. This
means that (iii) is not d-blocked by pB Y Cqpă tq.

We proved that the trail pτ joins Apă tq with Bpě tq in rG and it is not d-blocked by pB Y Cqpă
tq. By the classical theory of d-separation this means that there is a probability distribution that
factorises along rG in which XBpě tqKK{ XApă tq|XBYCpă tq; this probability distribution defines
the relevant process.

5. Summary

We summarise our findings in a compact form of the following table that relates the well known
separability relationships to our observations.

Separability property in G Symbol Independence property of X

p1q Every trail between A and B is d-blocked by C A Kd B|C XBKKXA|XC (independent start)

p2q Every trail between A and B is c-blocked by C A Kc B|C XBKKXA|XC (stationary)

p3q No arrows from A to B A ­Ñ B XBptqKKXApă tq|XVzApă tq

p4q Every trail from A to B is δ-blocked by C A ­Ñδ B|C XBptqKKXApă tq|XBYCpă tq

p5q No directed paths from A to B A ­ã B XBpě tqKKXApă tq|XVzApă tq

p6q Every trail from A to B is ε-blocked by C A ­ãε B|C XBpě tqKKXApă tq|XBYCpă tq

We believe that the results presented should remain valid under the continuous time regime, which
is the topic of our on-going research.

12



LOCAL DEPENDENCE GRAPHS FOR DISCRETE TIME PROCESSES

Note that among presented separation types some imply others. It is an easy exercise to show the
implications presented on the following diagram.

d-separation ð c-separation
ó ó

δ-separation ð ε-separation

No other implication is true. This leaves us with only six possible configurations of these separation
types. All of them are represented in the table below. The last row contains blocking sets C that
result in consecutive configurations in the graph from Figure 2 (where A “ tau and B “ tbu).

d 3 3 3 7 7 7

c 3 7 7 7 7 7

δ 3 3 3 3 3 7

ε 3 3 7 3 7 7

H tx, yu tp, ru tyu tp, r, yu tpu
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Appendix A. Proof of Theorem 3.2

Recall that G “ pV, Eq is a directed graph with possible cycles. We assume that all nodes have
self-loops (v P papvq for every v P V). Definition of d-separation is exactly the same as in the
acyclic case. Below A, B and C are disjoint sets of nodes, with C possible empty.

We say that B is d-blocked from A by C if every trail from A to B

• contains a chain Ð c Ð a chain Ñ c Ñ or a fork Ð c Ñ with c P C or a collider Ñ v Ð
with depvq X C “ H.

(By our definition, a trail cannot contain any node more than once.)

We consider a discrete time stochastic process X “ pXvptq, v P V, t “ 0, 1, . . .q. Random variables
at node v, that is Xvptq, take values in a measure space Sv equipped with some measure denoted
by dxv. We assume that all probability distributions under consideration are absolutely continuous
with respect to products of these reference measures. A generic notation for a density will be p.
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Assume that X satisfies the following two conditions: for arbitrary measurable Ev Ď Sv,

P
`

@vPV Xvptq P Ev
ˇ

ˇXpsq, s ă t
˘

“
ź

v

PpXvptq P Ev|Xpapvqpsq, s ă tq

and
P p@vPV Xvp0q P Evq “

ź

v

PpXvp0q P Evq.

In terms of densities, our two basic assumptions can be rewritten as follows:

p pxptq|xpsq, s ă tq “
ź

v

ppxvptq|xpapvqpsq, s ă tq. (A.1)

and
p pxp0qq “

ź

v

ppxvp0qq. (A.2)

Let us set a finite but arbitrary time horizon n. We will work with densities on the space of tra-
jectories of a time-truncated process pXvptq, v P V, t “ 0, 1, . . . , nq, that is X “

ś

vPV Xv, where
Xv “ Sn`1v . It is clear that it is sufficient to prove Theorem 3.2 for this time-truncated process.
From now on, to simplify notation, we just write X “ pXvptq, v P V, t “ 0, 1, . . . , nq.

Theorem 3.2 asserts the following.

(a) Consider a discrete time process X which satisfies (A.2) and (A.1) with respect to G. If B is
d-blocked from A by C then XBKKXA|XC .

(b) If B is not d-blocked from A by C then there exists a process X satisfying (A.2) and (A.1)
such that XBKK{ XA|XC .

Our proof is based on the following factorisation result for the joint density of X. Define

ppxv}xpapvqq “ ppxvp0qq
n
ź

t“1

ppxvptq|xpapvqpsq : s ă tq.

Proposition A.1 (i) The joint density of X admits a factorisation

ppxq “
ź

vPV
ppxv}xpapvqq.

(ii) Moreover, for every A Ă V and every fixed xpapAqzA we have

ż

xA

ź

vPA
ppxv}xpapvqqdxA “ 1.

(We use the notations dxA “
ś

vPA dxv, where dxv “ dxvp0qdxvp1q ¨ ¨ ¨dxvpnq. For emphasis we
indicate the integrated variables under the symbol of integral.)
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Proof Using equations (A.1) and (A.2), we can express the joint density as

ppxq “
ź

v

ppxvp0qq
n
ź

t“1

ź

v

ppxvptq|xpapvqpsq, s ă tq.

Changing the order of the products yields the factorisation formula asserted in (i).

To verify (ii) we just take the integrals in the time-reversed order,
ż

xA

“

ż

xAp0q

¨ ¨ ¨

ż

xApn´1q

ż

xApnq

,

that is firstly with respect to xApnq “ pxvpnq : v P Aq then with respect to xApn´ 1q and down to
xAp0q, repeatedly using the fact that

ż

xAptq

ź

vPA
ppxvptq|xpapvqpsq, s ă tqdxAptq “ 1.

The product over t telescopes. In the end we obtain that the integral over xA is equal to 1.

Remark In spite of its simplicity, we think that Proposition A.1 is of independent interest and has
an appealing interpretation. Assertion (ii) allows us to interpret

ś

vPA ppxv}xpapvqq as a probability
density on the space of trajectories of sub-process XA. A moment of reflection reveals that this is
the density of conditional-by-intervention probability distribution, given that XpapAqzA is forced to
assume value xpapAqzA (we speak of intervention on the whole trajectories).7

In the sequel we will use the following notation. Let U and W be disjoint subsets of nodes (in
particular, they can be singletons). We write U — W to indicate that W is not d-blocked from U
and U —{ W otherwise (with respect to the set C which is fixed and need not be explicitly indicated).
Note that U —{ W is equivalent to U Kd W|C but in our opinion the former is more readable in the
proof.

Proof [Proof of Theorem 3.2 (a)]

Our starting point is the factorisation formula for density ppxq given in Proposition A.1 (i). We
define the following subsets of V . Firstly, D “ VzpAY B Y Cq. Now we put

• DAB “ tv P D : A — v and B — v}.

• DA “ tv P D : A — v and B —{ v}.

• DB “ tv P D : A —{ v and B — v}.

• Drest “ DzpDAB YDA YDBq.

• CA “ tv P C : papvq X pAYDAq ‰ Hu.

• CB “ tv P C : papvq X pB YDBq ‰ Hu.

• Crest “ CzpCA Y CBq.

7. Note that in the expression
ś

vPA ppxv}xpapvqq, components xw with w P A appear also after the symbol of
conditioning “}”, in contrast with the usual conditional-by-observation density ppxA|xpapAqzAq.
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Sets A,B,DAB,Drest,DA,DB, CA, CB, Crest are disjoint (CAXCB “ H because A —{ B). We split
ppxq “

ś

v ppxv}xpapvqq into products over those subsets:

ppxq “
ź

vPDAB

ppxv}xpapvqq
ź

vPDrest

ppxv}xpapvqq
ź

vPCrest

ppxv}xpapvqq

ˆ
ź

vPA
ppxv}xpapvqq

ź

vPCA

ppxv}xpapvqq
ź

vPDA

ppxv}xpapvqq

ˆ
ź

vPB
ppxv}xpapvqq

ź

vPCB

ppxv}xpapvqq
ź

vPDB

ppxv}xpapvqq.

Let us introduce the following notational convention: for subsets W,U Ď V we will write ppWq
instead of ppxWq and

ppW}Uq “
ź

vPW
ppxv}xpapvqq,

whenever papWq Ď U , that is whenever all parents of any node in W belong to U . It turns out that
we can rewrite the joint probability distribution in a schematic form:

ppVq “ ppDAB}Vq ppDrest}Drest Y Cq ppCrest}Drest Y Cq
ˆ ppA}AYDA Y Cq ppCA}AYDA Y Cq ppDA}AYDA YDrest Y Cq
ˆ ppB}B YDB Y Cq ppCB}B YDB Y Cq ppDB}B YDB YDrest Y Cq.

(A.3)

For better readability we postpone the justification of (A.3) to the end of this proof. Further no-
tational convention concerns marginalization, i.e. “integrating out” a subset of variables. Let us
write

ż

W

r¨ ¨ ¨ s “

ż

xW

r¨ ¨ ¨ sdxW .

Now, we have that

ppA,B, Cq “
ż

DB

ż

DA

ż

Drest

ż

DAB

ppDAB}Vq ppDrest}Drest Y Cq ppCrest}Drest Y Cq

ˆ ppA}AYDA Y Cq ppCA}AYDA Y Cq ppDA}AYDA YDrest Y Cq
ˆ ppB}B YDB Y Cq ppCB}B YDB Y Cq ppDB}B YDB YDrest Y Cq.

Since DAB appears only in the first factor and nowhere in the conditions,
ş

DAB
ppDAB}Vq “ 1

(here we have used assertion (ii) of Proposition A.1).

Now we assume that Drest “ H. The two remaining integrals over DA and DB factorise. The
integral over DA depends only on A and C, the other one only on B and C. Thus we see that

ppA,B, Cq “ ψpCq

ˆ

ż

DA

ppA}AYDA Y Cq ppCA}AYDA Y Cq ppDA}AYDA Y Cq

ˆ

ż

DB

ppB}B YDB Y Cq ppCB}B YDB Y Cq ppDB}B YDB Y Cq

“ ψpCq ˆ ψ1pA, Cq ˆ ψ2pB, Cq.
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Thus we have shown that A —{ B and Drest “ H imply XBKKXA|XC .

If Drest ‰ H let B1 “ B Y Drest and D1rest “ tv R A Y B1 Y C : A —{ v and B1 —{ vu. Note
that D1rest is in fact an empty set; if v R A Y B1 Y C then v R A Y B Y C and hence the conditions
A —{ v and B1 —{ v imply that v P Drest which contradicts v R B1. By the definition of Drest

we have A —{ Drest and hence A —{ B1. As D1rest “ H our previous considerations lead to
XB1KKXA|XC , in particular XBKKXA|XC .

What remains is to verify that (A.3) holds. We have to show that the following statements are true,
provided that we have d-separation A —{ B:

1. Sets A,B,DAB,DA,DB,Drest, CA, CB, Crest are mutually disjoint.

2. papDrestq Ď Drest Y C,

3. papCrestq Ď Drest Y C,

4. papAq Ď AYDA Y C and papBq Ď B YDB Y C

5. papDAq Ď AYDA YDrest Y C and papDBq Ď B YDB YDrest Y C,

6. papCAq Ď AYDA Y C and papCBq Ď B YDB Y C.

The argument goes as follows.

Firstly, we claim that depDABq Ď DAB. Indeed, let v P DAB. There are C-active trails A — v
and v — B. Since v R C and v must block the trail between A and B, we infer that the trails must
create a collider at v and no descendant of v can belong to C. All descendants of v are d-connected
to both A and B and hence they cannot belong to A or B (as those sets are d-separated) or DA or
DB (simply by their definition). Therefore all descendants of v are in DAB. Consequently, no node
in DAB can be a parent of a node R DAB. This fact will be used below several times.

We now proceed to verification of conditions 1-7.

1. We only need to show that CA X CB “ H. For any v P CA there exists w P papvq such that
w P A or w — A. If additionally we had v P CB then there would exist u P papvq such that
u P B or u — B. This would imply that a trail from A to B via v has a collider at v P C,
which is impossible, because A —{ B.

2. If v P Drest and w P papvq then w R A and w R DA, because otherwise there would be an
C-active trail v — A, contrary to the definition of Drest. Analogously, w R B and w R DB.
Therefore w P Drest Y C.

3. Assume that v P Crest and w P papvq. It is clear that w R A Y DA and w R B Y DB, by
definition of Crest. Therefore w P Drest Y C.

4. If v P A and w P papvq then clearly w R B Y DB because otherwise we would have an
C-active trail A — B. Moreover we cannot have w P Drest, for this would contradict the
definition of Drest. Therefore w R B Y DB Y Drest and we conclude that w P A Y DA Y C.
The proof of papBq Ď B YDB Y C is analogous.
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5. If v P DA and w P papvq then clearly w R BYDB because otherwise we would have v — B,
contrary to the definition of DA. We conclude that w P A Y DA Y Drest Y C. The proof of
papDBq Ď B YDB YDrest Y C is analogous.

6. If v P CA then v R CB by item 1, so no parent of v can belong to B YDB. We also know that
no parent of v can belong to DAB. No parent of v can belong to Drest, otherwise there would
be an active trail A — Drest (with a collider at v P C), contrary to the definition of Drest. The
proof of papCBq Ď B YDB Y C is analogous.

We have shown that (A.3) is true and this concludes the proof.

Proof [Proof of 3.2 (b)] We adopt the notation from the proof of Theorem 3.9. Take any trail in G
that connects a P A to b P B and is not d-blocked by C:

a, e1, v1, e2, v2, e3, . . . , en´1, vn´1, en, b.

Let us denote this trail by τ and let rτ be the trail in rG given by

pa, t0q, e1, pv1, t1q, e2, pv2, t2q, e3, . . . , en´1, pvn´1, tn´1q, en, pb, tnq

where t0 “ n and t1, . . . , tn are defined by e1, . . . , en via

ti`1 “

"

ti ` 1 if ei`1 “Ñ
ti ´ 1 otherwise

(A.4)

For any collider Ñ pvi, tiq Ð on rτ choose wi P depviq X C (such wi exists as τ is d-open)
and let dk be the length of the shortest directed path from vi to wi in G. Take any T larger than
maxi : Ñpvi,tiqÐtti`diu and maxiďn ti. We claim that rτ is an Cpď T q-active trail between Apď T q

and Bpď T q in rG. It is straightforward to verify: if a fork, chain or collider connection is d-
open in τ then its counterpart in rτ must be d-open in rτ . By the classical theory of d-separation
this means that there is a probability distribution that factorises along rG in which XBpď T qKK{
XApď T q|XCpď T q; this probability distribution defines the desired process.

Remark In our proof of Theorem 3.2 (a) we have not directly used the assumptions on the process
X but we only have appealed to the properties stated in Proposition A.1. Consequently, the proof
is valid also for those continuous time processes, for which the conclusion of Proposition A.1 holds
true. An important example is the class of continuous time Bayesian networks (CTBNs). The fac-
torisation formula from Proposition A.1 (i) for CTBNs can be found e.g. in Nodelman et al. (2002),
Fan et al. (2010) and (Miasojedow and Niemiro, 2017, eq. (12)). A version of such formula is also
in (Didelez, 2007b, p. 183, formula (9)). One should be cautious though, because ‘likelihood’ is
defined up to multiplicative constants and with initial distribution being ignored. Thus factorisation
for ppxq in Proposition A.1 (i) follows directly but Proposition A.1 (ii) requires careful examination.
We think this second part of Proposition A.1 is needed in a proof of an analogue of Theorem 3.2 for
CTBNs and this point seems to be overlooked in the literature.
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