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Abstract
Randomized experiments are often performed to study the causal effects of interest. Blocking is a
technique to precisely estimate the causal effects when the experimental material is not homogeneous.
It involves stratifying the available experimental material based on the covariates causing non-
homogeneity and then randomizing the treatment within those strata (known as blocks). This
eliminates the unwanted effect of the covariates on the causal effects of interest. We investigate the
problem of finding a stable set of covariates to be used to form blocks, that minimizes the variance
of the causal effect estimates. Using the underlying causal graph, we provide an efficient algorithm
to obtain such a set for a general semi-Markovian causal model.
Keywords: Causal graphs, randomized experiments, block designs, variance reduction.

1. Introduction

1.1. Motivation

Studying the causal effect of some variable(s) on the other variable(s) is of common interest in social
sciences, computer science, and statistics. However, a mistake that people usually make is confusing
the causal effect with an associational effect. For instance, if high levels of bad cholesterol and the
presence of heart disease are observed at the same time, it does not mean that the heart disease is
caused by high levels of bad cholesterol. The question is then how do we get to know if one variable
causes the other? If the answer is yes, then what is the direction (positive or negative) and what is the
magnitude, of the causal effect? Fisher (1926) provided the framework of randomized experiments to
study the causal effect, where the variable whose causal effect is to be studied (known as treatment or
cause), is randomized over the available experimental units (like humans, rats, agricultural plots, etc.)
and changes in the variable on which the causal effect is to be studied (known as response or effect),
are recorded. A statistical comparison of values of the response with or without the treatment can
therefore be done to study the existence, direction, and magnitude of the cause-effect relationship of
interest.

Randomized experiments work on three basic principles, viz., randomization, replication, and
local control (Fisher, 1926). Randomization states that the assignment of the treatment has to be
random, and replication states the treatment should be given to multiple but homogeneous units,
i.e., there are multiple observations of the effect variable for both with and without the treatment.
Therefore, as long as the available experimental units are homogeneous (for instance, the fertility of
all the agricultural plots is the same, the responsiveness of all the humans is the same for the drug,
etc.), then a ‘good’ randomized experiment can be carried out using the first two principles, viz.,
randomization and replication, which gives rise to completely randomized design (CRD). However,
when the available experimental units are not homogeneous, i.e., some attributes of experimental
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units (known as covariates) differ from each other, then the causal effect may get influenced by the
covariates causing non-homogeneity (like fertility, responsiveness, etc). The remedy to this problem
is the third principle of randomized experiments, i.e., local control (also known as blocking), which
states to stratify the available experimental units based on that covariate(s) causing non-homogeneity,
and then randomize the treatment within those strata to eliminate the effect of the covariates. These
strata are called blocks, and this third principle along with the first two gives rise to randomized block
design (RBD). Blocking tries to control/eliminate the variability in the response attributed through
the covariates and leads to a more precise estimation of the causal effect of interest. Precision is
defined as the inverse of the variance of the estimate of the causal effect of interest.

In this paper, we focus on the problem of deciding which covariates to be used for forming
the blocks while performing a randomized experiment. We consider a non-parametric setting and
assume that we have access to the underlying causal structure (Pearl, 2009). We provide an efficient
algorithm to obtain a stable set of covariates to be used to form blocks for a general semi-Markovian
causal model. The term stable refers to the idea of finding and excluding the covariates that one
should never use to create blocks. The notion and the method of achieving this stability are discussed
in Section 3.4.

1.2. Literature Review

Statistics literature (Yates, 1935; Kempthorne, 1952, 1955; Cochran and Cox, 1948) presents profound
discussions on relative efficiency (ratio of the variances of causal effects) of RBD over CRD. It can
be seen that in general, RBD is always more or at least as efficient as CRD. Therefore, the natural
question is how do we do blocking in an intelligent manner such that maximum gain in precision
can be attained? More specifically, we are interested in answering the following question. Can we
decide which covariates to be used for forming blocks using the causal structure (diagram) of all the
variables, viz., treatment, response, and covariates (observed and unobserved) provided the causal
structure is given?

In the past, efforts have been made to address the problem of efficient adjustments in causal
graphical models under static interventions (Henckel et al., 2019; Rotnitzky and Smucler, 2020) and
under dynamic interventions (Smucler et al., 2021). In contrast to these, we provide an efficient
algorithm to obtain the set of covariates to be used for forming blocks for a general semi-Markovian
causal model. citetcinelli2020crash provided a good discussion on good and bad controls for different
causal graphs and emphasized the importance of good adjustments in causal estimation. Some other
partially related works include (Kallus, 2018) which discusses the problem of experimental design in
terms of variance reduction and describes the functional assumptions placed on the potential outcome
by blocking, (Harshaw et al., 2019) which shows that discrepancy minimization (difference in means
between treatment and control covariate groups) implicitly performs ridge regression and (Li and
Ding, 2019) talks about re-randomization and regression adjustment.

In this paper, we focus on deciding what covariates should form the basis of forming blocks.
However, a problem that follows our problem is, how to efficiently form blocks by grouping the
experimental units which are close to each other based on the chosen covariates. Moore (2012);
Higgins et al. (2016) focus on the latter problem.
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1.3. Contribution

In this paper, we formalize the problem of finding a stable set of covariates to be used to form blocks,
that minimizes the variance of the causal effect estimates. We leverage the underlying causal graph
and provide an efficient algorithm to obtain such a set for a general semi-Markovian causal model.

1.4. Organization

The rest of the paper is organized as follows. Section 2 provides some background and formulates
the problem of interest. Section 3 discusses our methodology that includes motivating examples, key
observations, important lemmas, main results, and the final algorithm. Section 4 provide experimental
evaluations, and Section 5 concludes the paper and provides future directions.

2. Background and Problem Formulation

In this section, we provide some background and formulate the problem of interest in this paper.
Let V be the set of observed random variables and U be the set of unobserved random variables.

Let G be a directed acyclic graph that depicts the causal relationships among the random variables in
U and V . Formally, we are assuming that the probability distribution of the random variables in U and
V factorizes according to G (the causal Markov condition (Geiger and Pearl, 1990)). Furthermore, we
assume that no variables other than the ones that are d-separated (Pearl, 2009) in G are independent,
i.e. independence in the joint probability distribution of the random variables in U and V is encoded
by the causal graph (the causal faithfulness condition (Meek, 1995)).

We are interested in studying the causal effect of X ∈ V (treatment) on Y ∈ V (response).
Studying the causal effect of X on Y means learning the (interventional) probability distribution,
P(Y |do(X)) (Pearl, 2009).

2.1. Gain in Precision due to Blocking

Consider a simple setting where X is an indicator random variable defined as

X =

{
1, if the treatment is applied,
0, otherwise,

(1)

and Y is a real-valued random variable.
Let there be n experimental units available to study the causal effect of X on Y by performing a

randomized experiment. Let Z denote the set of covariates that vary across the experimental units.
We want to demonstrate the gain in precision due to blocking. Thus, we first ignore these

covariates and perform a CRD as follows. We randomize X over the available experimental units,
i.e., randomly assign a unit to either have the treatment (X = 1) or not (X = 0) and then observe the
response. Let (Xi, Yi) denote the treatment and response pair for the ith experimental unit. Define
Ix := {i : Xi = x} and nx := |Ix|.

To demonstrate the gain in precision due to blocking, we focus on estimating E(Y |do(X)). For
simplicity, define Y (x) := Y |do(X = x). For our simple setting, we have only two possibilities of
that conditional expectation, viz. E(Y (1)) and E(Y (0)). Similar to Heckman (1992), Clements et al.
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(1994), and Heckman and Smith (1995), we define the effect of treatment (ET) or average treatment
effect (ATE) in the population as

β := E (Y (1))− E (Y (0)). (2)

A natural non-parametric estimator of E (Y (x)) is the corresponding sample average, given as

Ȳ (x) :=
1

nx

∑
i∈Ix

Yi. (3)

Therefore, we can estimate β as

β̂ = Ȳ (1)− Ȳ (0) (4)

It can be shown that E(β̂) = β, i.e., β̂ is unbiased for β. The variance of β̂ is given as follows.

Var (β̂) = EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
+ EZ(β(Z)− β)2, (5)

where β(Z) := E (Y (1)|Z) − E (Y (0)|Z) is called the Z-specific causal effect or conditional
average treatment effect (CATE). For proofs of unbiasedness and variance of β̂, refer to Appendix A.1.

We now perform an RBD as follows. We first stratify the experimental units such that units within
each stratum (known as a block) are identical, i.e., the covariates in Z remain the same with a block.
We next randomize X over the experimental units within each block and then observe the response.
Let (Xi, Yi,Zi) denote the treatment, response, and covariates triplet for the ith experimental unit.
Define Ix,z := {i : Xi = x,Zi = z} and nx,z := |Ix,z|.

Following (Petersen et al., 2006), ET defined in (2) can be re-written as

β = EZ (E (Y (1)|Z)− EZ (E (Y (0)|Z) , (6)

= EZ (E (Y (1)|Z)− E (Y (0)|Z)) , (7)

=
∑
Z

(E (Y (1)|Z)− E (Y (0)|Z))P (Z) (8)

A natural non-parametric estimator of E (Y (x)|Z) is the corresponding sample average, given as

Ȳ (x)|Z :=
1

nx,z

∑
i∈Ix,z

Yi (9)

Define nz := n1,z + n0,z . P (Z) can be estimated as

P̂ (Z) := nz

n
(10)

Therefore, we can estimate β as

β̂Z =
1

n

∑
Z

nz

(
Ȳ (1)|Z − Ȳ (0)|Z

)
(11)
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It can be shown that E(β̂Z) = β, i.e., β̂Z is unbiased for β. The variance of β̂Z is given as follows.

Var (β̂Z) = EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
+ EZ

(∑
Z

β(Z)P̂ (Z)− β

)2

, (12)

For proofs of unbiasedness and variance of β̂Z , refer to Appendix A.2.
As P̂(Z) is as an unbiased estimate of P(Z),

∑
Z β(Z)P̂ (Z) = EZ(β(Z)) = β. Hence, the

second term on the right in (12) is zero. By comparing (5) and (12), we observe that Var (β̂Z) ≤
Var (β̂), i.e., blocking improves the precision of the estimate of the population average causal effect.

Note 1 Blocking is guaranteed to reduce the variance of the estimates of the causal effects under
the condition the experimental units are homogeneous within each block and heterogeneous across
different blocks. If the blocks are formed using some covariates that do not ensure this then blocking
may, in fact, increase the variance. Hence, in practice, blocking involves a trade-off as it partitions
the experimental units and thus reduces the sample size for estimating the within-block causal effect
which increases the variance but may reduce the inherent variability of the response within each
block which can reduce the variance.

2.2. Challenges with Blocking

We observed that in experimental studies under non-homogeneity of the experimental units, blocking
improves the precision of causal effect estimation. However, the practical difficulty with blocking
is that depending on the number of covariates and the number of distinct values (denoted as v(·))
of each covariate, the number of blocks can be very large. For covariates in the set Z , we need to
form

∏
Z∈Z v(Z) different blocks. For example, if we want to study the effect of a drug on curing

some heart disease where the subjects under consideration have the following attributes (which can
potentially affect the effectiveness of the drug). Gender: Male and Female, i.e., v(Gender) = 2,
Age: <25, 25-45, 45-65, >65, i.e., v(Age) = 4, Weight: Underweight, Normal, Overweight,
Obese I, Obese II, i.e., v(Weight) = 5, Blood Pressure: Normal, Prehypertension, Hypertension I,
Hypertension II, Hypertensive Crisis, i.e., v(Blood Pressure) = 5, and Bad Cholesterol: Optimal,
Above Optimal, Borderline High, High, Very High, i.e., v(Bad Cholesterol) = 5. Thus, we need to
form 2× 4× 5× 5× 5 = 1000 blocks. Performing a randomized experiment with a large number
of blocks can be very costly. Sometimes, it may not be feasible as the number of blocks can be larger
than the number of subjects. This would cause some of the blocks to be empty. For instance, there
may not be any male subjects under the age of 25 who are Obese II with a Hypertensive Crisis and
Optimal Cholesterol level.

Other than the economic aspects and some blocks being empty, there are reasons why some
variables should never be used for forming blocks. Refer to Section 3.4 for details.

2.3. Problem Statement

So far, we observed that blocking improves the precision of causal effect estimation. However, in
situations when the number of blocks to be formed is very large, blocking becomes costly and/or
infeasible. One possible way to reduce the number of blocks is to form blocks using some but not
all covariates. But the question is which covariates should be preferred over others while forming
blocks? One possible way is to select the (smallest) set of covariates that leads to maximum precision
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in causal effect estimation. In the context of estimating the effect of treatment in the population, β,
(discussed in Section 2.1), it means finding the smallest set, Z , that minimizes Var (β̂Z).

We next formalize the problem of interest in this paper as follows. We are given a directed
acyclic causal graph, G, that depicts the causal relationships among some observed variables, V , and
unobserved variables, U . We are interested in studying the causal effect of X ∈ V (treatment) on
Y ∈ V (response) by performing a randomized block experiment. The set of observed covariates is
C := V\{X,Y }.

Studying the causal effect of X on Y means learning the (interventional) probability distribution,
P(Y |do(X)). We can write P(Y = y|do(X = x)) as

P(Y = y|do(X = x)) =
P (Y = y ∩ do(X = x))

P (do(X = x))
(13)

For estimating the above probability, we perform an RBD by forming blocks using covariates in
Z ⊆ V\{X,Y }, and similar to the estimation of E (Y |do(X)), we define an estimate of P(Y =
y|do(X = x)) as

P̂Z(Y = y|do(X = x)) :=
∑
Z=z

P̂ (Y = y ∩ do(X = x) ∩ Z = z)

P̂ (do(X = x) ∩ Z = z))
P̂ (Z = z) (14)

where P̂ (·) are the sample relative frequencies.
It is desirable to select the Z such that Var (P̂Z(Y = y|do(X = x))) is minimized, i.e.,

maximum gain in precision. For ease of notation, we define Var (P̂Z(Y |do(X))) := Var (P̂Z(Y =
y|do(X = x))).

Problem 1 Given a directed acyclic graph, G, that depicts the causal relationships among some
observed variables, V , and unobserved variables, U; treatment, X ∈ V , and response, Y ∈ V ,
obtain a smallest subset, Z∗, of the set of observed covariates, C := V\{X,Y }, such that

Z∗ ∈ argmin
Z

Var (P̂Z(Y |do(X))). (15)

Note 2 It is reasonable to assume that using some expert knowledge, we have access to the
underlying causal graph G and do not know the strengths/weights of the causal connections depicted
in this graph (Kyriacou et al., 2022). For instance, experts may tell us that alcohol consumption
causes high blood pressure but may not have the knowledge of the magnitude of this causation.
We can also construct the underlying causal graph using some observational data if it is available
(Nordon et al., 2019).

Note 3 While performing blocking for the minimization of the variance of the estimate of the causal
effect, it is important to ensure that we are still able to accurately estimate the causal effect of interest.
As introduced in Section 1.1, we want the chosen set of covariates to be stable, i.e. we exclude
the covariates that one should never be used to create blocks. We formally motivate and define the
notion of stability of the solution to Problem 1 in Section 3.4. We also provide a method of achieving
stability, i.e. finding and excluding the covariates that lead to inaccurate causal effect estimation.

Note 4 In experimental design, the term ‘block’ refers to a subset of the experimental units that
are homogenous with respect to some covariates while in causal graphical models, it refers to an
obstruction in some causal path. For instance, for an experiment, a group of smokers can be a block
while in causal graphical models, a common cause (confounder) blocks/obstructs a causal path.
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3. Methodology

In this section, we develop a methodology to find a solution to Problem 1. We first examine
Var (P̂Z(Y |do(X))) as a function of Z to obviate some edges and nodes from the causal graph, G.
We next discuss some motivating examples and make key observations that lead to several lemmas
for our main result. In the end, we provide our main result and develop an efficient algorithm for
solving Problem 1.

3.1. Examining Var (P̂Z(Y |do(X))) as a function of Z

In Problem 1, our interest is to minimize Var (P̂Z(Y |do(X))) as a function of Z ⊆ C. Z can affect
Var (P̂Z(Y |do(X))) through the causal relationships from Z to Y , and from Z to X . Note that, X is
the treatment on which we are performing the intervention, i.e., we set the levels/values of X . This is
equivalent to saying that X is no longer affected by the rest of the variables. Therefore, Z also cannot
affect X when an intervention is performed on X . Therefore, Z can affect Var (P̂Z(Y |do(X))) only
through the causal relationships from Z to Y . Therefore, a smallest subset of C that blocks all causal
paths from C to Y gives a solution to 1.

Denote the subgraph of G where all edges coming into X were deleted as G
X̃

.

Lemma 1 For finding a solution to Problem 1, it is sufficient to work with the subgraph G
X̃

.

Proof The proof follows from the fact that when an intervention is performed on X then it is no
longer affected by the rest of the variables. In terms of the causal graph, G, it is the same as deleting
all edges coming into X .

Definition 2 S, T ⊆ C are called equivalent sets (denoted as S ≡ T ), if Var (P̂ S(Y |do(X))) =
Var (P̂ T (Y |do(X))).

Lemma 3 If F is the set of all covariates that do not have causal paths to Y , then C and C\F are
equivalent sets.

Proof The proof follows from the fact that a set of covariates can affect Var (P̂Z(Y |do(X))) only
through the causal relationships from itself to Y .

Following Theorem 1, we restrict ourselves to the subgraph G
X̃

. Following Theorem 3, we further
delete the covariates that do not have any causal paths to Y . Denote this new subgraph as G′

X̃
and

C′ = C\F . Therefore, a smallest subset of C that blocks all causal paths from C′ to Y in G′
X̃

gives a
solution to 1.

3.2. Motivating Examples and Key Observations

All causal graphs in Figures 1 to 5 represent G′
X̃

. Denote the set of parents of W in G′
X̃

as P(W ).

Note 5 In all the graphs provided in this paper, a bi-directed edge between any two observed
variables is the same as those two variables having one or more unobserved ancestors. For example
V3 L9999K V4 is the same as V3 L99 U 99K V4 for some unobserved variable, U .
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X Y

V1 V2

V3 V4

Figure 1: Example Markovian model
(no latent structures).

X Y

V1 V2

V3 V4

Figure 2: Example semi-Markovian
model with latent variables involving
only C′.

Example 1 For Figures 1 and 2, P(Y )\{X} = {V1, V2} is sufficient to block all causal paths from
C′ = {V1, V2, V3, V4} to Y . Therefore, Z∗ = P(Y )\{X}.

Example 2 For Figures 3a and 3b, P(Y )\{X} = {V1, V2} is not sufficient to block all causal
paths from C′ = {V1, V2, V3, V4} to Y . In Figure 3a, the reason is that blocking using V2 opens the
path V4 → V2 L9999K Y for V4 to cause variability in Y . In Figure 3b, the reason is that the latent
structure Y L9999K V4 enables V4 to cause Y even when the path V4 → V2 → Y is blocked. For
both Figures 3a and 3b, Z∗ = (P(Y )\{X}) ∪ {V4}.

X Y

V1 V2

V3 V4

(a)

X Y

V1 V2

V3 V4

(b)

Figure 3: Example semi-Markovian model with latent variables involving C′ and Y .

Definition 4 (Pearl, 2009; Rohrer, 2018) A variable is a collider or an inverted fork when it is
causally influenced by two or more variables.

Note 6 If we condition/block using a collider (and/or it’s descendants) then the common causes
of the collider become statistically dependent (Berkson, 1946; Cole et al., 2010). For example, if
alcohol and smoking are common causes of high blood pressure then it is not necessary that these
common causes are correlated in the population at large. However, if we restrict our attention to
(condition on) those with high blood pressure then we introduce a non-causal dependence between
alcohol and smoking. 1

Example 3 For Figure 4, despite Y having descendants, (P(Y )\{X}) ∪ {V4} blocks all causal
paths from C′ to Y . This is because descendants of Y can never be a cause of variability in Y . In
Figures 4a and 4b, V5 (a descendant of Y ) cannot cause Y through the edge Y → V5. Moreover, V4

(an ancestor of Y ) cannot cause Y through V5 because V5 is a collider on the path V4 → V5 ← Y .
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X Y

V1 V2

V3

V5

V4

(a)

X Y

V1 V2

V3

V5

V4

(b)

Figure 4: Example Semi-Markovian Models with latent variables involving C′ and Y , and Y having
descendants.

Denote the set of ancestors (including itself) of W in G′
X̃

as A(W ). Denote the subgraph of G′
X̃

restricted to A(Y ) as G′
X̃,A(Y )

. Based on the insights from Examples 1 to 3, we write Theorem 5.

Lemma 5 For finding a solution to Problem 1, it is sufficient to work with the subgraph G′
X̃,A(Y )

.

Proof The proof follows from the fact the graph under consideration is acyclic. Hence, the
descendants of a node can never be its causes even in the presence of latent structures.

3.3. Solution to Problem 1

We now combine the insights from Theorems 1, 3 and 5 to provide a solution to Problem 1.

Theorem 6 The smallest Z such that Y ⊥ (A(Y )\{X,Y })\Z|Z in G′
X̃,A(Y )

is a solution to
Problem 1.

Proof The proof follows from the fact that Z such that Y ⊥ (A(Y )\{X,Y })\Z|Z in G′
X̃,A(Y )

blocks all causal paths from C′ to Y .

Theorem 6 provides a sufficient condition for a set Z to be a solution to Problem 1. We next
provide a method to construct a set Z that satisfies this sufficient condition.

Let a path composed entirely of bi-directed edges be called a bi-directed path.

Definition 7 (Tian and Pearl, 2002). For a graph G, the set of observed variables V , can be
partitioned into disjoint groups by assigning two variables to the same group if and only if they are
connected by a bi-directed path. Assume that V is therefore partitioned into k groups S1, . . . ,Sk. We
will call each Sj ; j = 1, . . . , k, a c-component of V in G or a c-component (abbreviating confounded
component) of G. The Sj such that W ∈ Sj is called the c-component of W in G and is denoted as
CW,G . As {S1, . . . ,Sk} is a partition of V , c-component of a variable always exists and is unique.

In Example 2, we observed that due to the presence of latent structures involving Y , P(Y ) was
not sufficient to block all causal paths from C′ to Y . However the parents of c-component of Y in
G′
X̃,A(Y )

would be sufficient for that purpose.

1. The reader may refer to the tutorials Collectively Exhaustive and Causal Graphs by David Childers for understanding
the basic concepts related to causal graphs.
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Theorem 8 The smallest Z such that Y ⊥ (A(Y )\{X,Y })\Z|Z is the set of parents of c-
component of Y in G′

X̃,A(Y )
excluding X denoted as P(CY,G

X̃,A(Y )
)\{X}.

Proof The proof follows from Corollary 1 (Tian, 2002), which states that a node is independent of
its ancestors excluding the parents of its c-component given the parents of its c-component.

Note 7 In a Markovian model there are no bi-directed paths, Therefore, the elementary partition
of A(Y ) is the c-component of G′

X̃,A(Y )
. Therefore, CY = {Y }, and P(CY,G

X̃,A(Y )
)\{X} =

P(Y )\{X} in G′
X̃,A(Y )

. This matches with our insight in Example 1, where we observed that

Y ⊥ (A(Y )\{X,Y })\(P(Y )\{X})|(P(Y )\{X}).

3.4. Stability of the Solution to Problem 1

We next discuss some concerns with using Z∗ (a solution to Problem 1) as a blocking set. We provide
a method to address those concerns.

Definition 9 Post-treatment ancestors of (excluding X) of the response are those ancestors of
(excluding X) of the response who are also the descendants of the treatment.

Denote the post-treatment ancestors of the response while studying the causal effect Y |do(X) as
M(Y |do(X)), and the set of descendants (including itself) of W in G′

X̃,A(Y )
as D(W ).

Lemma 10 M(Y |do(X)) = (D(X) ∩ A(Y ))\{X,Y }.

Proof The proof follows directly from Theorem 9.

Example 4 In Figures 5a and 5b, there exist post-treatment ancestors (excluding itself) of the
response. Blocks created using these covariates are not well-defined. For instance, we are interested
in studying the causal effect of a drug on blood pressure. Suppose anxiety level mediates the effect
of drug on blood pressure, i.e., drug→ anxiety→ blood pressure. If we create blocks using anxiety
then the blocks will change (i.e., become unstable) during the experiment because change in the drug
level will cause the anxiety level to change. Therefore, it is reasonable not to create blocks using
these covariates. With this insight, for Figure 5a, (P(Y )\{X}) ∪ {V4} blocks all (pre-treatment)
causal paths from C′ to Y . However, we cannot simply delete the post-treatment ancestors (excluding
itself) of the response from the subgraph G′

X̃,A(Y )
of interest. This is because the presence of latent

structures between pre- and post-treatment ancestors of the response affects blocking set of interest.
For instance, in Figure 5b, V1 is a collider on the path V3 → V1 ← V6. Hence, keeping V1 in the
blocking set will open this path for V3 to cause variability in Y . Therefore, for Figure 5b, we need
(P(Y )\{X}) ∪ {V3, V4} to block all (pre-treatment) causal paths from C′ to Y .

Definition 11 For studying the causal effect of X on Y , a blocking set Z , is said to be stable if
Z ∩M(Y |do(X)) = ϕ.

Theorem 12 A stable solution to Problem 1 is Z∗ = (P(CY,G
X̃,A(Y )

\{X})\M(Y |do(X)).

Proof The proof follows from Theorem 10.
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X V6 Y

V1 V2

V3 V4

V5

V7

(a)

X V6 Y

V1 V2

V3 V4

V5

V7

(b)

Figure 5: Example semi-Markovian models with post-treatment ancestors of Y .

3.5. Final Algorithm

We next provide steps to obtain a stable solution to Problem 1 based on Theorems 6, 8 and 12. First,
we reduce G to G′

X̃,A(Y )
. Next, we obtain the set Z = P(CY,G

X̃,A(Y )
)\{X} which is the smallest set

such that Y ⊥ (A(Y )\{X,Y })\Z|Z in G′
X̃,A(Y )

. Finally, we dropM(Y |do(X)) from Z to get a
stable solution to Problem 1.

Denote the edge W1 →W2 as directed-edge(W1,W2), a path consisting of directed edges from
W1 to W2 as directed-path(W1,W2), and a path consisting of all bi-directed edges from W1 to W2

as bi-directed-path(W1,W2). Algorithm 1 outlines the psuedocode of the proposed algorithm to
obtain a stable solution to Problem 1.

3.6. Time Complexity of Algorithm 1

We next show that Algorithm 1 is an efficient polynomial-time algorithm. Finding if there exists
a path between any two nodes in a directed graph can be done using breath-first-search which has
the worst-case time complexity of O(|V|2). Algorithm 1 first reduces G to G′

X̃,A(Y )
which involves

finding variables with edges going into X taking O(|V|) steps, finding variables with no path into Y
taking O(|V|3) steps, and finding all ancestors of Y taking O(|V|3) steps. Algorithm 1 next finds
the c-component of Y involves traversing all pairs of variables: O(|V|2), and finding if there exists
a bi-directed path between any pair of variables: O(|V|2). Therefore, the total time at this step is
O(|V|4). Finally Algorithm 1 findsM(Y |do(X)) which involves finding descendants of X taking
O(|V|3) steps, and finding ancestors of Y taking O(|V|3) steps. Therefore, the time complexity of
Algorithm 1 is O(|V|4).

3.7. Implementing Algorithm 1

We demonstrate the implementation of Algorithm 1 to obtain a stable solution to Problem 1 for a
general semi-Markovian causal graph, G given in Figure 6.

We first obtain the graph GAn
X̃
(Y ). We next obtain the c-components (following Theorem 7) of

G
X̃,A(Y )

are {X}, {Alcohol,Anxiety, Y,Cholesterol}, {Food-Habits}, {Age}, and the c-component
of Y is {Alcohol,Anxiety, Y,Cholesterol}. We next obtain the set of parents of the c-component of Y
as {X,Alcohol,Cholesterol,Food-Habits,Age,Anxiety}. The setD(X)∩A(Y ) is {X,Y,Anxiety,Sleep-Quality}.

11
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Algorithm 1 Stable-Causal-Blocking (G, X, Y )

1: for i in 1, . . . , |V| do ▷ Reducing G to G
X̃

2: if ∃ directed-edge(Vi, X) then
3: delete directed-edge(Vi, X) from G
4: for i in 1, . . . , |V| do ▷ Reducing G

X̃
to G′

X̃
5: if ∄ directed-path(Vi, Y ) then
6: delete Vi from G
7: A(Y )← {Y }
8: for i in 1, . . . , |V| do ▷ Reducing G′

X̃
to G′

X̃,A(Y )

9: if ∃ path(Vi, Y ) then
10: A(Y )← A(Y ) ∪ {Vi}
11: Si = {Vi}, i = 1, . . . , |V| ▷ Finding CY,G

X̃,A(Y )

12: for i in 1, . . . , |V| do
13: for j in 1, . . . , i do
14: if ∃ bi-directed-path(Vi,Vj) then
15: Si ← Si ∪ Sj ;Sj ← ϕ

16: i← 1;S ← S1
17: while Y /∈ S do
18: i← i+ 1;S ← Si
19: P(S) = ϕ ▷ Finding P(CY,G

X̃,A(Y )
)

20: for i in 1, . . . , |V| do
21: for W in S do
22: if ∃ directed-edge(Vi,W ) then
23: P(S)← P(S) ∪ {Vi}
24: D(X)← {X} ▷ Finding D(X)
25: for i in 1, . . . , |V| do
26: if ∃ directed-path(X,Vi) then
27: D(X)← D(X) ∪ {Vi}
28: Z ← (P(S)\{X})\(D(X) ∩ A(Y ))\{X,Y }.
29: return Z

Finally, we obtain the final set as:

({X,Alcohol,Cholesterol,Food-Habits,Age,Anxiety}\{X})\({X,Y,Anxiety,Sleep-Quality}\{X,Y })

= {Alcohol,Cholesterol,Food-Habits,Age}.

4. Experimental Evaluations

In this section, we provide experimental evaluations to compare our method with other choices of
sets of covariates to create blocks. For the causal graph, G provided in Figure 6, we are interested in
studying the causal effect of Drug (X) on Blood-Pressure (Y ).

We considered a simple setting where all variables under consideration are binary variables
taking values in {0,1}. We used a simple joint probability distribution that factorizes according to the

12



LEVERAGING CAUSAL GRAPHS FOR BLOCKING IN RANDOMIZED EXPERIMENTS

Drug (X) Anxiety Blood Pressure (Y )

Alcohol CholesterolFood-Habits Age

Sleep-Quality Palpitations Strenuous-Activity

Blood-Sugar

Figure 6: The Original Graph G.

Table 1: Causal effect estimate and variability in the response.

Blocking set Causal effect Variance
ϕ, i.e. no blocking 0.6910 0.2126
{Food Habits} 0.6950 0.2098
{Food Habits, Alcohol} 0.6960 0.2028
{Food Habits, Alcohol, Cholesterol} 0.6760 0.2001
{Food Habits, Alcohol, Cholesterol, Age} 0.7150 0.1754

given causal graph. We then performed simulated randomized experiments for different choices of
sets of covariates to create blocks. The estimated causal effect and the variability in the response
for different choices of blocking sets are provided in Table 1. We observe that the variability in the
response is the smallest for the choice of covariates obtained using the algorithm proposed in this
paper. For details of the experimental evaluations, refer to Appendix B.

5. Conclusion and Future Work

We investigated the problem of finding a stable set of covariates to be used for forming blocks, that
minimizes the variance of the causal effect estimates. By leveraging the underlying causal graph, we
provided an efficient algorithm to obtain such a set for a general semi-Markovian causal model.

In the future, we are interested in extending our work towards further pruning the stable causal
blocking set obtained in this paper for the reasons of economic cost. If the experimenter has a
constraint on the cardinality (size) of the blocking set due to budget limitations, i.e. |Z| ≤ k1 where
k1 is specified by the experimenter. Furthermore, if blocking variables have different economic costs
associated with them, for example, getting data on cholesterol level may be costlier (or difficult) as
compared to the age of the patient, then we can introduce a knapsack budget constraint. Let e(Z) be
the cost associated with Z ∈ Z then the knapsack constraint would be

∑
Z∈Z e(Z) ≤ k2 where k2 is

specified by the experimenter. We are interested in solving the problem of finding stable solutions to
Problem 1 with additional cardinality or knapsack constraint on the feasible solutions. Furthermore,
we are interested in extending our work for the cases when the treatment and response variables
are sets of variables. For the future direction to use the proposed algorithm for different real-world
applications, refer to Appendix C.
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Appendix A. Expectation and Variance of Causal Effect without and with Blocking

In this section, we calculate the expectation and variance of the causal effect without blocking
(defined in (2)) and with blocking (defined in (8)).

A.1. Expectation and Variance of β̂

We calculate the expectation of β̂ as

E (β̂) = E (Ȳ (1))− E (Ȳ (0)). (16)

In general, due to non-homogeneous experimental units, E (Ȳ (x)) ̸= E (Y (x)), x = 0, 1. Let Z be
the covariates causing non-homogeneity, rewrite (16) as

E (β̂) = EZ
(
E (Ȳ (1)|Z)

)
− EZ

(
E (Ȳ (0)|Z)

)
. (17)

For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = E (Y (1)|Z), x =
0, 1. Thus,

E (β̂) = EZ (E (Y (x)|Z))− EZ (E (Y (0)|Z)) , (18)

= E (Y (1))− E (Y (0)) = β. (19)

We next calculate the variance of β̂ as

Var (β̂) = Var (Ȳ (1)− Ȳ (0)). (20)

Let Z be the covariates causing non-homogeneity, we rewrite (20) as

Var (β̂) = Var Z
(
E ((Ȳ (1)− Ȳ (0))|Z)

)
+ EZ

(
Var ((Ȳ (1)− Ȳ (0))|Z)

)
, (21)

= Var Z
(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
+ EZ

(
Var (Ȳ (1)|Z) + Var (Ȳ (0)|Z)

)
. (22)

(22) uses linearity of expectation and randomization.
For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = Y (x)|Z, x =

0, 1, and Var (Ȳ (x)|Z) = 1
nx,z

Var (Y (x)|Z), x = 0, 1. Therefore,

Var (β̂) = Var Z (E (Y (1)|Z)− E (Y (0)|Z)) + EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
(23)

Define β(Z) := E (Y (1)|Z)− E (Y (0)|Z). Therefore,

Var (β̂) = Var Z (β(Z)) + EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
(24)

= EZ (β(Z)− EZ(β(Z)))2 + EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z
n0,z

)

)
(25)

= EZ (β(Z)− β))2 + EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
(26)

(26) uses EZ(β(Z)) = EZ(E (Y (1)|Z))− EZ(E (Y (0)|Z)) = E (Y (1))− E (Y (0)) = β.
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A.2. Expectation and Variance of β̂Z

We calculate the expectation of β̂Z as

E (β̂Z) = E

(∑
Z

P̂(Z)
(
Ȳ (1)|Z − Ȳ (0)|Z

))
, (27)

=
∑
Z

E
(
P̂(Z)(Ȳ (1)|Z − Ȳ (0)|Z)

)
, (28)

=
∑
Z

E
(
P̂(Z)

) (
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
, (29)

=
∑
Z

P(Z)
(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
, (30)

= EZ
(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
= β. (31)

We next calculate the variance of βZ as

Var (β̂Z) = Var Z

(
E

(∑
Z

( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)

))
+ EZ

(
Var

(∑
Z

( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)

))
,

(32)

= Var Z

(∑
Z

E ( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)

)
+ EZ

(∑
Z

Var ( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)

)
,

(33)

= Var Z

(∑
Z

E (Ȳ (1)|Z)− E (Ȳ (0)|Z)P̂ (Z)

)
+ EZ

(∑
Z

(
Var (Ȳ1|Z) + Var (Ȳ0|Z)

)
P̂ (Z)

)
,

(34)

(33) and (34) use linearity of expectation and randomization.
For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = E (Y (x)|Z), x =

0, 1, and Var (Ȳ (x)|Z) = 1
nx,z

Var (Y (x)|Z), x = 0, 1. Therefore,

Var (β̂Z) = Var Z

(∑
Z

β(Z)P̂(Z)

)
+ EZ

(∑
Z

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
P̂(Z)

)
,

(35)

= EZ

(∑
Z

β(Z)P̂(Z)− EZ

(∑
Z

β(Z)P̂(Z)

))2

+
∑
Z

Var (Y (1)|Z)
n1,z

EZ(P̂(Z))

+
∑
Z

Var (Y (0)|Z)
n0,z

EZ(P̂(Z)), (36)
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= EZ

(∑
Z

β(Z)P̂(Z)− β

)2

+
∑
Z

Var (Y (1)|Z)
n1,z

P(Z) +
∑
Z

Var (Y (0)|Z)
n0,z

P(Z), (37)

= EZ

(∑
Z

β(Z)P̂(Z)− β

)2

+ EZ

(
Var (Y (1)|Z)

n1,z

)
+ EZ

(
Var (Y (1)|Z)

n1,z

)
, (38)

= EZ

(
Var (Y (1)|Z)

n1,z
+

Var (Y (0)|Z)
n0,z

)
+ EZ

(∑
Z

β(Z)P̂(Z)− β

)2

. (39)

Appendix B. Details of the Experimental Evaluations

In this section, we provide details of the experimental evaluations.

B.1. Variable Definitions

For the semi-Markovian causal graph, G given in Figure 6, we define the treatment and response as
follows.

Drug =

{
1, if an individual receives the drug,
0, otherwise,

Blood-Pressure =

{
1, if an individual has high blood pressure,
0, otherwise,

We define the observed covariates as follows.

Food Habits =

{
1, if an individual’s food habits are unhealthy,
0, otherwise,

Blood-Sugar =

{
1, if an individual has high blood sugar,
0, otherwise,

Age =

{
1, if an individual is above 40 years of age,
0, otherwise,

Alcohol =

{
1, if an individual consumes alcohol,
0, otherwise,

Cholesterol =

{
1, if an individual has high cholesterol,
0, otherwise,
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Anxiety =

{
1, if an individual has anxiety,
0, otherwise,

Sleep Quality =

{
1, if an individual’s sleep quality is bad,
0, otherwise,

Palpitations =

{
1, if an individual suffers from palpitations,
0, otherwise,

Strenuous Activity =

{
1, if an individual does strenuous activity,
0, otherwise.

The graph G in Figure 6 has three unobserved variables. We label them as Anxiety L99 U1 99K
Alcohol, Anxiety L99 U2 99K Blood-Pressure, and Blood-Pressure L99 U3 99K Cholesterol. We
consider each of U1, U2, and U3 to be identically and independently distributed as Uniform(−0.15, 0.15).

B.2. Probability Distributions

For the observed variables, we consider the following probability distributions. For x ∈ {0, 1},

P (Food Habits = x) = 0.5,

P (Age = x) = 0.5,

P (Alcohol = x) = Food-Habits[(0.3 + U1)(1− x) + (0.7− U1)x]

+ (1− Food-Habits)[(0.3 + U1)(1− x) + (0.7− U1)x],

P (Cholesterol = x) = Age[(0.3 + U3)(1− x) + (0.7− U3)x]

+ (1− Age)((0.3 + U3)(1− x) + (0.7− U3)x),

P (Anxiety = x) = Drug[(0.3 + U2)(1− x) + (0.7− U2)x]

+ (1− Drug)((0.3 + U2)(1− x) + (0.7− U2)x),

P (Sleep Quality = x) = Anxiety[(0.3 + U2)(1− x) + (0.7− U2)x]

+ (1− Anxiety)((0.3 + U2)(1− x) + (0.7− U2)x),

P (Blood-Pressure = x) = W [(0.3 + U1 − U2)(1− x) + (0.7− U1 + U2)x]

+ (1−W )[(0.3− U1 + U2)(1− x) + (0.7 + U1 − U2)x],

where W = Alcohol× Cholesterol× Anxiety× Sleep-Quality.

B.3. Baselines

For empirical comparisons, we constructed the following baselines by choosing some representative
subsets of the observed covariates.

1. ϕ: No blocking, i.e., a completely randomized design. We use this as a baseline to compare if
our blocking set performs at least better than no blocking.

2. {Food Habits}: Food Habits affect the response (Blood-Pressure) through a mediator, Alcohol.
We use {Food Habits} as the blocking set to see how using only a non-parent ancestor of the
response compares with our blocking set.
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Table 2: p-values for the difference between causal effect estimates.

p-value {Food
Habits}

{Food Habits,
Alcohol}

{Food Habits,
Alcohol,
Cholesterol}

{Food Habits,
Alcohol, Choles-
terol, Age}

ϕ 0.9511 0.9389 0.8196 0.7103
{Food Habits} 0.9877 0.7723 0.7565
{Food Habits, Alcohol} 0.7606 0.7682
{Food Habits, Alcohol, Cholesterol} 0.5490

3. {Food Habits, Alcohol}: As discussed above Food Habits affect the response through Alcohol.
We use {Food Habits, Alcohol} as the blocking set to see how only this parent and non-parent
ancestor pair compare with our blocking set.

4. {Food Habits, Alcohol, Cholesterol}: This subset includes the above parent and non-parent
ancestor pair, {Food Habits, Alcohol} and one more parent of the response, Cholesterol while
leaving out Cholesterol’s parent, Age. We use {Food Habits, Alcohol, Cholesterol} as the
blocking set to see how leaving out Age in the presence of a latent variable path compares with
our blocking set.

B.4. Simulation and Estimation

We performed the experiment with no blocking by randomizing the treatment (Drug) 100 times. For
performing the experiment with blocking, we first created blocks using the chosen set of covariates
and then randomized the treatment within each block. Using the above probability distributions, we
generated/simulated 100 samples of the response (Blood-Pressure). We calculated the causal effect
of the drug on blood pressure as the average of the response. We repeated the above experiment 10
times. The estimated causal effect and the variability in the response (averaged across 10 runs) for
different choices of blocking sets are provided in Table 1.

B.5. Testing for Statistical Significance

We tested for the statistical significance of all pairwise differences between the estimates of the
causal effect using different blocking sets using a t-test. The p-values are provided in Table 2. From
Table 2, we observe that the p-values for all pairwise differences in causal effect estimates are quite
high. Hence, we conclude that these differences are not significant. This confirms the idea that
blocking does not alter the causal effect estimates. We tested for the statistical significance of all
pairwise ratios of the estimates of the variability in the response using different blocking sets using
an F -test. The p-values are provided in Table 3. From the last column of Table 3, we observe that
the p-values for comparing the variance using our blocking set with other blocking sets are fairly low
(maximum being 0.2567). We can say that the differences in variance are significant at a 25.67%
level of significance.
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Table 3: p-values for the ratio of variance estimates.

p-value {Food
Habits}

{Food Habits,
Alcohol}

{Food Habits,
Alcohol,
Cholesterol}

{Food Habits,
Alcohol, Choles-
terol, Age}

ϕ 0.4738 0.4074 0.3818 0.1701
{Food Habits} 0.4331 0.4071 0.1872
{Food Habits, Alcohol} 0.4735 0.2385
{Food Habits, Alcohol, Cholesterol} 0.2567

Appendix C. Future Direction to use the Proposed Algorithm for Different
Real-World Applications

In this section, we discuss some future directions to use the proposed algorithm for different real-
world applications. The proposed algorithm efficiently obtains a stable and variance-minimizing
set of covariates to be used for forming blocks while performing random experiments. Random
experiments are commonly used to study the causal effect. For instance in answering the following
questions. Does a new seed variety help in improving crop yield? Does a new medicine help in
alleviating muscle pain? Does offering discounts help in product adoption? Does recommending a set
of products improve the user-satisfaction? From a reinforcement learning standpoint, an intervention
like a new seed variety, a new medicine, a new promotional offer, a new product recommendation,
etc. can be seen as an action, and the response like the crop yield, reduction in muscle pain, number
of product adoptions, user-satisfaction, etc. can be regarded as the reward. A common question
in reinforcement learning is to find a reward-maximizing action that is equivalent to finding good
interventions in randomized experiments. Hence, the algorithm proposed in this paper can be used in
the efficient and low-variance estimation of causal effects to identify good actions/interventions in
different real-world applications. We are interested in the applications of the proposed algorithm
to offline (Kempe et al., 2003; Umrawal and Aggarwal, 2023; Umrawal et al., 2023) and online
(Agarwal et al., 2022; Nie et al., 2022) social influence maximization – the task of selecting a set
of individuals on a social network to be given some discounts to cause a large cascade of further
product adoptions.
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