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Abstract
Uncovering the underlying causal structure of a phenomenon, domain or environment is of great
scientific interest, not least because of the inferences that can be derived from such structures.
Unfortunately though, given an environment, identifying its causal structure poses significant chal-
lenges. Amongst those are the need for costly interventions and the size of the space of possible
structures that has to be searched. In this work, we propose a meta-reinforcement learning setup
that addresses these challenges by learning a causal discovery algorithm, called Meta-Causal Dis-
covery, or MCD. We model this algorithm as a policy that is trained on a set of environments with
known causal structures to perform budgeted interventions. Simultaneously, the policy learns to
maintain an estimate of the environment’s causal structure. The learned policy can then be used
as a causal discovery algorithm to estimate the structure of environments in a matter of millisec-
onds. At test time, our algorithm performs well even in environments that induce previously unseen
causal structures. We empirically show that MCD estimates good graphs compared to SOTA ap-
proaches on toy environments and thus constitutes a proof-of-concept of learning causal discovery
algorithms.
Keywords: Causal Discovery, Reinforcement Learning, Meta-Learning

1. Context and Contribution

Many scientific questions, from ”Why did this apple fall on my head?” to ”Does more physical ac-
tivity reduce the risk of cardiovascular diseases?”, aim at answering questions about causal effects.
The field of causality offers a framework to formalize these questions. Although causality has been
researched for decades (Glymour et al., 1991; Spirtes et al., 2000; Pearl and Mackenzie, 2018), it
has recently gained momentum in the context of machine learning (ML) (Schölkopf et al., 2021)
and, more specifically, reinforcement learning (RL).

Causal models carry the promise to allow ML models to go beyond correlation-based inference
through capabilities such as counterfactual reasoning and reasoning about actions. While the infer-
ence power of causal models is impressive, estimating causal structure from data, also called causal
discovery, poses several challenges. One big challenge lies in the fact that some causal structures
cannot be distinguished from observational data alone (Hauser and Bühlmann, 2012). This issue can
be mitigated by assigning values to variables independently from their causes (Pearl, 1993; Hauser
and Bühlmann, 2012; Bareinboim et al., 2022), a process called intervention. Unfortunately, when
confronted with real-world environments, performing interventions such as randomized controlled
trials can be resource expensive or even impossible. Therefore, a large body of research exists on
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intervention design, or put it differently, on how to minimize the number of interventions needed to
estimate the causal model.

With the successful application of RL algorithms to many domains (François-Lavet et al., 2018;
Plaat et al., 2021; Moerland et al., 2023), the opportunity to use RL as a tool for causal discovery
has opened as well. RL methods allow for sampling the environment as opposed to learning from
a static data set of pre-collected observations. This interactive learning setting for data collection
allows for estimating causal structures step-by-step considering always the newest data sample. This
can be beneficial for online decisions e.g. on which variable to intervene based on how informative
an intervention is for estimating a causal structure. Furthermore, an RL setting allows us to sample
data from an environment, without being restricted to a fixed set of samples. This allows for better
exploration of the data from an environment.

In this work, we show that it is possible to learn an algorithm (hence the term meta-learning)
for causal discovery, called Meta Causal Discovery (MCD). More specifically, we sketch a meta-
reinforcement learning model that estimates the causal structure of an environment with a given set
of variables. The model is allowed to perform interventions with a limited budget to aid this process.
The model simultaneously learns to perform informative interventions and to infer the updates to
the structural model based on the resulting observations. During test time, the weights of the model
are frozen; therefore, the model learns the causal structure only by utilizing its current network
activations. Our work contributes to common challenges in causal discovery through the following
capabilities:

• Providing good estimates of the ground-truth causal structure compared to the SOTA.

• Performing causal discovery in a matter of milliseconds.

• Integrating observational and interventional data for causal discovery.

• Limiting the number of interventions through a single hyper-parameter.

We will start by introducing necessary notations (Section 2). We will then proceed to provide
an overview of the relevant literature on causal discovery leading to a discussion of the common
challenges of the task (Section 3). Next, we describe our approach and our model in detail (Section
4). In a toy experiment, we show that our approach can learn to use interventions to distinguish
causal structures (Section 5). We will conclude with experiments on the accuracy of our model
w.r.t. SOTA approaches and a rigorous discussion thereof (Sections 6, 7, and 8). Figure 1 presents
an overview of our approach. The implementation can be found at https://github.com/
sa-and/MCD

2. Preliminaries and Notation

Causal relationships can formally be expressed in terms of a structural causal model (SCM). We
define an SCM S as a tuple (X ,U ,F ,P) where X = {X1, . . . , X|X |} is the set of endogenous
variables; U = {U1, . . . , U|U|} is the set of exogenous variables; F = {f1, . . . , f|X |} is the set
of functions whose elements are defined as structural equations in the form of Xi ← fi(.); P =
{P1, . . . , P|U|} is a set of pairwise independent distributions where Ui ∼ Pi. Every SCM induces
a graph structure G in which each node represents a random variable. For all nodes Wi ∈ {X ∪
U}, Xj ∈ X , the induced graph G has a directed edge (Wi, Xj) iff Wi is an input of fj . This
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Figure 1: The learning setup of our approach. Green arrows describe processes that happen at every
time step. Red arrows describe processes that happen at the end of each episode. At
every time step, an observation is constructed. Based on this, our policy either performs
an intervention on the environment or updates its estimate of the environment’s causal
structure. At the end of each episode, the estimated structure is compared to the ground
truth, and the negative difference is provided as a reward. Then a new environment is
sampled from the training set. During test time, the learned policy can be applied to
previously unseen environments without relying on their ground-truth structure.

implies that every exogenous variable Ui is a root node in G. In this work, we restrict ourselves to
SCMs that induce a directed acyclic graph (DAG).

An intervention on a variable Xi ∈ X is defined as replacing the corresponding structural
equation Xi ← fi(.) with Xi ← x for some value x, which we denote as do(Xi = x). Intervening
on a variable makes it independent of its parents and removes its incoming edges in G. The model
is causal in the sense that one can derive the distribution of a subset X ′ ⊆ X of variables following
an intervention on a set of variables, called intervention target, I ⊆ X \ X ′. We call the resulting
distribution over X post-interventional. When no intervention is performed (I = ∅) we call the
resulting distribution an observational distribution.
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We characterize our RL learning problem by a state-space S, an observation space Ω, an action-
space A, a reward function r(s) : S → R, and a policy π(h) : Ωt → A, where h is the history
of observations up to time step t. We define an episode e as the state-action sequence from the
beginning to the end of the estimation. We will refer to the length of the episode as horizon H . The
value function Vπ(h) : Ωt → R defines the expected, discounted cumulative reward following a
deterministic policy π, with discount factor γ. The objective of the RL agent is to find the optimal
policy π∗ that maximizes the value function for all observations which can be expressed as π∗(h) =
argmaxπVπ(h), ∀h ∈ Ωt. We describe our approach as a meta-learning setup, since we use RL, to
learn a policy that learns a causal structure of an environment.

3. Related Work

Due to its relevance in many applications, causal discovery research has gained momentum in the
last years leading to an impressive body of work (Vowels et al., 2021). Score-based causal dis-
covery approaches search the space of DAGs via metrics that indicate how well the graph fits the
data. This is often done greedily over the space of classes of graphs in which the graphs can only
be distinguished via interventions (Meek, 1997; Chickering, 2002; Hauser and Bühlmann, 2012;
Ramsey et al., 2017), or over permutations of node orderings (Solus et al., 2017; Wang et al., 2017;
Yang et al., 2018). Constraint-based approaches leverage the statistical independence patterns in
the data to constrain the possible output graphs (Glymour et al., 1991; Spirtes et al., 2000). These
constraints can even be expressed as propositional formulas and then solved with answer-set pro-
gramming (Hyttinen et al., 2014). RL offers an alternative way of searching the space of DAGs
by using the reward to navigate toward good graph generators (Zhu et al., 2019). Note that many
algorithms rely on strong assumptions on the class of causal relations e.g. linear additive noise mod-
els (Bühlmann et al., 2014; Peters et al., 2014; Shimizu et al., 2006). This makes these algorithms
interesting for theoretical analysis but it also restricts their application potential in practice.

Since the number of possible DAGs grows super-exponentially in the number of nodes (Robin-
son, 1977), most score- and constraint-based approaches suffer from long run times. A recent line of
research tackles this problem by deploying optimization-based algorithms. These algorithms work
e.g. with constraint optimization (Zheng et al., 2018; Brouillard et al., 2020) but also by learning
causal graph neural networks (Goudet et al., 2018; Yu et al., 2019; Ton et al., 2021) or variational
auto-encoders (Yang et al., 2021). For neuro-causal models, advances are also made in the the-
oretical analysis of their identifiability (Xia et al., 2021). A similar approach is taken by works
that sample both the graph structures and the functional parameters from posterior distributions (Ke
et al., 2019; Lippe et al., 2021; Scherrer et al., 2021; Lei et al., 2022). This improves learning ef-
ficiency, not only of the structures but also of the functional relations of the causal mechanisms.
While optimization-based approaches can reduce the run-time for structure learning by avoiding
a combinatorial explosion, they can still take significant time to learn the causal structure. In our
work, we are shifting the computational complexity to training time to circumvent long runtimes at
test time.

Another common challenge amongst most causal discovery algorithms is the integration of ob-
servational and interventional data. Although integrating frameworks exist (Mooij et al., 2020),
only a fraction of causal discovery algorithms successfully jointly consider interventional and ob-
servational data (Vowels et al., 2021). A promising direction for the seamless integration of in-
terventional data is by means of RL. We argue that this is partly due to the implicit connections
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between interventions and actions in any RL framework, and partly because RL can easily be com-
bined with deep-learning models. Our work distinguishes itself from these closely related works in
different ways. While Dasgupta et al. (2019) developed an algorithm that is similar to ours, their
primary task was not causal discovery. Nair et al. (2019), Gasse et al. (2021), Lei et al. (2022), and
Mendez-Molina et al. (2022) put a strong focus on using causal structures to aid RL while learn-
ing the structures is done in a supervised manner. Similarly, Scherrer et al. (2021) and Tigas et al.
(2022) develop an active learning algorithm that chooses interventions more efficiently to estimate
the structure from this data. Amirinezhad et al. (2022) have a similar setup and task but restrict RL
to learn a heuristic function for choosing the next intervention target. Furthermore, they do not take
into account the values and distributions of the random variables. Their graph-updating procedure
is pre-defined, whereas in our approach the update rules are learned.

4. Meta-Reinforcement Learning Setup

4.1. Actions

We implement two types of discrete actions. The first type performs an intervention on the current
environment SCM. This enables the policy to choose a (post-interventional) distribution to sample
from. We will refer to this kind of action as listening action. All, except for one, of the listening
actions are intervention actions that intervene on exactly one variable (i.e., |I| = 1). For each
endogenous variable X ∈ X , we provide an action do(X = c) for a constant c. We argue that c
should be chosen in a way that makes it easy to distinguish the post-interventional distribution from
the observational distribution i.e. it should be unlikely that samples from the post-interventional
distribution come from the observational distribution. A future expansion of our work could include
learning a good c. The intervention actions amount to a total of n actions for n nodes. There is one
additional listening action which we call the non-action. When the non-action is taken, the agent
does not intervene (i.e., I = ∅). This action accounts for the collection of purely observational data.

The second type of action is responsible for maintaining the current causal structure estimate
of the environment, which we call the epistemic model. We will refer to these actions as structure-
actions. Each structure action can either add, delete or reverse an edge of the epistemic model.
Whenever a delete or reverse action is applied to an edge that is not present in the current model,
the action is ignored. This is effectively equivalent to performing the non-action. The same holds
when the add action is applied to an edge that is already in the epistemic model. We do not make
any further restrictions, for instance, w.r.t. acyclicity for the structure actions.

For a graph with n nodes, there are n(n − 1) possible edges, and hence there are 3n(n − 1)
structure actions. Together with the listening actions we have n+1+3n(n−1) actions. Therefore,
the size of the action space is quadratic in the size of nodes.

4.2. Observation Space

In this Section, we describe how observations o ∈ Ω are constructed. Each environment is com-
pletely defined by an SCM. At each time step t, the exogenous variables U are sampled. The
functions F are then evaluated according to the topological ordering of their corresponding nodes
in G. This results in a sample of the endogenous variables X and makes up the first part oVt of the
observation vector.
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The second part of the observation, oAt is a one-hot vector that indicates the intervention target.
If the i-th element of oAt is 1, then there is an intervention on Xi.

The third part of the observation, oGt encodes the current epistemic model as a vector. Each
value of this vector represents an undirected edge in the graph. The edges in the vector are ordered
lexicographically. The value 0 encodes that there is no edge between the two nodes. The value 0.5
encodes that there is an edge going from the lexicographically smaller node to the bigger node of
the undirected edge. And the value 1 encodes that there is an edge in the opposite direction. For
example, a 3-node graph X0 → X2 → X1 would be encoded as oGt = [0, 0.5, 1].

The last element in the observation, oTt , encodes the time until the end of an episode normalized
to 1 as oTt = t

H , where H is the horizon. The complete observation ot, is the concatenation of
oVt , o

A
t , o

G
t ,and oTt as shown in Figure 2. Taken together, the size of one observation is 2n+ n(n−

1)/2 + 1 with n endogenous variables and hence quadratic in the size of the graph. The input to
our policy is the history of observations from the beginning of the episode ht = o0:t which we will
approximate by implementing a recurrent policy (see Section 4.4).

4.3. Rewards and Episodes

Our task is to find the causal structure of the environment, i.e., the DAG that corresponds to the graph
induced by the SCM of the environment. Therefore, we compare the epistemic model to the true
causal structure of the environment. The quantification of this comparison serves as the reward for
our algorithm. We count the edge differences between the two graphs. This ensures that generating
a model that has more edges in common with the true DAG will be preferred over one which has
fewer edges in common. It further gives a strong focus on causal discovery as opposed to scores
based on causal inference. Specifically, we use a variant of the Structural Hamming Distance (SHD)
(Tsamardinos et al., 2006). In this variant, we take two directed graphs and count how many of the
edges need to be removed or added to transform the first graph into the second graph. This results
in a metric that simply counts the distinguishing edges of two directed graphs. We will refer to
this metric as directed SHD or dSHD. Given a predicted directed graph GP = (V,EP ) and a target,
directed graph GT = (V,ET ), we define the dSHD as dSHD(EP , ET ) =| EP \ET | + | ET \EP |.

For each episode, we set a finite horizon H . The estimation of the epistemic model is complete
when H−1 actions were taken. Dynamically determining the end of the estimations is left for future
research. Note that when a small episode length is chosen, fewer samples can be collected by the
agent. This might impact how well the agent is informed on which updates to make to the epistemic
model. At the same time, H should not be set too large since additional learning complexity might
be introduced. At the beginning of each episode, an SCM is sampled from the training set and the
epistemic model of the agent is reset to a random DAG, to further introduce randomness.

The reward is calculated by taking the negative dSHD between the generated DAG and the true
causal graph at the end of each episode. Every other step receives a bonus of 0.1 if an intervention
action is performed. This will lead to an algorithm that performs more interventions. However,
our main parameter to reduce interventions is the horizon, which puts a hard cap on the maximum
number of interventions. We introduced the bonus for interventions because it worked well as a
reward-shaping tool. The resulting value function for a history of observations h and a policy π is
then defined as

Vπ(h) = Eh∼π

[
−γH−tdSHD(EH

Epi, EEnv) | h0 = h
]
+ Eh∼π

[
γt0.11I(h) | h0 = h

]
(1)

6



META-CAUSAL DISCOVERY

where EH
Epi are the edges of the epistemic model at the end of an episode, EEnv are the edges of the

ground truth causal graph and 1I(h) is the function that indicates whether there is an intervention
in the latest observation in h. An optimal policy on this value function will construct an epistemic
model that corresponds to the DAG induced by the causal structure of the current environment. The
pseudocode of our overall learning setup can be seen in Algorithm 1.

Input: test set of DAGs D, number of training episodes N , horizon H
Output: causal discovery policy π

1 initialize policy π ; // (Section 4.4)
2 for ep← 0; ep < N ; ep← ep+ 1 do
3 generate random SCM S with G /∈ D ; // New training env (Section 4.3)

4 initialize h and a random epistemic model Ĝ ; // (Section 4.2 and 4.3)

5 for steps← 0; steps < H; steps← steps+ 1 do
6 r ← 0 ; // Reset reward
7 a← π(h) ; // Determine action based on policy

8 if a is structure action then
9 Ĝ.update(a) ; // Update epistemic model (Section 4.1)

10 else
11 S.do(a) ; // Intervene on SCM S (Section 4.1)
12 r ← r + 0.1 ; // Bonus for interventions (Section 4.3)

13 h.update([S.sample() + a.onehot() + Ĝ.encode() + [ stepsH ]]) ; // Update
observation history (Section 4.2)

14 if steps == H − 1 then
15 r ← r − dSHD(Ĝ,G) ; // Compare Ĝ to true G (Section 4.3)

16 π.update(r)

17 return π
18

Algorithm 1: Pseudocode of our MCD learning algorithm. The returned policy π can be applied to
new environments without re-training.

4.4. Learning Algorithm and Policy Network

We use the Actor-Critic with Experience Replay (ACER) (Wang et al., 2016) algorithm to learn our
policy. We choose this algorithm because of its sample-efficient off-policy method, its (potentially)
easy extension to continuous action spaces, and because it worked well after preliminary experi-
ments. We use a discount factor γ = 0.99, a buffer size of 500000, and a constant learning rate. All
other parameters are according to the standard values of Stable-Baselines (Hill et al., 2018, version
2.10.1).

The architecture of our policy network is sketched in Figure 2. Both, the actor-network and the
critic-network are fully-connected multi-layer perceptrons (MLP). They are preceded by a shared
MLP for feature extraction and a single LSTM layer (Hochreiter and Schmidhuber, 1997). We
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Figure 2: An overview of our observations and policy network. The observation consists of the
environment’s current variable values, the intervention target, the encoding of the current
epistemic model, and the remaining time as a fraction of the horizon. The actor and the
critic share a fully connected feed-forward network with an additional LSTM layer that
approximates the history of observations.

introduce the LSTM layer to allow the policy to estimate the history of observations as described
in Section 2. With the LSTM, our policy can access an aggregated version of previous variable-
intervention pairs. This can help to disambiguate post-interventional distributions and has been
shown to work in similar research (Dasgupta et al., 2019). The exact amounts of layers and their
sizes are specified for each experiment.

5. Learning to Intervene

To test whether our approach can learn to perform the right interventions to identify causal models
under optimal conditions we develop a toy example. To this end, we construct a simple setup in
which two observationally equivalent, yet interventionally different environments have to be distin-
guished. This means that the causal structures of the two environments can only be distinguished by
intervening on them (Bareinboim et al., 2022). Observing the values of the variables is not enough
for distinguishing their structure. For this experiment, we disable the bonus reward for perform-
ing interventions. Thus, if the policy should distinguish the two environments, it has to learn that
interventions are needed and that certain structures can be inferred from those interventions.

The two environments are governed by SCMs with 3 endogenous variables X1, X2, X3, and
structures G1 : X1 ← X0 → X2 and G2 : X0 → X1 → X2. In both environments, the root
node X0 follows a normal distribution with X0 ∼ N(µ = 0, σ = 0.1). The nodes X1 and X2

take the values of their parents in the corresponding graph. The resulting observational distributions
PG1(X0, X1, X2) and PG2(X0, X1, X2) are equivalent and so are the post-interventional distribu-
tions after interventions on X0 or X2. For an intervention on X1, PG1(X0, X2 | do(X1 = x)) ̸=
PG2(X0, X2 | do(X1 = x)). Hence the two SCMs can only be distinguished by intervening on X1.
The details for the training setup can be found in Appendix A.1. The algorithm is trained and eval-
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uated in both environments, where at the beginning of each episode, one of the two environments is
picked at random. This setup allows us to investigate whether, given enough training time and data,
our approach can learn to distinguish observationally equivalent environments.

After training, we observe that the mean dSHD between the generated epistemic models and
the ground truth graphs is 0.0 with a standard derivation of 0.0. This is a perfect reproduction of
the two environments in all cases. This indicates that our policy has indeed learned to use the right
intervention to find the true causal structure. For further testing, we apply the converged policy 10
times to each of the two environments and qualitatively analyze the behavior. What the resulting 20
episodes have in common is that, towards the beginning of each episode, they tend to delete edges
that do not overlap in the two environments. Then an intervention on X1 is performed. Depending
on the outcome of the intervention, either G1 or G2 is ultimately generated. This can also be seen
in the two hand-picked example episodes in Figure 3.
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Figure 3: Illustration of two sample episodes after training with the respective causal environments
G1 and G2. Each step shows the current epistemic model, the current values of the
three random variables, and the action which is chosen by the policy based on those
observations. Interventions and their effects are highlighted in green. In steps 7-9 neither
the epistemic model nor the resulting action changes.

These results show that our learned policy learns to use the intervention on X1 to distinguish
between the two environments. Thus, our approach is capable of learning to use interventions in an
active manner and generating the appropriate graph from the resulting observations. If this can be
successfully learned in more complex environments, our learned policy could potentially be used to
discover new rules of causal structure estimation. Furthermore, these results suggest that the model
has learned to only perform interventions that are relevant to causal discovery as opposed to random
interventions.
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6. Learning a Causal Discovery Algorithm

In this section, we investigate whether the agent can learn a causal discovery algorithm with the
meta-learning setup described in Algorithm 1. More specifically, we train our policy on a set of
SCMs where we sample a new SCM at every episode at random. If learning such a policy is
successful, the policy accurately estimates the causal structure of these environments, even when the
weights are frozen and the ground truth structure is unknown. We hypothesize that the learned policy
is a causal discovery algorithm in itself, and can thus successfully be applied even in environments
with previously unseen causal structures.

We test this by running the learned policy, with frozen weights, on a test set of SCMs and
compare it to the SOTA causal discovery algorithms ENCO (Lippe et al., 2021), DCDI (Brouillard
et al., 2020), NOTEARS (Zheng et al., 2018), and a baseline that generates a random DAG. Note
that ENCO and DCDI can both integrate observational and interventional data while NOTEARS
only uses observational data.

Following the widely adopted practice, we test our approach on SCMs that have an additive
linear causal model with independent Gaussian noise. Although this choice limits the applicability
to real-world environments, it provides a good means for comparison to other approaches. To make
our approach more general, a variant could be learned in which the training SCMs have more general
functional relations. It is known that environments with linear additive functions and Gaussian noise
can suffer from varsortability where good results can be achieved by ordering the variables by the
variance of their observational distribution (Reisach et al., 2021; Kaiser and Sipos, 2021). To make
our approach less prone to this error, we randomly sample the variance of each Gaussian noise we
use.

Given a structure G = (V,E) and X = V , we model our SCM environments as follows. Each
exogenous variable Ui follows a distribution Pi = N(µ = 0, σ = Σ) where Σ is sampled from
Uniform([0; 0.5]) for every Ui. For each endogenous variable Xi, we model fi as

fi(PaGX , Ui) =

 ∑
Y ∈PaGX

WY

+ Ui (2)

where PaGX are the parents of X in G, and W ∼ Uniform([−1; 1]) represents a random weight
for each causal effect of a parent to a child.

We randomly generate a test set of 7 DAGs with 3 variables and 200 DAGs with 4 variables.
We generate 10 SCMs following Equation 2 for each of these graphs. During training, we generate
a random ground truth DAG at the beginning of each episode. If this random DAG is in the test set,
we discard it and sample a new random DAG. This process is repeated until the sampled DAG is
not in the test set to ensure that our model has never seen the causal structures in the test set. When
a training DAG is found, we generate an SCM as described above as our current environment. We
chose to generate the training set this way, so our training set covers as much of the space of DAGs
as possible. The training details for our policy can be found in Appendix A.2. We will refer to the
best model that is found during training as best model.

To compare our approach, we used the following setup for the benchmarks. For NOTEARS
(Zheng et al., 2020) we sampled 10000 samples from the observational distribution of each SCM.
For ENCO (Lippe et al., 2021) we sampled 10000 samples from the observational distribution and
3333 samples from each post-interventional distribution (one per variable) and trained for 50 epochs.
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For DCDI (Brouillard et al., 2020) we took 3333 samples from each post-interventional distribution
as well and trained the deep sigmoidal flow model version of the algorithm for 50000 iterations.
We use the original implementation from the authors of the corresponding papers. For each of the
algorithms, we computed the dSHD between the predicted DAG and the ground truth DAG. Table
1 shows the results of running our best model (with frozen weights) and the benchmarks on the first
50SCMs in the test set.

3 Variables 4 Variables

mean median std mean median std
Random 4.43 4.0 0.90 4.80 5.0 1.72
DCDI 2.94 3.0 0.70 4.44 4.0 1.77
ENCO 3.18 3.0 1.09 3.74 4.0 1.73
NOTEARS 2.50 3.0 0.92 3.72 4.0 1.77
MCD (ours) 1.28 1.0 0.66 3.60 4.0 1.62

Table 1: Statistics over the dSHDs resulting from running the algorithms on the first 50 SCMs in
the test set.

Firstly, Table 1 shows that our approach outperforms the random baseline, suggesting that MCD
learns to estimate the environment’s causal structure beyond randomly orienting edges. The means
over the resulting dSHDs suggest that our approach compares favorably to the benchmarks. To
investigate this difference in more detail, we performed a one-sided Wilcoxon signed-rank test be-
tween the estimates from our policy and the estimates from DCDI, ENCO, and NOTEARS. To
correct for performing 3 comparisons, we consider a significance level of 1.7% instead of 5%. In
the 3 variable case as well as the 4 variable case we can conclude that the dSHDs from our method
are significantly lower (all p-values < 1.7%) than the ones from any of the other algorithms. Please
note that the results for ENCO are somewhat unexpected. Refer to Appendix B for an elaboration
on the issue.

We note that each of these estimations of MCD takes an average of 23ms in the 3 variable
case and 30ms in the 4 variable case on a consumer-grade notebook. This is in contrast to the
SOTA, which can take minutes for one estimation. We attribute this performance to the fact that
one estimation of MCD only takes H forward passes through the policy network, and that the
computational complexity of our approach is shifted completely to training time.

We conclude that with our approach a causal discovery algorithm can be learned that interac-
tively performs interventions and updates its structure estimate. Our algorithm not only compares
favorably to the SOTA w.r.t. to the dSHD to the ground truth graph but is also computationally
quick in deriving the estimate making it interesting for a variety of applications.

7. Contribution of Interventions

To empirically investigate the effect of interventions on the performance of our algorithm, we per-
form an ablation study. To this end, we train a variant of our policy (MCD-O) which is based on
purely observational data, i.e. we disallow the use of interventions. We then compare our results to
the results of MCD and NOTEARS, which also works on purely observational data and the random

11
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baseline of the previous section. We decided to compare MCD-O to NOTEARS, to investigate if,
even in the observational setting, the learned policy constitutes a good causal discovery algorithm.

We train our model with the same parameters as in Section 6 and measure the dSHD on the first
50 3-variable SCMs in the test set with the best model of the training run and frozen weights. We
perform a Wilcoxon signed-rank test to evaluate whether there is a significant difference between
the model that uses interventions and the one that does not. We also test whether there is a difference
between NOTEARS and our approach when no interventions are allowed.

The statistics of MCD-O applied once on the first 50 test SCMs are as follows: mean=2.6,
median=3.0, std=1.44. When comparing this to the version which uses interventions (mean=1.28,
median=1.0, std=0.66, see Table 1), we can see the importance that interventions have on the overall
performance of MCD. This is confirmed by performing a Wilcoxon signed-rank test between the
results of MCD and MCD-O indicating that MCD is significantly better (with p << 0.025). When
comparing MCD-O with NOTEARS, we do not observe any significant difference in a two-sided
Wilcoxon signed-rank test (p ∼ 0.4). In other words, while MCD-O does not provide an improve-
ment over NOTEARS, it still constitutes a valid alternative approach. These results confirm that
introducing interventions results in the hypothesized edge over the purely observational version of
our model.

8. Aspects of Intervention Design

As argued in Section 1, MCD provides an approach to restrict the number of interventions needed
to accurately discover the causal structure of an environment. The upper bound of interventions that
the learned policy will perform is the horizon of an episode (20-30 in our experiments). Compared to
the interventions used in the benchmarks (up to 10000 samples from the observational distribution
and up to 3333 samples from the interventional distributions), this is a significant improvement
considering the comparably good performance of MCD.

Empirically we see that our best model from section 6 performs an average of 17 interventions
in the 3-variable environments. On average, 64% of the interventions were on the first variable and
36% on the third variable. No interventions were performed on the second variable in any of the
runs. To investigate this behavior, we ran checkpoints of the model of earlier steps of the training
and found that the model is performing interventions on the second variable in those checkpoints.
We hypothesize that the model learns to not do this intervention because of the composition of the
training SCMs.

To have a better comparison of the performance of MCD in a context where interventional
samples are hard to obtain, we re-evaluate our approach w.r.t. SOTA. We run the benchmarks
described in section 6 again, with a different number of samples to see how they perform under
comparable sample sizes. For DCDI, we take 17 samples from each post-interventional distribution.
For ENCO we take 17 samples from each post-interventional distribution and 4 samples from the
observational distribution. For NOTEARS we take 20 observational samples. As before, we run the
benchmarks on the first 50 SCMs in the test set of 3 variables and report the statistics of the dSHD
to the ground truth graph.

Table 2 shows the statistics over the dSHD obtained from running the corresponding algorithms
on the 3 variable test SCMs. As expected, we see an increase in the performance gap between MCD
and DCDI and MCD and NOTEARS. This indicates that their ability to perform well when few
interventions are provided is limited for DCDI and NOTEARS. The better performance of MCD
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mean median std

DCDI 3.46 3.0 1.00
ENCO 2.40 3.0 0.80
NOTEARS 2.84 3.0 1.02
MCD (ours) 1.28 1.0 0.66

Table 2: Statistics over the dSHD obtained from predicting the causal structure of the 3 variable test
SCMs by algorithm. The samples sizes for DCDI, ENCO, and NOTEARS are reduced to
approximately match the number of samples used by MCD.

w.r.t. ENCO can also still be seen, although ENCO seems to perform slightly better in this low-
sample regime (see Appendix B for a discussion).

These investigations show that SOTA causal discovery algorithms rely on many samples to
improve their prediction accuracy. At the same time, MCD generates more accurate DAGs w.r.t. the
SOTA, while using only a fraction of samples. Furthermore, when confronted with a sample size
that is similar to MCD, DCDI, and NOTEARS quickly drop in performance. Overall, we conclude
that MCD uses interventions in an efficient way which makes it perform well even when the budget
for interventions is low. The low number of interventions needed for MCD promises to make it
more applicable than SOTA, especially in domains in which interventions are costly.

9. Conclusion

This paper presents an approach to learning a causal discovery algorithm. In our RL setting, we learn
a policy that simultaneously learns to perform informative interventions and update an estimate of
the causal structure of the environment. Once the policy is learned, it can be used to perform causal
discovery even on environments whose structure it has not encountered during training in a matter
of milliseconds. This is partly because of its ability to integrate interventional and observational
data. By limiting the episode length, we put an upper bound on the number of interventions that can
be performed by MCD, making it more suitable for applications where interventions are costly.

We acknowledge that our approach needs modifications to scale to realistic environments with
more variables. The explosion of the action- and state-space that this would imply prompts consid-
erations about better encodings. A further problem in a potential real-world setting is the availability
of a large amount of data-generating models for training. To perform well on all the possible causal
relations in the real world, the class of training SCMs would need to be significantly expanded.
An alternative approach would be to make MCD transferable to SCM classes other than linear-
additive SCMs. We argue that also an extension to a scenario in which the variables are learned
from raw input would lead to even better applicability since hand-crafted variables often introduce
sub-optimalities w.r.t. task performance.
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Appendix A. Training Details

A.1. Learning to Intervene

For the experiment in section 5 the policy network has a fully connected layer of size 30, followed
by an LSTM layer of size 30. The actor-network has one fully connected layer of size 30, and the
critic-network has one fully connected layer of size 10. The length of each episode was set to 10 and
the model was trained for 5 million training steps. As intervention actions we provided do(Xi = 0)
and do(Xi = 5) for each Xi ∈ X . For all other parameters, the default values were used.
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A.2. Learning a Causal Discovery Algorithm

The following configuration for the policy network of the experiment in Section 6 worked best after
preliminary experiments for the 3-variable (4-variable) environments: One (two) fully connected
layer(s) of size 30 (64) followed by an LSTM layer of size 30 (128). Its outputs are fed into a fully
connected layer of size 30 (32) for the actor-network and one of size 10 (32) for the critic-network.
For this experiment, we set the horizon to 20. As intervention actions we provide do(Xi = 5) for
each Xi ∈ X . We chose this value since it is unlikely to come from any of the noise distributions.

Appendix B. Results for ENCO

The results in Section 6 and 8 raised some questions about the correctness of our comparison. More
specifically, two anomalies for the ENCO (Lippe et al., 2021) benchmark emerged. Firstly, in all
runs, ENCO seems to perform worse than the reports in the original paper might suggest. Secondly,
when decreasing the number of samples in the training set, ENCO improves in performance. Neither
of these behaviors is expected or can be easily explained.

We investigated these issues in more detail and contacted one of the authors of the original paper
for a sanity check of the code that bridges our data to their implementation. Even with the author’s
help, we spotted no faults. We want to invite any reader to check the publicly available code (see
Section 1). Furthermore, we asked the author for hints to tune ENCO for better performance which
we also incorporated, but that led to no significant change in performance.

We argue that these surprising results for the benchmark still do not undermine the claims made
in this paper. The improvement in performance w.r.t. the SOTA is not the core contribution of this
paper and merely indicates that our novel approach performs empirically well. That being said,
future research could look into the cause of these anomalies of ENCO when presented with the
environments described in Section 6.
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