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Abstract
Learning generative object models from unlabelled videos is a long standing problem relevant for
causal scene modeling. We decompose this task into three easier subtasks, and provide candidate
solutions for each of them. Inspired by the Common Fate Principle of Gestalt Psychology, we first
extract (noisy) masks of moving objects via unsupervised motion segmentation. Second, generative
models are trained on the masks of the background and the moving objects, respectively. Third,
background and foreground models are combined in a conditional “dead leaves” scene model to
sample novel scene configurations where occlusions and depth layering arise naturally. To evaluate
the individual stages, we introduce the FISHBOWL dataset positioned between complex real-world
scenes and common object-centric benchmarks of simplistic objects. We show that our approach
learns generative models that generalize beyond occlusions present in the input videos and rep-
resents scenes in a modular fashion, allowing generation of plausible scenes outside the training
distribution by permitting, for instance, object numbers or densities not observed during training.
Code: https://github.com/mtangemann/common_fate_object_learning
Keywords: object learning, scene modeling, scene generation, causal modeling, causal represen-
tation learning, generative modeling, common fate

1. Introduction

Machine learning excels if sufficient training data is available that is representative of the task at
hand. In recent years, this i.i.d. data paradigm has been shown not only to apply for pattern recog-
nition problems, but also for generative modeling (Goodfellow et al., 2014). In practice, the amount
of data required to reach a given level of performance will depend on the dimensionality of the
data. The generation of high-dimensional images thus either requires huge amounts of data (Kar-
ras et al., 2020) or methods that exploit prior information, for instance on multi-scale structure or
compositionality (Razavi et al., 2019).

Imagine we would like to automatically generate realistic images of yearbook group photos. A
“brute force” approach would be to collect a massive dataset and train a large GAN (Goodfellow
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Figure 1: We propose a multi-stage approach for learning object-centric generative scene models: (1)
Motion segmentation detects moving objects in the input videos. The predicted (noisy) segmentation masks
are used to (2A) extract object crops for training a generative object model and (2B) extract backgrounds
for training a generative background model. (3) A scene model combines the object and background models
to sample novel scenes, permitting interventions on variables such as the background and the number and
locations of fish.

et al., 2014), hoping that the model will not only learn typical backgrounds, but also the shape of
individual humans (or human faces), and arrange them into a group. A more modular approach, in
contrast, would be to learn object models (e.g., for faces, or humans), and learn in which positions
and arrangements they appear, as well as typical backgrounds. This approach would be more data-
efficient: each training image would contain multiple humans, and we would thus effectively have
more data for the object learning task. In addition, the sub-task would be lower-dimensional than
the original task. Finally, if we left the i.i.d. setting (by, say, having a second task with different
group sizes), some of the sub-models could be re-used and the modular approach would thus lend
itself more readily to knowledge transfer and “out-of-distribution” (o.o.d.) generalization.

Object-centric approaches aim to capture this compositionality and have been improved over
the past few years (e.g., Locatello et al. (2020); Engelcke et al. (2021)). However, these models tend
to be difficult to train and do not yet scale well to visually more complex scenes. In addition, the
commonly employed end-to-end learning approaches make it difficult to dissect the causes of these
difficulties and what principles may be crucial to facilitate unsupervised object learning.

In human vision, the Principle of Common Fate of Gestalt Psychology (Wertheimer, 2012),
which posits that elements that are moving together tend to be perceived as one, has been shown to
play an important role for object learning (Spelke, 1990). In our work, we show that this principle
can be successfully used also for machine vision as part of a multi-stage object learning approach
(Fig. 1): First, we use unsupervised motion segmentation to obtain a candidate segmentation of
a video frame. Second, we train generative object and background models on this segmentation.
While the regions obtained by the motion segmentation are caused by objects moving in 3D, only
visible parts can be segmented. To learn the actual objects (i.e., the causes), a crucial task for the ob-
ject model is learning to generalize beyond the occlusions present in its input data. To measure suc-
cess, we provide a dataset including object ground truth. As the last stage, we show that the learned
object and background models can be combined into an interventional world model (Schölkopf
et al., 2021) that allows generating manipulated novel scenes. Thus, in contrast to existing object-
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centric models trained end-to-end, we decompose object learning into evaluable subproblems and
test the potential of exploiting object motion for building scalable object-centric models that allow
for causally meaningful interventions in the scene generation process.

Summing up, the present work makes the following contributions:

• We provide the novel FISHBOWL dataset, positioned between simplistic toy scenarios and
real world data, providing ground truth information for evaluating causal scene models.

• We show that the Common Fate Principle can be succesfully used for object learning by
proposing a multi-stage object learning approach based on this principle.

• We demonstrate that the generative object and background models learned in this way can be
combined into flexible scene models allowing for controlled generation of novel images.

The dataset with rendering code and models including training code is available at
https://github.com/mtangemann/common_fate_object_learning.

2. Related Work

Modular scene modeling. The idea to individually represent objects in a scene is not new. One
approach, motivated by the analysis-by-synthesis paradigm from cognitive science (Bever and Poep-
pel, 2010), assumes a detailed specification of the generative process and infers a scene represen-
tation by trying to invert this process (Kulkarni et al., 2015; Wu et al., 2017; Jampani et al., 2015).
Many methods instead aim to also learn the generative process in an unsupervised way, see Greff
et al. (2020) for a recent survey. Several models use a recurrent approach to sequentially decompose
a given scene into objects (Eslami et al., 2016; Stelzner et al., 2019; Kosiorek et al., 2018; Gregor
et al., 2015; Mnih et al., 2014; Yuan et al., 2019; Engelcke et al., 2020; Weis et al., 2020; von
Kügelgen et al., 2020; Burgess et al., 2019), or directly learn a partial ordering (Heess et al., 2011;
Le Roux et al., 2011). This sequential approach has also been extended with spatially-parallel com-
ponents by Dittadi and Winther (2019); Jiang et al. (2019); Lin et al. (2020b); Chen et al. (2020).
Other methods infer all object representations in parallel (Greff et al., 2017; van Steenkiste et al.,
2018), with subsequent iterative refinement (Greff et al., 2019; Veerapaneni et al., 2019; Locatello
et al., 2020; Nanbo et al., 2020). Whereas most of the above models are trained using a recon-
struction objective—usually in a variational framework (Kingma and Welling, 2014; Rezende et al.,
2014)—several works have also extended GANs (Goodfellow et al., 2014) to generate scenes in a
modular way (Yang et al., 2017; Turkoglu et al., 2019; Nguyen-Phuoc et al., 2020; Ehrhardt et al.,
2020; Niemeyer and Geiger, 2021). Those approaches typically use additional supervision such as
ground-truth segmentation or additional views, with Ehrhardt et al. (2020); Niemeyer and Geiger
(2021) being notable exceptions. While most methods can decompose a given scene into its con-
stituent objects, only few are fully-generative in the sense that they can generate novel scenes (Lin
et al., 2020a; Ehrhardt et al., 2020; Engelcke et al., 2020; von Kügelgen et al., 2020; Engelcke et al.,
2021; Niemeyer and Geiger, 2021; Dittadi and Winther, 2019).

Our approach differs from previous works in the following three key aspects. First, previous ap-
proaches typically train a full scene model in an end-to-end fashion and include architectural biases
that lead to the models decomposing scenes into objects. While elegant in principle, those methods
have not been shown to scale to more realistic datasets yet. Using a multi-stage approach, as in
the present work, enables re-use of existing computer vision methods (such as unsupervised mo-
tion segmentation) for well-studied sub-tasks and therefore scales more easily to visually complex
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Figure 2: The FISHBOWL dataset: each video contains 128 frames with ground truth segmentation; render-
ings and masks (without occlusion) of every fish and background are provided in the validation and test sets.

scenes. Second, while some existing methods make use of temporal information from videos (Kipf
et al., 2022; Lin et al., 2020a; Crawford and Pineau, 2020; Kosiorek et al., 2018; Weis et al., 2020),
they do not explicitely use motion signals to discover (i.e., segment) objects or require weak su-
pervision (Kipf et al., 2022). Inspired by the development of the human visual system (Spelke,
1990), we instead explicitly include this segmentation cue in our approach. Third, most existing
fully-generative approaches use a spatial mixture model to compose objects into a scene (Ehrhardt
et al., 2020; Engelcke et al., 2020, 2021). While this simplifies training, it clearly does not match the
true underlying scene generation process. In this work, we instead follow the dead leaves model-
approach of von Kügelgen et al. (2020) and scale it to more complex scenes.

Motion Segmentation. We require an unsupervised motion segmentation method that is able to
segment multiple object instances. For this, we build on a line of work that tracks points with
optical flow, and then performs clustering in the space of the resulting point trajectories (Brox and
Malik, 2010; Ochs et al., 2014; Ochs and Brox, 2012; Keuper et al., 2015). Motion segmentation
methods that require supervision (Dave et al., 2019; Xie et al., 2019; Tokmakov et al., 2017a,b)
or only perform binary motion segmentation (Yang et al., 2021, 2019; Ranjan et al., 2019) are not
applicable in our unsupervised setting.

Learning from motion. In the present work, we propose exploiting motion information to de-
compose a scene into objects, and to learn generative object and scene models. Motion information
is believed to be an important cue for the development of the human visual system (Spelke, 1990)
and has also been used as a training signal for computer vision (Bao et al., 2022; Chen et al., 2022;
Meunier et al., 2022; Pathak et al., 2017; Mahendran et al., 2018a,b). While similar in spirit, these
works however do not address learning of generative object and scene models.

3. The Fishbowl Dataset

Several video datasets have been used for object-centric represention learning before (e.g., Greff
et al. (2022); Weis et al. (2020); Yi et al. (2019); Ehrhardt et al. (2020); Kosiorek et al. (2018)). The
ground truth object masks and appearances provided by those datasets, however, only cover the vis-
ible parts of the scene. In order to evaluate the capabilities of the object model to infer and represent
the full objects even in the presence of occlusions, we propose the novel FISHBOWL dataset posi-
tioned between complex real world data and simplistic toy datasets. This dataset consist of 20,000
training and 1,000 validation and test videos recorded from a publicly available WebGL demo of
an aquarium,1 each with a resolution of 480 × 320px and 128 frames. We adapted the rendering
to obtain ground truth segmentations of the scene and the ground truth unoccluded background and
objects (Fig. 2). More details regarding the recording setup can be found in the supplement.

1. http://webglsamples.org/aquarium/aquarium.html, 3-clause BSD license
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4. A multi-stage approach for unsupervised scene modelling

We model an image x as a composition of a background (m0 = 1,x0) and an ordered list of objects
(mi,xi), each represented as a binary mask mi and appearance xi. The background and objects
are composed into a scene using a simple “dead leaves” model, i.e., the value of each pixel (u, v) is
determined by the foremost object covering that pixel. We propose a multi-stage approach (Fig. 1)
for learning generative models representing objects, backgrounds and scenes in this fashion.

STAGE 1: MOTION SEGMENTATION—OBTAINING CANDIDATE OBJECTS FROM VIDEOS

As a first step, we use unsupervised motion segmentation to obtain candidate segmentations of
the input videos. We build on the minimum cost multicut method by Keuper et al. (2015), which
tracks a subset of the pixels through the video using optical flow and then, inspired by the Common
Fate Principle mentioned earlier, clusters the trajectories based on pairwise motion affinities. To
obtain background masks for training the background model, it is not necessary to differentiate
between multiple object instances. Hence, we use an ensemble of different background-foreground
segmentation models. More details are provided in the appendix.

STAGE 2A: OBJECT MODEL—LEARNING TO GENERATE UNOCCLUDED, MASKED OBJECTS

Object extraction. We use the bounding boxes of the candidate segmentation to extract object
crops from the original videos and rescale them to a common size of 128 × 64px. We filter out
degenerate masks by ignoring all masks with an area smaller than 64 pixels and only consider
bounding boxes with a minimum distance of 16px to the frame boundary. Accordingly, we extract
the candidate segmentation masks m0, . . . ,mK for each crop. For notational convenience, we take
m0 and m1 to correspond to the background and the object of interest (i.e., the object whose bound-
ing box was used to create the crop), respectively, so that mk with k ≥ 2 correspond to masks of
other objects.

Task. We use the segmented object crops for training a β-VAE-based generative object model
(Higgins et al., 2017). Input to the model is the object crop without the segmentation, output is the
reconstructed object appearance including the binary object mask. We train the model with the stan-
dard β-VAE loss with an adapted reconstruction term including both the appearance and the mask.
For an input batch, let c and m0:K be the ground truth crops with candidate segmentations, and ĉ
and m̂ the reconstructed object appearances (RGB values for each pixel) and shapes (foreground
probabiliy for each each pixel). The reconstruction loss LR for these objects is then the weighted
sum of the pixel-wise MSE for the appearance and the pixel-wise binary cross entropy for the mask:

LR,appear. =
∑
i

(∑
u,v

m
(i)
1 (u, v)

∥∥∥c(i)(u, v)− ĉ(i)(u, v)
∥∥∥2
2
/
∑
u,v

m
(i)
1 (u, v)

)
,

LR,mask =
∑
i

(∑
u,v

[m
(i)
0 + m

(i)
1 ](u, v) · BCE

[
m

(i)
1 (u, v), m̂(i)(u, v)]/

∑
u,v

[m
(i)
0 + m

(i)
1 ](u, v)

)
.

As the task for the object model is to only represent the central object in each crop, we restrict the
appearance loss to the candidate mask of the object (m1) and the mask loss to the union of the
candidates masks of the object and the background (m0 +m1). Importantly, the reconstruction loss
is not evaluated for pixels belonging to other objects according to the candidate masks. Therefore,
the object model is not penalized for completing object parts that are occluded by another object.
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Figure 3: Causal graph for our
scene model; circles and diamonds
denote random and deterministic
quantities.

Table 1: Segmentation performance of the unsupervised motion seg-
mentation (Keuper et al., 2015) for different optical flow estimators.

Optical flow IoU Recall

Estimator Training data Background Objects @0.0 @0.5

ARFlow KITTI 0.874 0.246 0.828 0.199
ARFlow Sintel 0.890 0.243 0.809 0.213
ARFlow Fishbowl 0.873 0.248 0.842 0.204
RAFT FlyingThings 0.930 0.318 0.663 0.351
FlowNet 2 FlyingThings 0.934 0.365 0.674 0.416

Learning object completion via artificial occlusions. To encourage the model to correctly com-
plete partial objects, we use artificial occlusions as an augmentation during training. Similar to a
denoising autoencoder (Vincent et al., 2008), we compute the reconstruction loss using the unaug-
mented object crop. We consider two types of artificial occlusions: first, we use a cutout augmen-
tation (DeVries and Taylor, 2017) placing a variable number of grey rectangles on the input image.
As an alternative, we use the candidate segmentation to place another, randomly shifted object from
the same input batch onto each crop.

Model. We use a β-VAE with 128 latent dimensions. The encoder is a ten layer CNN, the appear-
ance decoder is a corresponding CNN using transposed convolutions (Dumoulin and Visin, 2018)
and one additional convolutional decoding layer. We use a second decoder with the same architec-
ture but only a single output channel do decode the object masks. During each epoch, we use crops
from two random frames from every object. We train our model for 60 epochs using Adam (Kingma
and Ba, 2015) with a learning rate of 10−4, which we decrease by a factor of 10 after 40 epochs. We
chose the optimal hyperparameters for this architecture using grid searches. More details regarding
the model architecture and the hyperparameters are provided in the supplement.

STAGE 2B: BACKGROUND MODEL—LEARNING TO GENERATE UNOCCLUDED BACKGROUNDS

Task. We use an ensemble of background extraction techniques outlined above to estimate back-
ground scenes for each frame. We train a β-VAE on these backgrounds using the appearance loss
LR,appear. with the inferred background mask, without any additional cutout or object augmentation.

Architecture. The β-VAE has the same architecture as the object model, but only uses a single
decoder for the background appearance. We do not focus on a detailed reconstruction of background
samples and limit the resolution to 96 × 64px. When sampling scenes, the outputs are upsampled
to the original resolution of 480× 320px using bilinear interpolation.

STAGE 3: SCENE MODEL—LEARNING TO GENERATE COHERENT SCENES

In the final stage, we combine the object and background model into a scene model that allows sam-
pling novel scenes. As the scene model can reuse the decoders from the previous stages, its main
task is to model the parameters defining the scene composition such as object counts, locations and
dependencies between the background and the object latents. Compared to an end-to-end approach,
the complexity of the learning problem is greatly reduced in this setting. It is straightforward to
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generalize the scene model beyond the training distribution: E.g., it is easy to sample more objects
than observed in the input scenes.

We use a scene model following the causal graph depicted in Fig. 3: First, we sample a back-
ground latent zbg which describes global properties of the scene such as its composition and illu-
mination; zbg is then decoded by the background model into a background image x0. Conditioned
on the background latent, we sequentially sample K tuples (z

app
k , z

pos
k , zscale

k ) of latents encoding
appearance, position, and scale of object k, respectively; the number of objects K is sampled con-
ditional on zbg as well. Each appearance latent zapp

k is decoded by the object model into a masked
object ok = (mi,xi), which is subsequently re-scaled by zscale

k and placed in the scene at position
z

pos
k according to a dead-leaves model (i.e., occluding previously visible pixels at the same location).

Due to the formulation of the model, we are flexible in specifying the conditional and prior
distributions needed to generate samples. A particular simple special case is to sample all latents
(indicated as circles in Fig. 3) independently. This can be done by informed prior distributions,
or by leveraging the training dataset. In the former case, we sample zbg and all zapp

k from the
standard normal prior of the β-VAE, but reject objects for which the binary entropy of the mask
(averaged across all pixels) exceeds a threshold (for figures in the main paper, 100 bits). We found
that empirically, this entropy threshold can be used to trade diversity of samples for higher-quality
samples (cf. supplement). For the coordinates, a uniform prior within the image yields reasonable
samples, and scales can be sampled from a uniform distribution between 64 × 32px and 192 ×
96px and at fixed 2 : 1 ratio. Alternatively, all distributions can be fit based on values obtained
from the motion segmentation (object and background latents, distribution of sizes, distribution of
coordinates). We provide a detailed analysis in the supplement.

5. Experiments

Motion Segmentation. We quantify the quality of the motion segmentation approach to under-
stand which and how many errors are propagated to later stages. Motion segmentation was scored
as follows: For every frame, we matched the predicted and ground truth masks using the Hungar-
ian algorithm (Kuhn, 1955) with the pairwise IoU (Intersection over Union) as matching cost. The
frame-wise IoU scores were then aggregated as in the DAVIS-2017 benchmark (Pont-Tuset et al.,
2017) by first averaging IoUs over frames for each ground truth object, and then averaging over
objects. In Tab. 1 we report the segmentation performance separately for the background and the
foreground objects.

The best performance is reached when using optical flow predicted by the FlowNet 2 model, thus
we’re using this model for all subsequent experiments. Our setting seems to be especially difficult
for the ARFlow model. Different from the other networks, this model does not easily transfer from
unrelated training settings and doesn’t improve much when training on the Fishbowl data directly
using the default hyperparameters. It might however be possible to improve the model by adapting
the training setup to our dataset more closely.

Overall, the evaluation reveals two types of errors: (1) even the best model variant only detected
67.4% of all objects, i.e., one third of the objects are missed and get included in the background
masks. (2) The recall decreases when increasing the IoU threshold to 0.5, i.e., the predicted masks
are often not precise. While the motion segmentation therefore induces a sort of label noise, it has
to be considered that not all errors are problematic for the motion segmentation. In particular, this
holds for all objects that have not been detected at all and unsystematic errors.
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Table 2: Comparison of the reconstructions from the object model with the ground truth unoccluded objects.
The reconstructed masks are evaluated using the intersection over union (IoU), the appearance is evaluated
using the mean average error (MAE) of the RGB values (0–255) on the intersection of the ground truth and
predicted masks. Additionally, we report those metrics for hard samples in which at most half of the object
is visible (IoU@0.5 and MAE@0.5). We consider model variants that use different artificial occlusions
as augmentations during training. Furthermore, we compare the performance of each model variant when
trained on the motion segmentation and the ground truth masks, respectively. All results are averaged over
independent runs with 3 different seeds and reported with the standard error of the mean. As baseline we
report the IoU of the ground truth occluded masks with the ground truth unoccluded masks.

Training data Augmentation IoU ↑ MAE ↓ IoU@0.5 ↑ MAE@0.5 ↓

Motion
Segmentation

None 0.820±0.002 13.0±0.047 0.669±0.002 24.3±0.037
Cutout 0.822±0.001 13.0±0.032 0.677±0.002 24.0±0.017
Other object 0.827±0.001 14.8±0.095 0.705±0.001 23.4±0.049

Ground Truth
Segmentation

None 0.885±0.001 12.4±0.144 0.738±0.002 17.5±0.210
Cutout 0.887±0.001 12.3±0.035 0.743±0.003 17.3±0.087
Other object 0.883±0.001 14.1±0.250 0.782±0.002 17.7±0.197

Baseline 0.915 0.271

Object model. To evaluate the capability of the object model to reconstruct complete objects
from occluded inputs, we extract object crops from the validation set using the bounding boxes
of the ground truth unoccluded masks. For those crops, we compare the masks and appearances
reconstructed by the model to the unoccluded ground truth (Fig. 2) using IoU and mean average
error (MAE), respectively. As we are only interested in the reconstruction error within the object
masks, we evaluate the MAE only on the intersection of the predicted and ground truth mask. We
consider the ground truth occluded segmentation masks as our baseline: they correspond to a model
that perfectly segments all visible object parts, but does not complete partial objects. We train
variants of the object model using all augmentation strategies described above. For comparison,
we also train each model variant using the ground truth occluded segmentation masks so that errors
propagated from the motion segmentation can be differentiated from errors inherent to the object
model.

As the results in Tab. 2 show, using another object from the input batch as artificial occlusions
results in the best IoU of 0.827. When considering only those objects that are occluded at least by
50%, the IoU drops to 0.705. This performance is substantially greater than the baseline (0.27),
which indicates that the model learns to complete partial objects even for those hard cases. In terms
of the appearance error, using the cutout augmentation performs best. Interestingly though, for both
the mask and appearance error, training without any augmentation at all reduces the performance
only slightly.

When training on the ground truth segmentation instead of the motion segmentation, the error
in terms of the IoU reduces by roughly one third. Performance gains can therefore be expected from
improving the generative object model and, to a lesser extent, the motion segmentation. Overall, the
object model seems to be quite robust to the label noise induced by the motion segmentation.

We visualize reconstructions and samples from the object model in Fig. 4. In agreement with
the quantitative results before, there is a visible quality difference between the model trained on
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Figure 4: Qualitative results from the object model using another object as augmentation. Left: Object
model trained on the masks predicted by motion segmentation. Right: Object model trained using ground
truth segmentations. Top: Reconstructions of validation set elements. Middle: Reconstructions of validation
set elements that are occluded by 0.5±0.05. Bottom: objects sampled from the respective model. The shown
reconstructions and samples are not cherrypicked and do not use entropy filtering as in the scene model.

Figure 5: Samples from the training dataset in comparison to the scene model using the background and
object models trained on the motion segmentation and ground truth segmentation, respectively.

motion segmentation and ground truth segmentation, respectively. In some cases, parts of the fish
such as the tail fin is missing and in other cases, the mask covers areas not properly covered by the
appearance. In particular this holds for the hard cases with substantial occlusions. Moreover, the
samples from the model trained on motion segmentation masks seems to contain fewer sharks (a
rare class). The majority of the reconstructions and samples however looks convincing, with the
model capturing the relevant properties of the object masks and appearances.

Background model. We train two variants of the background model using the foreground/back-
ground segmentation and the ground truth segmentation masks, respectively. We show samples
from the former variants as part of the scene model in Fig. 5, and provide additional samples in
the supplement. We deliberately chose to not exhaustively tune the background model and defer
improvements (which are conceivable given the recent advances in high resolution image modeling
with VAEs) to future work. Within the scope of this work, we limit ourselves to the constrained
resolution resulting in blurry samples. They still reflect the main variations in the dataset, like the
overall illumination and background color.

Scene model. In Fig. 5 we visualize samples from the scene model following the scene statis-
tics from the training dataset. As before, we consider two variants of the scene model using the

9



TANGEMANN ET AL.

Figure 6: Interventions on the scene properties of a sample from the unsupervised scene model. Top to bot-
tom: (i) Varying the number of objects, (ii) varying the object identities, (iii) varying the scales of individual
objects, (iv) changing backgrounds while keeping objects constant, (v) re-sampling locations of all objects.

background and object models trained on the motion segmentation and ground truth segmentation,
respectively. The samples from both models nicely resemble the scenes from the training dataset.
However, in both cases the errors from the object and the background model, as discussed before,
are also observable in the generated scenes.

A particular strength of our modular approach is that it allows to separately intervene on causally
independent mechanisms (Pearl, 2009; Schölkopf et al., 2021) of the scene generation. In Fig. 6 we
show such interventions on a sample from the unsupervised scene model. The number of objects,
their positions and sizes are all represented explicitly by the scene model so that we can manipulate
those scene properties separately. Moreover, the background and the objects are represented sepa-
rately by their respective latent codes so that we can exchange and manipulate each of those scene
components individually.

Modularity. A downside of end-to-end models are non-trivial dependencies between individual
components, making it harder to train and debug such models. In contrast, our modular approach
allows to exchange individual components in the object learning pipeline. In Figure 7, we show a
proof-of-concept for using a GAN (Mescheder et al., 2018) as part of a hybrid object model (image
modeling: GAN, mask modeling: VAE) within our framework.

5.1. Comparison to prior work

The previous experiments have shown that our modular object learning approach scales well to the
visually more complex FISHBOWL dataset. In the following, we compare our method with several
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Figure 7: The modularity of our multi-stage approach allows to easily exchange individual components.
Here, we replace the image-modeling part of the object model with a GAN instead of the previously used
VAE. As in our main model, this allows meaningful traversals/interventions since objects and their position-
s/sizes are presented as individual entities.

established approaches for object learning and scene generation. In each case, we summarize the
key findings and provide a more detailed treatment in the appendix.

A key feature of our model is the disentanglement of an object’s appearance and its location
in the scene. Several prior works approached learning such disentangled object models end-to-
end. We compare to SPACE (Lin et al., 2020b) as a representative method. SPACE includes a
mechanism for modelling occlusions, allowing it to model complete objects as in our approach. We
find that SPACE fails to learn the correct object notion on the FISHBOWL dataset. This is in line
with previous results showing that previous approaches do not scale well to textured data (Karazija
et al., 2021). When trained with our approach, the same object model as used by SPACE learns the
objects much better.

Another line of works doesn’t entangle object appearance and position, but rather learns a lay-
ered scene representation with each layer covering the entire image. We compared to GENESIS-v2
(Engelcke et al., 2021) as a recent, probabilistic variant of this approach. When trained with the
GECO objective as proposed by the authors, GENESIS-v2 learns to detect objects but fails at gen-
erating novel scenes. When using the original VAE objective, sampling from the model works but
objects are not recovered. Again, this is in line with previous work showing that object-centric
methods struggle on textured data (Karazija et al., 2021).

GANs (Goodfellow et al., 2014) are a powerful method for generating images. We trained the
variant by Mescheder et al. (2018) on the Fishbowl dataset. Overall, the GAN is able to generate
images of convincing quality resembling the training images well. A particular strength of the GAN
in comparison to our method, is it’s ability to generate backgrounds with many details—which we
explicitly left for future work. Compared to our method, the GAN however lacks a principled way
to manipulate sampled scenes and to generalize beyond the training distribution.
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Figure 8: Qualitative comparison with other models trained on the FISHBOWL dataset. Top: SPACE (Lin
et al., 2020b), using 4x4 or 8x8 grid cells. Middle: GENESIS-v2 (Engelcke et al., 2021) trained both using
the GECO (top) and the original VAE objective (bottom). Bottom: GAN following Mescheder et al. (2018).

To evaluate how well our method transfers to other settings, we trained our model on the Re-
alTraffic dataset (Ehrhardt et al., 2020). In Fig. 26, we compare samples from our model to other
models for which results on the RealTraffic dataset have been reported by Ehrhardt et al. (2020).
Overall, our model transfers well to this real world setting, given that our model is used largely un-
changed. In comparison to the GAN-based RELATE and BlockGAN, the samples from our model
look slightly more blurry. However the results from our method clearly improve over the VAE-based
GENESIS model.

6. Discussion

The fields of machine learning and causal modeling have recently begun to cross-pollinate. Causal-
ity offers a principled framework to think about classes of distributions related to each other by
domain shifts and interventions, and independent/modular components (e.g., objects) that are in-
variant across such changes. Vice versa, machine learning has something to offer to causality when
it comes to learning causal variables and representations—traditionally, research in causal discov-
ery and inference built on the assumption that those variables be given a priori. Much like the shift
from classic AI towards machine learning included a shift from processing human-defined symbols
towards automatically learning features and statistical representations, causal representation learn-
ing aims to learn interventional representations from raw data (Schölkopf et al., 2021). It is in this
sense that we like to think of our scene model as a causal generative model. Its causal structure is
simple—its complexity lies on the side of representation learning.
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We propose a multi-stage approach for learning the model from unlabelled videos. Inspired by
the Gestalt Principle of Common Fate, we use candidate segmentations obtained from unsupervised
optic flow to weakly supervise generative object and background models, and combine them into
a scene model. The scene model is causal/mechanistic in the sense that it (1) learns complete ob-
jects (although occlusions are abundant in the training data)2 and (2) properly handles partial depth
orderings in the scene, the latter through the “dead leaves” approach—as opposed to the compu-
tationally simpler additive mixture approach which is common place in end-to-end scene models,
but contradicts the generative structure of scenes. Moreover, while many existing models only de-
compose and represent scenes, (3) our model can generate plausible novel and out-of-distribution
scenes (e.g., higher fish density, different sizes).

While learning object models as part of an end-to-end trainable object centric scene model might
have certain advantages, it has not been shown to scale to more realistic data yet. We instead chose
a multi-stage approach that allows developing and analyzing the modeling stages individually. This
approach allowed us to conclude that exploiting motion information for object discovery, as done
in the motion segmentation stage, is a valuable cue that greatly simplifies object learning. Also,
since the scene model uses the component models as modelling “atoms”, this naturally permits in-
tervening on the parameters defining the scene composition without side-effects, as stipulated by
the principle of Independent Causal Mechanisms (Parascandolo et al., 2018; Peters et al., 2017).

We evaluated the modelling stages on the novel FISHBOWL dataset, consisting of short videos
recorded from a synthetic 3D aquarium. Notably, we found that the generative object model proves
to be fairly robust to errors in the motion segmentation. We expect further performance gains to be
achievable by improving the visual fidelity of the generative object and background models (Razavi
et al., 2019; Vahdat and Kautz, 2020); however, this was not the motivation for the present work.

We see several ways to extend our model in the future, beyond improving the implementations
of the individual stages by taking advantage of progress in computer vision. One limitation of
using motion segmentation is that we can only decompose scenes of moving objects. This could
be addressed by integrating object models trained using our approach into an end-to-end scene
model (similar to Bao et al., 2022). When using a learning-based motion segmentation approach,
there could be a feedback circle with both models improving each other as training progresses and
this way closing the observed gap to using ground truth segmentations. Also, our object model
does currently not capture object motions. Given that the motion segmentation yields temporally
consistent segmentation masks, this could, in principle, well be included in our approach. Finally,
one could imagine also using interaction data where an agent intervenes in a scene and infers objects
from how it responds to those interventions.
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Appendix A. Additional details about the method

A.1. Motion segmentation

We use the original implementation of the motion segmentation by Keuper et al. (2015), but replace
the postprocessing required to obtain a dense segmentation with a simpler but faster non-parametric
watershed algorithm (Beucher and Meyer, 1993) followed by computing spatiotemporal connected
components (Silversmith, 2021).

To obtain background masks for training the background model, we aim for a low rate of fore-
ground pixels being mistaken for background pixels, while background pixels mistaken for fore-
ground are of less concern. Hence, we use an ensemble of different background-foreground seg-
mentation models from the bgslibrary (Sobral, 2013). Based on early experiments, we used the
PAWCS (St-Charles et al., 2016), LOBSTER (St-Charles and Bilodeau, 2014), Σ − ∆ estimation
(Manzanera and Richefeu, 2007) and static frame differences and label every pixel detected as fore-
ground by either of the methods as a foreground pixel. We found that this rather simple model can
faithfully remove the foreground objects in most of the cases.

A.2. Optical flow estimation

The quality of the motion segmentation critically depends on the quality on the optical flow es-
timation, so we explore different models for that step. ARFlow (Liu et al., 2020) is a state of
the art self-supervised optical flow method that combines a common warping based objective with
self-supervision using various augmentations. We use the published pretrained models as well as a
variant trained on the Fishbowl dataset.

To train ARFlow on the Fishbowl dataset, e build on the official implementation provided in
https://github.com/lliuz/ARFlow. We make the following adaptations to the original configuration
used for training on Sintel:

• The internal resolution of the model is set to 320x448 pixels.

• For training, we use the first 200 videos of the Fishbowl dataset. This amounts to 25.4K frame
pairs which is substantially more than the Sintel dataset (pretraining: 14,570, main training:
1041), which is the largest dataset on which ARFlow was originally trained. Initial exper-
iments using the first 1000 videos did not lead to an improvement in the training objective
compared to only using 200 videos.

• We train the model using a batch size of 24 and use 300 random batches per epoch. We
perform both the pretraining and main training stage, but using the same data for both stages.
The pretraining stage is shortened to 100 epochs, after which the training loss did not improve
further.

We selected above parameters by pilot experiments using the final training loss as criterion.
All other hyperparameters, in particular regarding the losses, the augmentations and the model
architecture, are used unchanged.

We remark that the hyperparameters are chosen differently for the two datasets used in the
original paper, so we conjecture that the performance on this model most likely improves when
closely adapting the training scheme to our setting.
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Similar augmentations as used by ARFlow can alternatively be used to synthesize training data
for supervised methods, as done for generating the FlyingChairs and FlyingThings datasets (Doso-
vitskiy et al., 2015; Mayer et al., 2016). We experiment with FlowNet 2.0 (Ilg et al., 2017) and the
more recent RAFT (Teed and Deng, 2020) trained on those two datasets.

A.3. Object model

We loosely build on the β-VAE implementation by Subramanian (2020). We reimplemented the
training script and modified architecture details like the latent dimensionality due to differences in
the image size.

We use a CNN with 10 layers as an encoder. Each layer consists of a 3 × 3 convolution,
followed by layer normalization (Ba et al., 2016) and a leaky ReLU nonlinarity with a negative
slope of 0.01. The decoders are built symmetrically by using the reversed list of layer parameters
and transposed convolutions. The decoders both use an additional convolutional decoding layer,
without normalization and nonlinearity. The detailed specification of the default hyperparameters
used by the object model is given in the following table:

Table 3: Default hyperparameters used for the object model.

Parameter Value

sample size 128× 64
hidden layers: channels 32, 32, 64, 64, 128, 128, 256, 256, 512, 512
hidden layers: strides 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
latent dimensions 128
prior loss weight (β) 0.0001
mask loss weight (γ) 0.1
learning rate, epoch 1-40 0.0001
learning rate, epoch 41-60 0.00001

We chose the parameters regarding the architecture based on early experiments by qualitatively
evaluating the sample quality. The learning rate and mask loss weight γ where determined using
grid searches with the IoU of the mask as selection criterion. However, we noticed a high degree
of consistency between the rankings in terms of the mask IoU and appearance MAE. The best
reconstruction quality was obtained when not regularizing the prior (i.e., β = 0). We chose the final
value of β = 0.0001 as a compromise between reconsutruction and sampling capabilites based on
visual inspection of the results.

For the mask and appearance losses defined in the main paper, we use an implementation based
on the following PyTorch-like pseudo code:

1 def object_model_loss(image, mask_fg, mask_bg, gamma = 1., beta = 0.001):
2 # image (b,c,h,w), mask_fg (b,h,w), mask_bfg (b,h,w)
3

4 latents = encode(image)
5 mask_pred, img_pred = mask_decoder(latents), img_decoder(latents)
6

7 L_img = (mask_fg * mse(img_pred, image)).sum()
8 L_mask = ((mask_fg + mask_bg) * bce(mask_pred, mask_fg)).sum()
9 L_reg = kl_divergence(latents)

10 Z_img, Z_mask = mask_fg.sum(), (mask_fg + mask_bg).sum()
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11

12 return L_img / Z_img + gamma * L_mask / Z_mask + beta * L_reg

A.4. Background model

Training details We use a similar β-VAE and training objective for the background model as for
the object model. Different to the object model, we do not predict the mask and instead only recon-
struct a non-occluded background sample. We sweep over learning rates in {1 · 10−3, 5 · 10−4, 1 ·
10−4} and β in {10−2, 10−3, 10−4, 10−3} and select the model with β = 10−3 and learning rate
10−4 which obtained lowest reconstruction and prior loss. A higher value for β caused the training
to collapse (low prior loss, but high reconstruction loss). As noted in the main text, the background
model performance (and resolution) can be very likely improved by using larger models, more hy-
perparameter tuning and better decoders suited to the high resolution. As noted in the main paper,
we omit these optimizations within the scope of this work and rather focus on the object and scene
models.

Implementation The background model loss is similar to the reconstruction loss of the fore-
ground model. We omit reconstructing the mask. In the input image for the background model, all
foreground pixels are replaced by the average background RGB value to avoid distorting the input
color distribution, refer to the example images in Fig. 12. The loss can be implemented as follows:

1 def background_model_loss(image, mask_bg, beta = 0.001):
2 # image (b,c,h,w), mask_fg (b,h,w), mask_bfg (b,h,w)
3

4 latents = encode(image)
5 img_pred = img_decoder(latents)
6

7 L_img = (mask_bg * mse(img_pred, image)).sum()
8 L_reg = kl_divergence(latents)
9 Z_img = mask_bg.sum()

10

11 return L_img / Z_img + beta * L_reg

A.5. Scene model

Mask temperature By default, the mask is computed by passing the logits obtained from the
object mask decoder through a sigmoid non-linearity for obtaining probabilities. During scene
generation, we added sharpness to the samples by varying the temperature τ , yielding an object
mask

m =
1

1 + exp(−x/τ)
, (1)

where x is the logit output by the mask decoder and the exponential is applied element-wise. “Cool-
ing” the model to values around τ = 0.1 yields sharper masks and better perceived sample quality.
Note that the entropy threshold introduced in the next section depends on the value of τ .

Entropy filtering When sampling objects during scene generation, we filter the samples accord-
ing to the model “confidence”. A simple form of rejection sampling is used by computing the mask
for a given object latent, and then computing the entropy of that mask. Given a mask m(τ), we
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adapt the sampling process considering the average entropy across all pixels in the mask,

H2(m) = − 1

WH

W∑
u=1

H∑
v=1

m(u, v) log2m(u, v) + (1−m(u, v)) log2(1−m(u, v)) (2)

and reject samples where H2(m) exceeds a threshold. Reasonable values for a mask temperature
of τ = 0.1 are around 100 to 200 bits. It is possible to trade sample quality and sharpness for an
increased variability in the samples by increasing the threshold.
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Appendix B. Additional details about the dataset generation

A demo of the original aquarium WebGL demo used for our experiments is available at webglsam-
ples.org/aquarium/aquarium.html. The original source code is released under a BSD 3-clause li-
cense (Google Inc.) and available at github.com/WebGLSamples/WebGLSamples.github.io.

We apply the following modifications to the original demo for our recording setup:

• We implemented a client-server recording setup: The client pulls recording parameters from
the server and sends back the recorded frames with ground truth segmentation to the server.
The server maintains the overall list of randomly sampled aquarium configurations and post-
processes the recordings into their final form. We run this setup in parallel on multiple nodes,
using the headless Chrome browser3.

• All samples are recorded for 128 frames at 30Hz. We modified the aquarium to only advance
to the next frame once the current frame is captured and sent to the server.

• For recording the masks, we modified the texture shaders to use a unique color for rendering
every object. Furthermore, we disabled all rendering steps modifying those colors (anti-
aliasing, alpha compositing).

• To make the recording fully deterministic, we disabled the bubbles in the aquarium.

• To increase the diversity of the fish in the aquarium, we applied random color shifts to all
fish textures except sharks, for which those color shifts look very unnatural. We shifted each
color by rotating each color value in the IQ plane of the YIQ color space. For each fish,
we independently and uniformly sampled one of 8 discrete color shifts regularly spaced in
[0◦, 360◦].

• During post-processing, we used ffmpeg4 to rescale and centrally crop 480 × 320px from
every frame and encode all frames as a video. We cropped and rescaled the masks same way,
but exported them as json using the run length encoding provided by the COCO API5.

• For recording the unoccluded ground truth, we used above setup to record and post-process
frames and masks of the validation and test samples, but only render the respective fish of
interest.

The code used to generate the dataset including all parameters will be made publicly available.

3. https://github.com/puppeteer/puppeteer/
4. https://ffmpeg.org
5. https://github.com/cocodataset/cocoapi
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Appendix C. Additional results

C.1. Objects extracted by the motion segmentation

The following figure shows examples of objects extracted from the original videos using motion
segmentation and the ground truth occluded masks, respectively. The figure reveals typical failure
modes, such as multiple fish that are segmented jointly, and parts of the background contained in
the object mask. Most of the fish however, are segmented very accurately.

(a) b (b) b

Figure 9: Objects extracted from the training videos that are used for training the object model. Left:
Objects extracted using the motion segmentation. Right: Objects extracted using the ground truth occluded
segmentation masks.
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C.2. Object model: additional reconstructions

In Fig. 10 we show additional reconstruction from the object model trained on motion segmentation
and ground truth occluded masks, respectively. Moderate occlusion levels up to 30% are handled
well by both variants. At higher noise levels however, only the variant of the object model trained
on the ground truth masks is able to correctly complete the partial objects.

Figure 10: Reconstructions from the object model for input crops with different occlusion levels (0.0 = no
occlusion, 1.0 = fully occluded). For each occlusion level, the input images and the respective reconstructions
are shown. Both model variants are trained using another fish as artificial occlusion during training. Left:
Object model trained using the motion segmentation masks. Right: Object model trained using the ground
truth unoccluded masks.
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C.3. Object model: additional samples

The following figure shows additional samples from the object models trained using another object
as artificial occlusion (the same models as used for Fig. 4 in the main paper).

(a) b (b) b

Figure 11: Samples from the object model using another input object as augmentation during training.
These are the same models as used for Fig. 4 in the main paper. Left: Object model trained on the motion
segmentation. Right: Object model trained on the ground truth occluded masks.

C.4. Background Model: Inputs

The background model is trained on images pre-processed by an ensembling of foreground-background
algorithms from Sobral (2013). We use Σ −∆ (Manzanera and Richefeu, 2007), static frame dif-
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ferences, LOBSTER (St-Charles and Bilodeau, 2014) and PAWKS (St-Charles et al., 2016) with
standard hyperparameters set by Sobral (2013). The goal behind this choice is to detect as many
objects as possible and remove the amount of erroneously included foreground pixels — it might
be possible to even further improve this pre-processing step with different algorithms and hyperpa-
rameter tuning.

We give a qualitative impression of the background input samples in Fig. 12. Note that all
foreground pixels were replaced by the average color value obtained by averaging over background
pixels to avoid inputting unrealistic colors into the β-VAE.

Figure 12: Input samples to the background β-VAE. Objects were removed by applying an ensemble
of foreground-background segmentation algorithms. Images are resized to 96 × 64px to trade-off
training speed for sample quality.
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C.5. Additional samples from the scene model

Figure 13: Two object “reconstructions”. Object latents are obtained from a reference sample. Our
modular scene model makes it straightforward to vary locations of single objects, exchanging single
objects, or changing the background without affecting the output sample (top to bottom).

30



UNSUPERVISED OBJECT LEARNING VIA COMMON FATE

Figure 14: Additional samples from the scene model. Depicted samples use different (recon-
structed) backgrounds, samples from the object model are obtained from the standard normal prior
and filtered with 150 bit entropy threshold at τ = 0.2, sample sizes are constrained on a reference
training sample, object positions are sampled independently from a uniform prior. Samples are not
cherrypicked.
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C.6. Conditional sampling from the scene model

We present conditional samples from the scene model. As a simple baseline, we use a k-nearest
neighbour approach for conditionally sampling object latents based on background latents. First,
we extract a paired dataset of background and foreground latents from the training dataset. Sec-
ond, we sample background latents from the standard Normal distribution (prior of the background
model). Third, we compute the 2% nearest neighbouring videos based on the L2 distance from
the background latent. Fourth, we randomly sample a subset of foreground latents extracted by the
motion segmentation. Finally, we reconstruct the scene using the background latents along with the
chosen subset of foreground latents. We reject foreground latents with an entropy larger than 150
bit. Samples (non-cherrypicked) are depicted in Fig. 15.

Figure 15: Conditional samples from the model. Fish appearances (qualitatively, mainly the bright-
ness) now vary according to the background sample.
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Similarly, we can constrain other latents like the x and y positions to a particular background.
In Fig. 16 we show examples of constraining object locations based on a reference sample for both
the ground truth and motion segmentation object model.

Figure 16: Conditional sampling of object locations based on a reference scene. For matching
latents sampling, we extract the object latents and positions from the reference scene using the mo-
tion segmentation model. Samples obtained by matched sampling are more similar to the reference
scene than samples obtained by unconstrained sampling from the model priors.
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C.7. Entropy sampling

Figure 17: Details of entropy filtering when using the object model. (A1) Distribution of mask entropies
for a given foreground model, estimated over 25,000 randomly sampled objects. The distribution typically
peaks around 100 to 200 bits, makeing this a reasonable range for picking the cut-off. (A2) The 128d latent
vector of objects is reasonably correlated with the entropy (R2 = 0.45), making it possible to alter the prior to
sample from to encourage low entropy samples. (B) 64 samples with the lowest entropy after drawing 1000
random samples from the object models and sorting according to entropy. While this strategy encourages
some non-plausible, low entropy objects (row 4 and 6), it generally filters the dataset for samples with sharp
boundaries and good visual quality. (C) 64 samples with the highest entropy after drawing 1000 random
samples from the object models and sorting according to entropy. With a few exceptions of plausible samples
(e.g. in row 2), most of the samples should be rejected in the scene model.

35



TANGEMANN ET AL.

Appendix D. Comparison to related methods

D.1. GAN Baseline

As a baseline method for generating novel scenes for the FISHBOWL dataset, we consider the GAN
used by Mescheder et al. (2018) for the CelebA-HQ dataset (Karras et al., 2018). We used the offi-
cial implementation available at https://github.com/LMescheder/GAN_stability, and only changed
the resolution of the generated images to 192×128px. For training, we used every 16th frame from
each input video in the training set rescaled to the resolution of the GAN, resulting in 160k training
images. We trained the model for 90 epochs.

Fig. 18 shows samples from the model in comparison to training frames. Overall, the GAN is
able to generate images of convincing quality resembling the training images well. A particular
strength of the GAN in comparison to our method, is it’s ability to generate backgrounds with many
details—which we explicitly left for future work. Several fish generated by the GAN however look
distorted, in agreement with previous works concluding that GANs are good at generating “stuff”,
but have difficulties generating objects (Bau et al., 2019). This becomes especially apparent when
visualizing interpolations in the latent space between samples, as done in Fig. 19.

Many differences between the samples generated by the GAN and our method, respectively,
stem from the GAN being able to learn the overall statistics of the scenes well, but not learning
a notion of objects. Compared to the GAN baseline, our object-centric approach offers several
conceptual advantages: (1) The background and the objects in each scene are represented individ-
ually by our method, which makes it straightforward to intervene on the generated samples in a
meaningful way (Fig. 6). While directions in the latent space of the GAN that correspond to se-
mantically meaningful changes in the image might well exist, the GAN framework does not offer a
principled way to find those directions without supervision. (2) While the GAN is able to generate
novel scenes, it cannot be used to infer the composition of input scenes. (3) An optimally trained
GAN perfectly captures the statistics of the input scene—making it impossible to generate sam-
ples beyond the training distribution. As our model explicitly represents scene parameters such as
the number and position of fish, our model can be used for controlled out-of-distribution sampling
(Fig. 6).
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Figure 18: Samples from a baseline GAN (Mescheder et al., 2018) trained on frames from the training set
of the FISHBOWL dataset. Top: Input frames from the dataset. Bottom: Samples generated by the GAN.
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Figure 19: Samples from the baseline GAN, obtained by interpolating the latent vectors between random
samples.

D.2. SPACE (Lin et al., 2020b)

SPACE (Lin et al., 2020b) is an object-centric representation learning method following the Attend-
Infer-Repeat (AIR) framework (Eslami et al., 2016; Crawford and Pineau, 2019). Different from the
AIR model, the detection of objects and inference of their latent representation is fully parallelized
to make the approach faster and more scalable. We trained SPACE on the Fishbowl dataset using
the implementation provided by the authors (https://github.com/zhixuan-lin/SPACE). We used the
default hyperparameters and trained two variants using a 4x4 and 8x8 grid of object detectors,
respectively. As for the GAN baseline in appendix D, we used every 16th frame for training this
model to keep the training time reasonable (160k frames in total). Despite the subsampling, this
is still substantially more data than the model was trained on in the original paper (60k images).
SPACE expects the input images to have equal width and height, therefore we used a central square
crop from every frame.

Training the model on a single Nvidia RTX 2080ti GPU is relatively fast (14h for the 4x4 grid
and 18h for the 8x8 grid), confirming the performance advantage of the parallel object detectors. As
the results in the Fig. 20 show, the object reconstructions from the model overall look reasonable.
Most structure in the background is missed by the model, however we conjecture that this might
be solvable by adapting the capacity of the background network. The visualization of the object
detections however reveals a more fundamental failure mode due to the grid structure used by the
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object detector in SPACE: Larger fish are split across several cells, even when using only 4x4 cells.
As each cell can only handle at most one object, decreasing the cell count further is not expected to
yield sensible results, as this limits the number of objects too much. Lin et al. (2020b) mentioned
this problem and introduced a boundary loss to address it, however on the Fishbowl dataset this does
not resolve the problem. We hypothesize that an approach based on a fixed grid, while adequate in
some cases and having substantial performance advantages, doesn’t work well with objects showing
large scale variations as present in our newly proposed dataset. We believe this is a limitation of
SPACE that cannot be resolved with further model tuning.

Figure 20: Scenes from the Fishbowl dataset reconstructed by SPACE Lin et al. (2020b). The model is
trained using the official implementation provided by the authors with the default parameters. The two
variants shown use grid sizes of 4x4 and 8x8, respectively.

We performed an additional experiment that integrates our approach with SPACE: As a first
step, we trained a variant of our object model that uses the glimpse encoder and decoder from
SPACE. We increased the learning rate to 0.0005 following an initial grid search, but otherwise left
all hyperparameters unchanged. As the second step, we included the pretrained glimpse encoder
and decoder into the SPACE model and trained the full model end-to-end as described above (using
a grid size of 4x4). When we continued to train the glimpse encoder and decoder in the end-to-end
setting, we noticed similar failures as described above. Therefore we froze the respective weights
after the pretraining step.

Figure 21 shows results from this model variant. Early during the training, the model is in many
cases able to detect the objects in the input scenes. This especially holds for larger objects that
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have been shown to be problematic for the end-to-end model before. Later during training SPACE
however increasingly uses the background model to also explain foreground objects. In addition, we
evaluated both the pretrained and end-to-end trained object model from SPACE using the ground
truth unoccluded objects. As the quantitative results in Table Tab. 4 show, the reconstruction of
the appearance works better with the SPACE object model than with our architecture6, but has a
substantial gap in the segmentation performance. More importantly, the results clearly show an
improvement of the motion segmentation based training over the original end-to-end approach,
confirming the qualitative results.

Overall those results show that our motion segmentation based approach for object-centric mod-
eling can also be used for scaling existing architectures to more complex settings. The off-the-shelf
SPACE model however still falls short of our scene model when trained this way. In the future we
see great potential in combining our object learning approach with state-of-the-art object-centric
scene models.

6. To some degree this is confounded with the worse segmentation performance, as the appearance error is only evalu-
ated on the intersection of the ground truth and predicted mask.
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Table 4: Quantitative evaluation of the SPACE object model trained end-to-end within SPACE and pretrained
based on motion segmentations using the same loss as our object model. The pretrained SPACE object model
and ours use the cutout augmentation. The metrics are the same as in Tab. 2.

Object model IoU ↑ MAE ↓ IoU@0.5 ↑ MAE@0.5 ↓

SPACE (end-to-end) 0.533 12.3 0.425 16.4
SPACE (pretrained) 0.734 7.60 0.605 12.4
Ours 0.822 13.0 0.677 24.0

Baseline 0.915 0.271

Figure 21: Scenes from the Fishbowl dataset reconstructed by SPACE (Lin et al., 2020b). The glimpse
encoder and decoder where trained on the candidate objects given by the motion segmentation using the
object model loss proposed in this work. Afterwards, the remaining components where trained end-to-end
using the official implementation provided by the authors with the default parameters.
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D.3. GENESIS-v2 (Engelcke et al., 2021)

We trained GENESIS-v2 on the Fishbowl dataset using the official implementation by the authors
(https://github.com/applied-ai-lab/genesis) with default hyperparameters except for the image reso-
lution, number of object slots and batch size. We modified the model code to work for rectangular
images and used a resolution of 128x192 pixels. We trained GENESIS-v2 having 5 object slots on
4 Nvidia RTX 2080Ti GPUs using a batch size of 64. Initial experiments with 10 object slots lead
to the background being split up into multiple slots. As for the GAN baseline before, we used every
16th frame for training this model (160k frames in total).

In Fig. 22 we show qualitative results from GENESIS-v2 on the Fishbowl dataset. The recon-
structions of the model look somewhat blurry but capture the major structure in the input images
well. Importantly, the visualization of the segmentation map and the individual slots reveal that the
model succeeds in learning to decompose the scenes into background and objects. Sampling objects
and scenes however fails with this model configuration. Most likely this happens due to the GECO
objective (Rezende and Viola, 2018), that decreases the weight of the KL term in the loss function
as long as the log likelihood of the input sample is below the target value. Training GENESIS-v2
with the original VAE objective instead of GECO leads to better scene samples, the decomposition
of the scene however fails with this objective (Fig. 23).

As a comparison to the end-to-end training within GENESIS-v2, we trained a variant of our
object model using the architecture of the GENESIS-v2 component decoder. As encoder, we use a
CNN constructed symmetrically to the decoder, using regular convolutions instead of the transposed
convolutions. We trained the model with the Cutout augmentation and using the same loss and
training schedule as for the object model described in the main paper.

The results in Tab. 5 and Fig. 24 show that the model generally performs well, but worse than
our original object model. This can most likely be explained by the larger capacity of our object
model (10 vs 5 layers, 128 vs 64 latent dimensions) which seems to be necessary to model the
visually more complex objects in our setting. Also when trained separately, the object model has
difficulties with sampling novel fish, which can be addressed at the cost of worse reconstructions 25.

Overall we conclude that our modular object learning approach scales much better to visually
more complex scenes than end-to-end training as done by GENESIS-v2. Even when using the
GENESIS-v2 component decoder within our framework, the necessary trade-off between recon-
struction and generation capabilities seems to be more favorable when using our modular approach
as opposed to the end-to-end training. We remark that this comparison comes with a grain of salt:
We neither adapted the hyperparameters of GENESIS-v2 nor of our method and the same decoder
is used within GENESIS-v2 for the background, too. The strong qualitative difference in sample
quality however makes it unlikely that this explains all of the difference. Moreover, our approach
only addresses learning generative object models whereas GENESIS-v2 is also capable to infer the
decomposition of static input scenes. For the future, we therefore see much potential in combining
the respective strengths of both methods.
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Figure 22: Qualitative results of GENESIS-v2 applied on the FISHBOWL dataset. The reconstruction in the
second row look somewhat blurry, but capture all major structure in the input images shown in the first row.
The visualization of the reconstructed segmentation shows that the model succeeds in decomposing the input
image into the background and the different objects. Sampling from the model however fails in this setting.
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Figure 23: Qualitative results of GENESIS-v2 trained on the Fishbowl dataset using the default VAE objec-
tive instead of the GECO objective. Sampling from the model works much better in this setting; the model
fails however to segment the scene into the indiviual objects.

Table 5: Comparison of the reconstructions from the object model based on the GENESIS-v2 component
decoder with our original object model using the same metrics as in Tab. 2. Both models are trained using
cutout augmentation.

Training data Architecture IoU ↑ MAE ↓ IoU@0.5 ↑ MAE@0.5 ↓

Motion
Segmentation

GENESIS-v2 0.779±0.002 15.3±0.063 0.661±0.003 25.7±0.114
Ours 0.822±0.001 13.0±0.032 0.677±0.002 24.0±0.017

Ground Truth
Segmentation

GENESIS-v2 0.844±0.001 13.7±0.109 0.722±0.001 19.8±0.062
Ours 0.887±0.001 12.3±0.035 0.743±0.003 17.3±0.087

Figure 24: Qualitative results when using the GENESIS-v2 object decoder as object model within our
modular training approach using the same loss and training schedule. Reconstructions and samples look
worse than with the original object model, hinting at the larger capacity of our object model being necessary
for our dataset.
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Figure 25: Qualitative results when using the GENESIS-v2 object decoder as object model within our
modular training approach using a larger weight of the KL divergence in the VAE training loss. At the prize
of worse reconstructions, the samples from the model can be substantially improved this way.

D.4. Comparison on the RealTraffic dataset

To evaluate how well our method transfers to other settings, we trained our model on the RealTraffic
dataset (Ehrhardt et al., 2020). As the resolution of the images is smaller in the RealTraffic dataset,
we reduced the object size threshold to 64px and the minimal distance to the boundary to 8px
for the object extraction. We trained the object model with the same architecture as used for the
Fishbowl dataset. Due to the smaller dataset size, we trained the model for 600 epochs and reduced
the learning rate only after 400 epochs. As the videos in the dataset were all recorded from the
same stationary traffic camera, we did not train a background model but used the mean-filtered
background directly. In contrast to the aquarium dataset, the object positions and sizes are not
distributed uniformly for this dataset. For the scene model, we therefore sample directly from the
empirical joint distribution of object positions and sizes (extracted from the object masks obtained
by the motion segmentation).
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Figure 26: Results from our model trained on the RealTraffic dataset compared to results from other models
trained on this dataset.

In Fig. 26, we compare samples from our model to other models for which results on the Re-
alTraffic dataset have been reported by Ehrhardt et al. (2020). Overall, our model transfers well to
this real world setting, given that our model is used largely unchanged. In comparison to the GAN-
based RELATE and BlockGAN, the samples from our model look slightly more blurry. However
the results from our method clearly improve over the VAE-based GENESIS model.

46



UNSUPERVISED OBJECT LEARNING VIA COMMON FATE

The adaptation of the scene statistics as described above works well for the object position, as
the cars are correctly positioned on the street only. We consider the possibility of this straight-
forward adaptation to novel scene statistics to be a nice advantage of our object-centric modeling
approach. In the future, this could be improved further by, e.g., learning to sample latent variables
conditioned on the object positions.
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