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Abstract
Domain scientists interested in causal mechanisms are usually limited by the frequency at which they
can collect the measurements of social, physical, or biological systems. A common and plausible
assumption is that higher measurement frequencies are the only way to gain more informative data
about the underlying dynamical causal structure. This assumption is a strong driver for designing
new, faster instruments, but such instruments might not be feasible or even possible. In this paper,
we show that this assumption is incorrect: there are situations in which we can gain additional
information about the causal structure by measuring more slowly than our current instruments. We
present an algorithm that uses graphs at multiple measurement timescales to infer underlying causal
structure, and show that inclusion of structures at slower timescales can nonetheless reduce the
size of the equivalence class of possible causal structures. We provide simulation data about the
probability of cases in which deliberate undersampling yields a gain, as well as the size of this gain.

1. Introduction

Domain scientists often study systems of interest through the lens of complex multivariate time
series collected at fixed intervals as measurements of the interacting parts of the system. The search
for causal structures, namely the search for causal relationships between several random variables,
has been widely studied at least since Spirtes et al. (1993) with applications in a range of sciences,
including social sciences (Blalock, 2017), climatology (Runge et al., 2019), and neuroscience (Zhang
et al., 2020). Often, the goal is identification of a form of causal relationship among the parts of the
system. The subject of our work is dynamic causal structures that arise as a result of these studies.
It has been noted in a number of works that the initial causal structures derived from the data may
differ depending on the frequency with which measurements are made (Danks and Plis, 2013; Rhea
et al., 2015; Gong et al., 2017).

In multivariate dynamical systems there is a minimal characteristic time scale at which variables
of interest exchange information. We call it the causal timescale as opposed to the measurement
timescale at which the data is collected. Typically, the measurement timescale is significantly slower
than the causal time scale—that is, we have undersampling—which can result in unmeasured inter-
mediate states. For example, the typical resolution of an fMRI scanner is around 2000 ms (Constable,
2006), but the causal interactions of groups of neurons are likely at least 10-20 orders of magnitude
faster (Perri et al., 2014; Freiwald et al., 1999). Moreover, in many cases, we do not know the extent
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of undersampling, and so we do not necessarily know how to infer causal structure from apparent,
but perhaps misleading, causal connections (Breitung and Swanson, 2002; Danks and Plis, 2013;
Gong et al., 2015). That is, undersampling can lead to causal “illusions,” much as a restriction to
only one perspective or vantage point can lead to optical illusions.

There are algorithms for searching for a causal structure during undersampling (when the
measurement is performed k times less than the time of the causal interaction) with known k
(Silvestrini and Veredas, 2008; Gong et al., 2017) and unknown k (Hyttinen et al., 2017; Plis et al.,
2015; Abavisani et al., 2023). In each of these cases, there remains an error in the estimation of the
causal structure, which decreases with increasing frequency of measurement.

A natural response to the challenge of undersampling is to conclude that we simply should
measure faster. If we could somehow measure at the causal time scale, then we could avoid the
challenges of undersampling. More generally, a natural intuition is that faster data collection
always provides more information about causal interactions in a system, and so we should invest
in developing better instrumentation (Fan et al., 2022; Kalhan et al., 2022). But while faster
measurements almost always reduce equivalence class size (or at least, do not increase it), faster
measurements are typically more costly, whether in time, resources, or personnel. In some cases,
it may not even by possible to measure sufficiently quickly without significant complications. For
example, increasing the frequency of blood sample collections could enable better understanding of
a patient’s health, but also impose a significant negative impact on their quality of life. Moreover,
measuring too fast can introduce additional noise into our system measurements (or perhaps impact
the system itself), thereby increasing the data collection requirements. Finally, a single-minded focus
on increasing measurement speed can lead researchers to disregard previously-collected, though
slower, data when a faster instrument is available.

The central idea in this paper is that this focus on faster measurement is, in some cases, un-
warranted. In particular, one can often achieve equal improvements in learning by using slower
measurements, not only faster ones. The basic intuition is that the slower measurements can provide
a second “perspective” on the causal system that potentially reveals insights that were hidden from
the first perspective. The present paper provides the first algorithm for reducing the causal structure
error using additional measurements at a lower (i.e., slower) measurement frequency.

In general, if we only have measurements at a single timescale, then a slower measurement
frequency will typically lead to an increased size for the equivalence class of causal structures that
could have produced the observed data. In this sense, the “natural intuition” is correct: if we can
only have one dataset, then we should usually aim to have a faster timescale (up to the actual causal
timescale). Of course, we are rarely limited in this way; in particular, we can often obtain a second
dataset without substantial effort using the same equipment, at least if we are willing to use a slower
timescale. The results in this paper show that we can gain significant information by taking this
easier path, though the slower timescale must be “coprime” with respect to the original timescale.1

This result is arguably surprising—we can learn more by measuring more slowly—but analogical
phenomena exist in other domains. Most notably, consider the case of image super-resolution. In this
phenomenon, one can obtain substantial increases in image resolution not by using a higher-resolution
imaging device, but rather by using a same-resolution device that is offset by a distance that is not an
integer multiple of the pixel size. Alternately, one can simply use a lower-resolution imaging device;

1. The exact conditions are explained below.
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if the higher resolution is not an integer multiple of the lower resolution, then there will necessarily
be many “offset” pixels, and so some super-resolution will be possible.

We emphasize that we are not proposing to use measurement at a slower timescale to enable
super-resolution of the data itself, not least because the two data streams need not be collected
simultaneously. However, the same intuition holds with regards to causal structure: by capturing
an undersampled time series with a different “offset,” we can learn a more detailed picture of the
underlying causal structure. For example, if we use a slower measurement speed in fMRI, then
although we do not improve the temporal resolution of the voxel-level data stream, we do improve
the temporal resolution of the causal structures in the brain that generate those data streams. That is,
we get a “resolution gain” in the causal system, rather than the independent variables.

The present paper thus (i) shows the existence of the counter-intuitive phenomenon that using
slower measurements can help as much as faster ones; which thereby (ii) enables scientists to learn
more about causal structure from undersampled data using existing measurement instruments, rather
than waiting for the development of novel measurement methodologies.

2. Notation and definitions

2.1. Theoretical model

A commonly used modeling framework for dynamical causal systems is based on dynamic (causal)
graphical models (Shafer, 1995; Pearl, 1988; Lakshmikantham et al., 2010), often referred to as
dynamic Bayesian networks (DBNs). A specific DBN includes random variables V at the current
time step t, as well as nodes for V at each previous time step in which there is a direct cause of the
current values of V. We assume that the underlying causal structure can be represented by a Markov
order one graphical model in which no causal interactions happen instantaneously. In this work, we
additionally assume absence of instantaneous associations, i.e. causal sufficiency. This assumption
is relatively innocuous since we are not assuming that we measure at this speed. For convenience,
we present the DBN in the form of a compressed graph G in which time information is encoded
implicitly in the edges (i.e., X → Y in G means Xt−1 → Y t in the underlying DBN).

Let t0, t1, t2, . . . , tk, . . . denote the time steps of the underlying causal structure and call the graph
G or G1 corresponding to this structure a causal graph. The graph G can contain self-loops, or edges
leading from a vertex X to itself (i.e., Xt−1 → Xt). The data are undersampled with rate u if the
measured time steps are t0, tu, t2u, . . . , tku, . . .. We denote the corresponding measurement timescale
graph as Gu, and say that it is measured or undersampled with rate u. For example, in Figure 1, the
first graph is the causal graph, the second one is measured with u = 2, the third one is measured
with u = 3, etc. Undersampling can produce unobserved common causes of variables at the current
timestep; we denote those same-timestep associations using bidirectional (red) edges, in contrast
with the between-timestep causal relationships in directed (black) edges.

Let ⟦H⟧ denote the equivalence class of measured graph H: the set of all graphs G such that ∃u
such that Gu = H. And let ⟦H1,H2, . . . ,Hk⟧ denote the set of all G1 such that ∃u1, u2, . . . , uk such
that Gu1 = H1,Gu2 = H2, . . . ,Guk = Hk. Note, we may sometimes abuse this notation and with ⟦H⟧
denote the cardinality of the equivalence class set of H.

We say that a graph G1 exhibits non-monotonic undersampling if and only if ∃u < v such that
⟦Gu,Gv⟧ , ⟦Gu⟧. That is, these are the graphs for which, given some u, v, our uncertainty about the
possible G1 does not monotonically increase as the undersampling increases. More practically, this
property implies that additionally measuring Gv enables us to further reduce the space of possible
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Figure 1: Example of a non-monotonic graph (A). G1 is the causal graph, while others are its undersampled
versions. Black arrows indicate (apparent) direct causal connections, orange bidirectional arrows indicate
correlations. The equivalence class of the graph G4: ⟦G4⟧ (B). The equivalence class of graphs jointly satisfying
G4 and G5: ⟦G4,G5⟧ (C). The gain for this case is calculated as gain = log10

⟦G4⟧
⟦G4,G5⟧

= log10
11
3 ≈ 0.56

G1, even though Gv is even more undersampled than Gu (see 2). In contrast, graphs that exhibit
monotonic undersampling are those where ∀u < v : ⟦Gu⟧ ⊆ ⟦Gv⟧. For clarity, a specific example of a
graph with non-monotonic undersampling is shown in 1. For a graph with monotonic undersampling,
the classes presented on the left and bottom right would be equal.

2.2. Computational model

We now aim to show that some graphs exhibit non-monotonic undersampling; that is, we can reduce
our causal uncertainty by deliberately undersampling even more. For illustrative purposes, we focus
on computational experiments using graphs that are strongly connected components (SCCs) with
gcd = 1 (gcd - the greatest common divisor of the length of all elementary cycles (or simple loops)
of an SCC) according to Abavisani et al. (2023). An SCC is a maximal set of nodes N such that
∀A, B ∈ N there is a path π : A → . . . → B. While SCCs are a subset of all possible graphs, in
many scientific contexts, such as biological systems (e.g., homeostatic feedback loops), they are a
particularly important subset. More generally, many complicated systems exhibit a phenomenon
coined “near decomposability” by Herb Simon (Simon (1982)): they consist of “components” with
dense within-module causal connections (including feedback loops) and sparse between-module
causal connections. That is, these components are typically SCCs.

The whole set of graphs with directed and bidirected edges can be divided into those that are
reachable versus unreachable by undersampling. That is, a graph H is reachable by undersampling if
∃u > 1,G1 such that Gu = H and unreachable otherwise. The proportion of reachable graphs among
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(a) A monotonic undersampling step (b) A non-monotonic undersampling step

Figure 2: Venn diagrams illustrating relations between equivalence classes for two different measured graphs
G and H. The blue, orange, and green colors denote measurement timescale graphs and their equivalence
classes at different undersampling rates. ⟦G⟧ denotes the equivalence class of the graph G. Figure 2(a):
monotonically increasing undersampling. The left graph is G5 and the right is G6. The equivalence class ⟦G5⟧
is a subset of the equivalence class of ⟦G6⟧. In this case, ⟦G5,G6⟧ = ⟦G5⟧ Figure 2(b): non-monotonically
increasing undersampling. The left graph is H5 and the right is H6. Equivalence classes overlap but ⟦H5⟧ is
not a subset of ⟦H6⟧. Although the class sizes still relate as ⟦H5⟧ ≤ ⟦H6⟧, this leads to ⟦H5,H6⟧ < ⟦H5⟧.

random graphs is small,2 so it makes sense to generate Gu from a known class of graphs G so we
can better discern patterns in the value of deliberate undersampling. In particular, if G1 consists of a
single SCC with gcd = 1, then all Gu are also a single SCC (Danks and Plis, 2013). In practical terms,
we focus on n-node graphs composed of a simple cycle of length n plus k random edges (possibly
self-loops) such that gcd = 1.

3. A Primer on clingo and Answer Set Programming (ASP)

clingo (Gebser et al., 2011) combines a grounder gringo and a solver clasp. clingo is a
declarative programming system based on logic programs and their answer sets, used to accelerate
solutions of computationally involved combinatorial problems. The grounder converts all parts of a
clingo program to “atoms,” (grounds the statements) and the solver finds “stable models.” In ASP,
the answer set is a model in which all the atoms are derived from the program and each “answer” is a
stable model where all the atoms are simultaneously true.

A general clingo program includes three main sections, which we show below using our
algorithm as an example:

1. Facts: these are the known elements of the problem. For example, the input to Listing 1 is a
graph for which we know the edges. A directed edge from node 1 to node 5 is in H translates to
hdirected(1,5) (line 1) or if node 1 is part of the SCC number 2, we state this fact in clingo
by scc(1,2) (line 2).

2. Since H can have bidirected edges, the space of H is bigger than the space of G1 by a factor of 2(n choose 2). Any
particular G1 can lead to multiple graphs in H-space (as u varies), but H-space is only sparsely covered by various Gu.
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2. Rules: much like an if-else statement, a rule in clingo consists of a body and a head,
formatted as head :- body. If all the literals in the body are true, then the head must also be
true. Rules can include variables (starting with capital letters), and they are used to derive new facts
after grounding. For example:

directed(X, Y, 1) :- edge1(X, Y).

means that for any instantiations of the variables X and Y , if we have an edge from X to Y , there is a
directed path from X to Y of length 1. Before this line, if the model contained the fact edge1(2,3),
this line would generate a new fact: directed(2,3,1).

Another type of rule is the “choice rule” that describes all the possible ways to choose which
atoms are included in the model. For example, in line 5 of Listing 1 we used a choice rule to state
that the undersampling rate u can be anything from 1 to maxu. The cardinality constraint:

{u(1..20)}. (1)

will generate 220 different models (they will not all actually be generated if they conflict with other
predicate in each model, or else it would not be possible). In each of these 220 models, one subset of
all possible atoms generated with this choice rule exists (ϕ, {u(1)}, {u(1), u(2)}, . . . ). An
example of an unconstrained choice rule is line 6 in Listing 1, where we want to generate one model
for each possible way edges can be present in a graph between two nodes X and Y . We can also limit
the choice rule. In our problem, only one undersampling rate is present at each solution. We limit the
cardinality constraint to have only one member in each model:

1 {u(1..20)} 1. (2)

the 1 on the left is the minimum instantiations of this atom in the model and the 1 on the right is
the maximum. Therefore, we only generate

(
20
1

)
= 20 models with this rule, namely one for each

undersampling rate. Having several choice rules will multiply the number of generated models by
each choice rule.

3. Integrity Constraints: if choice rules are to generate new models, integrity constraints are there
to remove the wrong models from the answers set. More specifically, an integrity constraint is of the
form:

:- L0, L1, ... . (3)

where literals L0, L1, .... cannot be simultaneously positive. For example, in line 16 of Listing1, we
have:

:- edge1(X, Y), scc(X, K), scc(Y, L), K != L,

sccsize(L, Z), Z > 1, not dag(K,L).
(4)

for cases where the graph consists of several SCCs that are connected using a DAG. If the SCCs are
connected by a cyclic directed graph, then the whole graph will become one big Strongly Connected
Component. Integrity constraint 4 states that if there is not a directed edge from a node in SCC K to
a node in SCC L as part of the initial DAG, there cannot be such edge1(X, Y) from node X to
node Y, if node X is in SCC K and node Y is in SCC L.
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1 %( * input graph 1 edge specifications here * e.g.: hdirected(1,5,1) ... )
2 %( * input graph 2 edge specifications here * e.g.: hdirected(1,5,2) ... )
3 #const n = 10, maxu = 20
4 node(1..n).
5 1 {u(1..maxu, 1)} 1.
6 1 {u(1..maxu, 2)} 1.
7 {edge1(X,Y)} :- node(X), node(Y).
8 directed(X, Y, 1) :- edge1(X, Y).
9 directed(X, Y, L) :- directed(X, Z, L-1), edge1(Z, Y), L <= U, u(U, _).

10 bidirected(X, Y, U) :- directed(Z, X, L), directed(Z, Y, L), node(X;Y;Z), X < Y, L < U, u(U, _).
11 :- directed(X, Y, L), not hdirected(X, Y, K), node(X;Y), u(L, K).
12 :- bidirected(X, Y, L), not hbidirected(X, Y, K), node(X;Y), u(L, K), X < Y.
13 :- not directed(X, Y, L), hdirected(X, Y, K), node(X;Y), u(L, K).
14 :- not bidirected(X, Y, L), hbidirected(X, Y, K), node(X;Y), u(L, K), X < Y.
15 :- M = N, {u(M, 1..2); u(N, 1..2)} == 2, u(M, _), u(N, _).

Listing 1: Clingo code for sRASL

4. dRASL

In this section, following Abavisani et al. (2023), we present and explain the clingo answer
set programming (ASP) solver implementation of a solution for the rate agnostic causal learning
(RASL) problem (Plis et al., 2015).The RASL algorithm finds all graphs from the equivalence class
of a single graph H. We follow the conventions of Abavisani et al. (2023) and call the algorithm
dRASL, were d stands for “deliberate undersampling.” Our modification of the RASL algorithm is a
generalization. dRASL finds a general equivalence class for any number of graphs ⟦H1,H2, . . . ,Hk⟧.
Listing 1 presents the essential parts of the clingo code for the problem. clingo is a declarative
programming language that operates on predicates. Declarative compression is not algorithmic, so
we describe below the clingo code which is identical commonly used to ASP encoding (Hyttinen
et al., 2014). Lines 1 − 2 are generated automatically by Python given two input graphs estimated at
“co-prime” measurement rates (or generated ensuring this property).

These are the graph-specific predicates. The first line lists the directed and bidirected edges of
both graphs Hu and Hu+1. For example, existence of edge from node 1 to node 5 in Hu is translated
to hdirected(1, 5, 1). Line 2 focuses on the same but for Hu+1. Line 4 sets the number
of nodes in H and sets the maximum undersampling rate to consider. The undersampling rate
needs to have a fixed upper bound. However, it is often possible to guess this upper bound from
domain-specific considerations. For example, in functional MRI, the maximum undersampling
rate can arguably be set to 20 as the difference between hundred milliseconds of the neural causal
timescale and 2 second measurement time scale hardly can be more than 20. Also, the upper bound
for u can be determined mathematically. For example, for any graph with n nodes and shortest simple
loop length s ≥ 2 is ≤ (n − 1)2 + 1 − 1

2 (s − 2)(2n − s − 3) according to (Heap and Lynn, 1964).
Another bound for the same involving graph diameter is given in (Plis et al., 2015).

Lines 5, 6 set two different predicates for under sampling rates, one for each H. These undersam-
plings can be anywhere from 1 to maxu. Line 7 assumes the existence of all possible edges in the
graph G1. Lines 8, 9, 10 generate predicates for directed and bidirected paths of lengths L, practically
encoding the forward algorithm of undersampling. Line 9 imposes connection conditions between
directed edges in graphs GL, GL−1, and G1. Line 10 describes how bidirectional edges are defined in
a graph GL. Lines 11 − 14 ensure that the candidate G1 agrees with both Hu and Hu+1 in terms of
having the same directed and bidirected paths of different lengths, as well as absence of the same
directed and bidirected paths of different lengths. In other words, these lines exclude all solutions in
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which the generated possible graph G1 with undersampling rates u(L,K) do not match the initially
given graphs Hu and Hu+1. Finally, line 15 makes sure that Hu and Hu+1 are indeed distinct graphs.

The main results of the correctness of this algorithm are based on the correctness of the problem
formulation in Listing 1, which follows by construction, and validity and completeness of clingo’s
ASP solver algorithms. The latter is proven elsewhere, including (Hyttinen et al., 2017; Abavisani
et al., 2023)

5. Results

In this section, we present the results of our computational experiments on the potential learning
benefits of deliberate undersampling. In particular, we empirically demonstrate that non-monotonic
undersampling is quite common in the class of SCCs with gcd = 1, which forms the largest, and
arguably the most practically relevant, class of SCCs.

5.1. Estimating prevalence of non-monotonic undersampling graphs
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Figure 3: Kernel density estimation (KDE) of graphs with gcd = 1. X-axis: The density of the causal graph
G1. Y-axis: The undersampling rate after which the graph G1 converges to a super-clique or cyclically repeats.
(a) Normalized KDE for all SCCs. (b) Normalized KDE for SCCs with non-monotonic undersampling mode.
(c) Difference between KDE of all SCCs and SCCs with non-monotonic undersampling modes.

The purpose of this computational experiment is to find a lower bound on the proportion of
non-monotonic undersampling causal graphs G. To estimate this bound, we generated 100 SCCs
with n vertices connected in a large ring and a random arrangement of k additional edges for each
value of n ∈ {5, 6, 7, 8, 9} and k ∈ [1, 30]. Only graphs with gcd = 1 were considered as the most
frequent and the most practically relevant. Presence of even a single auto-correlation in an SCC leads
to gcd = 1 and auto-correlations are common in most studied systems.

Given a randomly generated SCC G1, we produced a list of Gu graphs for all u values available
for this graph before convergence. After that incrementing u by 1 we sequentially ran sRASL
of Abavisani et al. (2023) to produce ⟦Gu⟧ and our dRASL modification on (Gu,Gu+1) to obtain
⟦Gu,Gu+1⟧ The SCC was considered as non-monotonic in the evaluation if there is any u such that
⟦Gu,Gu+1⟧ < ⟦Gu⟧ or, in other words, there is a non-zero gain in using dRASL (see 2b).

As a visualization of the properties of graphs with a gain and without, we present graphs of
kernel density estimation (KDE) 3. Notably, the density of graph with gain (3b) is a lower bound on
the true density of such graphs, since it follows from the definition of non-monotonic undersampling
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graphs that v can be anything greater than u as long as they are co-prime, while we restrict ourselves
to the case v = u + 1. Moreover, due to computational limitations, we used the dRASL algorithm to
test u for the random SCCs only up to a maximum u, which is lower than the maximum value of u
for graphs with k edges added to the initial ring, when k < 4. Therefore, the estimate for graphs with
k < 4 could be much higher than that presented in the graph.

As we can see from 3, deliberate undersampling is most helpful for the sparse G1 graphs. In
3 the X-axis represents the density of the original SCC we generated (as described in the Section
2.2), or the graph on the causal time scale. Such graphs (3a) are not uniformly distributed from 0 to 1
in density, but are distributed from the minimum to the maximum values of the function (n + k)/n2.
The Y-axis shows how many different graphs can be obtained from the original graph G by the
undersampling operation Gu. 3b shows the kernel density estimate for those graphs that, according
to our lower bound estimate, turned out to be non-monotonic undersampling.

From the difference in the normalized KDE distributions (3c) of all graphs and graphs for which
deliberate undersampling leads to a gain, we see that SCCs with gain are most likely to be found
among graphs with a lower density and higher maximum u.

5.2. Density of measured non-monotonic undersampling graphs

Above, we considered density of SCCs that have non-monotonic undersampling mode relative to
total number of graphs. From a practical point of view, the properties of the measured Gu, for
which deliberate undersampling gives a gain, seem more interesting. On the histogram in 4, the
abscissa shows the density of the causal timescale graph G1, and the ordinate shows the density of
the measurement timescale graph for all non-monotonic undersampling graphs in the experiment.
Density is computed as N/n2, where N - is the number of all edges of the current graph and n - the
number of nodes. As can be seen from the figure, the largest number of measured graphs is in the
density range from 0.5 to 0.8, while the density of causal graphs does not exceed 0.6.

5.3. Statistics of the gain of non-monotonic undersampling graphs

The purpose of this experiment is to estimate the gain given by the deliberate undersampling. The
gain is calculated as gain = log10 r1/r12. Where r1 = ⟦Gu⟧ and r12 = ⟦Gu,Gu+1⟧. This means, that,
if gain = 2, the deliberate undersampling reduces the number of solutions 100-fold. For clarity, a
specific example of a non-monotone graph is shown in 1. The gain for this case is calculated as
gain = log10

⟦G4⟧
⟦G4,G5⟧

= log10
11
3 ≈ 0.56. It is worth noting that the gain in this section determines

how the number of solutions (the size of the equivalence class) changes when an additional, slower
dimension is added. It would help to revisit our fMRI example, where we have assumed that the
causal time scale is 100 ms, the time resolution is 2000 ms, which led to the undersampling rate
of 20.3 In this case, adding a measurement for u + 1 corresponds to a measurement with a time
resolution of 2100 ms. In this case, we measured the graph Gu and got r1 possible graphs, from
which we can get the graph Gu by undersampling. When we collect the data at the new, slower,
temporal resolution, we get an additional constraint that the graphs in the causal temporal resolution
must comply with, and the size of the equivalence class became r12. Two histograms (5) show the
same non-monotonic undersampling graphs in two different time scales - in the causal (or original

3. It is more common to study interaction between large groups of neurons rather than individual cells. These groups,
commonly referred to as intrinsic networks or regions of interest (ROIs), contain multiple layers of neurons so the
“causal timescale of an ROI” could easily be as high as 1000 ms (i.e., u = 2)
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Figure 4: The histogram of non-monotonic undersampling graphs G. X-axis: The density of the graph in
causal timescale G1. Y-axis: The density of the graph in measured timescale Gu. Color map: number of
graphs. All graphs are n-cyclic graphs with k additional random edges (k = 1, 2, ..30; 100 samples for each k).
n = 5, 6, 7, 8, 9 (total 15000).

.

Graph density

Causal timescale Measured timescale

Figure 5: The histogram of the gain of non-monotonic undersampling graphs G. X-axis: The density of the
graph. Y-axis: Decimal logarithm of r1/r12 where r1 = ⟦Gu⟧ and r12 = ⟦Gu,Gu+1⟧. Z(colour): number of
graphs. All graphs are n-cyclic graphs with k additional random edges (k = 1, 2, ..30; 100 samples for each k).
n = 5, 6, 7, 8, 9 (total 15000). (left): The histogram in causal timescale. (right): The histogram in measured
timescale.

G1 graphs) and in the measured (or Gu graphs). Although there are individual cases for which the
gain is 3-4 orders of magnitude, but most of them are concentrated in the area of gain from units to
hundreds (0-2 orders of magnitude).
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It is interesting to relate the densities of our non-monotonic graphs to real world graphs. The
density of measurement and causal timescale graphs in the real world depends on the nature of
systems at investigation. For example, the density of social graphs can vary depending on whether
we are considering the entire social network of hundreds of millions of users or a small part of it.
Similarly, for brain networks the density of graphs may differ condition on whether we consider
individual neurons or entire regions of the brain as the nodes. Often the density of causal graphs
(which characterize interaction dynamics) is unknown, but its order can be estimated from the
density (d) of structural graphs. For example: peer-to-peer (web) file sharing d = 0.2258,N = 6049
(Iamnitchi et al., 2004), constraint programming d = 0.33,N = 240 (Melancon, 2006), web pages
d = 0.2088,N = 589 (Melancon, 2006), passenger air traffic 2000 d = 0.112,N = 1148 (Melancon,
2006), social network (IMDB) d = 0.1794,N = 419 (Auber et al., 2003), social graph of US and
Chinese entrepreneurs d = 0.1 − 0.8,N = 2193 (Burt, 2019)), brain networks d = 0.26 − 0.38
(Fallani et al., 2008). As we can see, the orders of graph densities correlate with the densities of the
non-monotone graphs we have considered in the causal timescale.

6. Conclusion

This work highlights the problem of distortion of the measured causal structure when measuring
with a time resolution lower than the characteristic causal time. We have positively answered the
question whether it is possible to use deliberate undersampling to reduce indeterminacy of the
problem compared to the algorithms using data at a single sampling rate. Surprisingly, in many cases
deliberate undersampling gives a desired effect of reducing the “causal illusion”. Having considered
a specific class of graphs for which the causal system does not degenerate under slow measurement,
we have shown the statistical features of the density of such graphs and the gain that can be obtained
using deliberate undersampling. Our work serves as a demonstration that there is much to gain when
faster measurements are not an option for any of the possible reasons. One of the larger expected
impacts of this result may come from a potential reuse of historical data collected at slower timescales,
when datasets with somewhat faster sampling rates are already available. Limitations of our work
include the missing theoretical investigation on the conditions when deliberate undersampling is
helpful in getting gaining information. Ideally, we would want a test on the measured graph to tell
whether deliberate undersampling would help. However, even characterization of the properties
conducive to the gain of G1 graphs in the causal timescale could be insightful. This, however, is still
work in progress.
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