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Abstract

With advances in technology, gene expression measurements from single cells can be used to gain
refined insights into regulatory relationships among genes. Directed graphical models are well-
suited to explore such (cause-effect) relationships. However, statistical analyses of single cell data
are complicated by the fact that the data often show zero-inflated expression patterns. To address
this challenge, we propose directed graphical models that are based on Hurdle conditional distri-
butions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being
zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equiv-
alence class in general, we show that, under a natural and weak assumption, the exact directed
acyclic graph of our zero-inflated models can be identified. We propose methods for graph recov-
ery, apply our model to real single-cell gene expression data on T helper cells, and show simulated
experiments that validate the identifiability and graph estimation methods in practice.

Keywords: Bayesian network, causal discovery, directed acyclic graph, identifiability

1. Introduction

Graphical models specify conditional independence relations among variables in a random vector
Y indexed by the nodes V of a graph G = (V, £) with edge set £ (Maathuis et al. 2019). Models
based on undirected graphs may be used to explore conditional independence between any two
variables Yy and Yy given all others (YW)W;&U,V, as represented by the absence of an edge between
V and U in €. Models based on directed acyclic graphs (DAGs), for which £ is comprised of
directed edges, capture conditional independence structure that naturally arises from cause-effect
relationships between the variables.

In biology and genetics, graphical models have been applied to infer the structure of gene regula-
tory networks based on measurements of gene expression (Maathuis et al. 2019, Part V). Traditional
technologies produce expression levels aggregated over hundreds or thousands of individual cells,
and these bulk measurements are frequently modeled using the assumption of Gaussianity. In di-
rected Gaussian graphical models, the exact structure of the underlying DAG cannot be identified
from purely observational data, and the target of inference becomes an equivalence class of DAGs.
For instance, one cannot differentiate between V' — U and U — V when the variables are as-
sumed bivariate normal. In the Gaussian case, directed graphical models posit linear functional
relationships between the variables coupled with additive Gaussian noise. A more recent line of
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Figure 1: Kernel density of a selected gene (IL7R) and scatter plots of its relationship with three other genes (BcL6,
CCR?7, Fyn) from the T helper cell data analyzed in Section 6.

work emphasizes that directed graphical models that alter this assumption to nonlinear functional
relationships and additive noise (Peters et al. 2014), or linear relations and non-Gaussian noise
(Shimizu et al. 2006; Wang and Drton 2020), or linear relations with homoscedastic Gaussian noise
(Peters and Biihlmann 2013; Chen et al. 2019) are amenable to causal discovery in the sense that
different DAGs are no longer equivalent.

More recent technology obtains sequencing measurements of mRNA present in single cells.
This new technology, as well as the larger sample sizes it provides, promise to give more information
than bulk measurements, but at the same time bring in a unique new challenge. At the single cell
level, genes appear as “on” with positive single cell gene expression levels, or as “off” with the
recorded measurements zero or negligible (McDavid et al. 2019). This pattern is shown in Figure 1,
which is based on a single-cell dataset with 1951 measurements from eight healthy donors, which
we analyze in Section 6. The figure clearly shows the large number of zero values in each gene
as well as the nonlinear relationships between genes. These effects create challenges for existing
causal discovery procedures. Specifically, disentangling the on/off status of the genes from the
quantitative mRNA expression levels requires new methods that account for the zero inflation, i.e.,
the excessive number of zeros in the data. Motivated by the Gaussian-like distribution of the mRNA
expression levels, a natural choice is to model the causal network using conditional zero-inflated
Gaussian distributions.

In this paper, we propose two versions of directed graphical models for zero-inflated data, and
prove that under a weak assumption the exact DAG can be recovered from the joint distribution.
Our new graphical models build on the recently-proposed Hurdle graphical model of McDavid et al.
(2019), but facilitate estimation of DAGs from observational single-cell sequencing data. In contrast
to McDavid et al. (2019), our models are also not limited to zero-inflated Gaussian distributions,
as we allow variables that are “on” to be non-linear polynomial functions of other variables and
stochastic noise. The proposed model and corresponding identifiability theory differs from the
recent proposal of Choi et al. (2020), in which the data are always counts, with additional zero-
inflation. Specifically, we model the on/off status of each gene, conditional on its parents, with
a Bernoulli random variable. Then, conditional on the event that the gene is on, the expression
level is modeled by a Gaussian distribution depending on the parents. After presenting two directed
graphical models for zero-inflated data in Section 2, in Section 3, we show that under our models, the
distributions that can be represented by two different DAGs must be distributions of two-Gaussian
type (Definition 7). We then prove that such distributions do not exist for dimension m = 2 and
m = 3; we also conjecture they do not exist for m > 3. Moreover, we are able to prove that under
a natural and practical assumption, we have full identifiability in the sense of being able to identify
the exact DAG underlying the model. In Section 4, we introduce different methods for estimation
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of the DAG. Simulation studies supporting the use of these methods are given in Section 5, and
they are then applied to the T-follicular helper cell dataset (Section 6). Throughout the paper, we
use subscripts to refer to entries in vectors and columns in matrices. When used as a subscript of a
vector, a set of nodes/indices selects the corresponding entries from the vector, e.g., Yy, = (yv)veyp.

2. Directed Graphical Models for Zero-Inflated Data

2.1. Hurdle Joint Distributions for Zero-Inflated Continuous Observations

We start by reviewing the undirected Hurdle graphical model. McDavid et al. (2019) proposed a
Hurdle joint distribution with density

1
f(y; A, B,K) o exp <11;A]1y +1,By — 2yTKy> , y € R™, (1)

with respect to A, where A is the sum of a point mass at 0 and the Lebesgue measure on R, and
A = (a5)ij, B = (Bij)ij, K = (kij)i; € R™*™ are matrices of interaction parameters with K
positive definite. The indicator vector 1, = (1,40}, -- -, Ly, 20y) € {0,1}™ captures which
components of y are non-zero.

Suppose Y € R"™ follows the Hurdle joint distribution. Intuitively, the density in (1) is obtained
by combining an Ising model for the indicator vector 1y and a conditional normal distribution for Y’
given its nonzero pattern 1y . The Ising model postulates a probability mass function proportional
to exp (1, Aly). The conditional normal distribution has density p (Y = y|ly = 1,;B,K) o
exp (]l;jr By — %yTKy) with respect to the Lebesgue measure restricted to the subspace of R™
compatible with 1,. The exponential specification in (1) entails that conditional independence
between two variables is equivalent to the corresponding entries in all interaction matrices A, B,
K being 0. In other words, oi;; = «j; = B;j = Bji = kij = kj = 0if and only if Y; and Y
are conditionally independent given all other variables. Indeed, it is easy to see that the induced
conditional distribution of Y; given all other variables Y _; in Y, has density

pYi=ulY_i=y )= flysouit+a) 1y  +B _y i, Bi+BLly . —k _y i ki), (2
that is, the distribution is a Hurdle distribution in m = 1 dimension with parameters «, 3, and k
being linear functions in Y _; and 1y _,; here f is the univariate version of (1).

2.2. Hurdle Conditionals

The observation in (2) above gives rise to the following definition. Recall that X is the sum of a
point mass at 0 and the Lebesgue measure on R.

Definition 1 ((«, 3, k)-Hurdle conditionals) Ler X be a scalar random variable, and let Z be an
m-dimensional random vector. We say that the conditional distribution of X given Z is of («, 3, k)-
Hurdle type if it admits conditional densities with respect to X of the form

X alZ— ) — M (xigy = P (U2 + B(2)w — ka?/2) .
»( | )= fogr(X12) o Thexp (a(2) 1 P2 (2) @) 41 3)

Here, a and 5 are functions of Z (and its indicator vector).
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Reparametrizing, we give another intuitive formulation of Hurdle conditionals that clearly ex-
hibits their nature of a mixture between a point mass at 0 and a conditional Gaussian distribution.

Definition 2 ((p, i, 0?)-Hurdle conditionals) Let X be a scalar random variable, and let Z be
an m-dimensional random vector. We say that the conditional distribution of X given Z is of
(p, p, 02)-Hurdle type if it admits conditional densities with respect to \ of the form

PX =512 = 2) = [7),2(X12) = (1= )1~ 1) + plalt s enp (-0,

Here, p and p are functions of Z (and its indicator vector).

It is easy to show that the two parametrizations (3) and (4) are connected through

2
log P —a+ﬁ—1log<k>, ,u:%, 02:1. (5)

1—p 2k 2 o k
That is, the conditional log odds of being nonzero is linear in & and quadratic in 3, and the condi-
tional Gaussian mean is proportional to 8. While the («, 3, k)-parametrization takes canonical pa-
rameters «(Z), f(Z) and k using a representation as exponential family, the moment parametriza-
tion directly models the conditional mixing probability p(Z), and the mean p(Z) and variance
o2 parameters of the conditional Gaussian distribution. We thus refer to (3) as the canonical
parametrization, and (4) as the moment parametrization.

2.3. Directed Graphical Models for Zero-Inflation Data

Consider an m-dimensional random vector Y whose components are indexed by the vertices of a
DAG G = (V,€) and whose distribution is dominated by a product measure on R™. A graphical
model based on G requires that the density of the joint distribution admits a factorization as

f(y) = H Jv (yV‘ypa(V)) ) (6)

Vey

where each factor fy (yv ]ypa(v)) is a conditional density for yy given its parent variables y (v

The set of parents is defined to be pa(V) ={U : U — V € £}.

In Section 2.1, we observed that, for the Hurdle joint distributions (1), the conditional distribu-
tion of any Y; given the others is an («, 3, k)-Hurdle with k& constant, and « and 3 linear functions
of those variables (and their indicators) that are conditionally dependent on Y;; see (2). Motivated
by this fact, we specify directed graphical models for zero-inflated data by assuming the condi-
tional densities in the factorization in (6) to be (c, 3, k)- or (p, i, 0?)-Hurdle conditionals. We then
assume the parameters in these conditionals to be Hurdle polynomials in its parents, as defined now.

Definition 3 (Hurdle polynomials) Let Y = (Yy)vey € R™ be a random vector indexed by a set
V, and suppose S C V. If S # &, define the space of Hurdle polynomials in y5 as

T
H(Y,S) =< co+ ch H ng’U H ]lyv, co€R, TeEN,
j=1 Uel; Vey;

Cj#O,UjQS,VjQS\Uj,dj’UGN VUGUJ' Vi=1,...,T, (1)
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where N = {1,2,...}. This is the set of polynomials in values and indicators of nodes in S.
If S = @, define H(Y;S) = R. The degree of a Hurdle polynomial as specified in (7) is

max Y. dju + |V;|. Here | - | denotes the set cardinality.
=L T yey,

In the definition (7), for the j-th term in the polynomial, c; is its polynomial coefficient, V; is the
set of nodes that define the term only through their indicators, while I{; is the set of those whose
values directly define the term, with {d; i }yey; the corresponding exponents.

We are now ready to formally define our models.

Definition 4 (DAG models for zero-inflated data) Let G = (V, £) be a DAG with |V| = m nodes.
A zero-inflated conditional Gaussian DAG model associated with G is a set of joint distributions on
R™ that admit a density (with respect to \"™) that factors as in (6) with each conditional density

fv (yv \ypa(v)) being a Hurdle conditional

(1) in the («, B, k)-parametrization with parameters «vy, By and ky, where ky is constant, oy
and By are Hurdle polynomials in Ypa(v); OF

(2) in the o?)-parametrization with parameters py, (v and o2, where o2 is constant,
b, ki, 14 p p H \% Vv

log(pv /(1 — pv)) and py are Hurdle polynomials in Y,y

It is clear from (5) that if we let the relevant parameters to be Hurdle polynomials of any degree,
the two parametrizations are equivalent, meaning that given an underlying DAG, they share the
same space of all possible joint distributions. However for computational convenience it is useful
to bound the degree. In later applications, we will only consider degrees up to three.

3. Identifiability
3.1. Strong Identifiability

As we show next, the directed graphical models from Definition 4 are amenable to causal discov-
ery in the sense that the DAG underlying the model is uniquely identifiable from a given joint
distribution. More precisely, we prove identifiability under a mild assumption on the Hurdle con-
ditionals. Let n(yg) € H(Y;S) be a Hurdle polynomial for a subset S C V. For U € S, let
mu(yv) = 7(yu, 0) be the restriction of m(yg) obtained by setting all entries other than y;; to zero.
Then 7y (yy) € H(Y;{U}) is a univariate Hurdle polynomial.

Definition 5 (Strong Hurdle polynomials) Ler 7(ys) € H(Y';S). We say m(ys) is a strong Hur-
dle polynomial if all of its restrictions i (yu) take at least three different values. In other words,
for each U € S, the Hurdle polynomial 7(yg) contains at least one term of the form cjyg, with
c; #0andd > 1.

Our first theorem gives an identifiability result that invokes a faithfulness assumption; see Sec-
tion 15.3.2 of Maathuis et al. (2019) for a definition and discussion of faithfulness.

Theorem 6 (DAG identifiability with strong Hurdle polynomials) Ler f(y) be a joint density
with respect to \™ that is faithful w.r.t. and factors according to a DAG G = (V, &), as in (6).

Suppose for each V. € V, the conditional fy (yv|ypa(v)) is of Hurdle type with parameters
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(av,Bv, kv) or (pv, pv, o). If for each V, ay + B | (2kv ), or equivalently log(py /(1 —pv)), is
a strong Hurdle polynomial, then there does not exist any other DAG G’ # G such that f(y) factors
and is faithful w.r.t. G'.

In the proof in Appendix A, we show that the restriction on the parameters of the Hurdle condi-
tionals is actually stronger than what we need for identifiability. However, the assumption of strong
Hurdle polynomials is very natural in that it specifies a weak form of hierarchy among interactions
by requiring that the conditional distributions are parametrized to include at least one univariate
power term in every parent variable and not just indicators or interaction terms with other parents.

3.2. Weak Identifiability

Without assuming the Hurdle polynomials for the conditional distributions to be strong, we can still
offer a weaker identifiability result that shows that the distributions in the intersection between the
models obtained from two Markov equivalent DAGs with Hurdle polynomial parameters always
have to be of what we call two-Gaussian type. In our definition of this concept, we write ¢( - ; 1, /)
for the univariate normal density function with mean p and inverse variance v.

Definition 7 Let Y = (Yv)vey be a random vector, and let W, U € V be the indices for two
of its components. Further, let P C V\{W,U} be a set of additional indices. Then the joint
distribution of Y is of two-Gaussian type w.r.t. (W, U, P) if the following holds for both V.= W
and V = U: There exist a constant v}, polynomials uy (yp), 3 (yp), vy (yp), and functions
Y (yp) and c (yp) such that for almost every yp € RIPL ¥ (yp) > 0, &Y (yp) > 0, either (a)
i (yp) # ¥ (yp); or (b) v’ # vy (yp) and the conditional density

P(Yy=y[Yv #0,Yp=yp) =c{ (yp)d (y; nY (yp). 1 )+c5 (yp)o (y; 1y (yp), v3 (yp))

is a mixture of exactly two distinct Gaussian distributions with means polynomial in yp; the inverse
variance parameter is an absolute constant for one of these distributions and polynomial in yp for
the other. If P = O, then two-Gaussian type w.r.t. (W, U, @) requires that both P(Yyw |Yiw # 0) and
P(Yy|Yy # 0) are mixtures of exactly two distinct univariate Gaussian distributions with constant
parameters, respectively.

We next recall an observation from Proposition 29(ii) in Peters et al. (2014); see Section 1.8 of
Maathuis et al. (2019) for background on Markov properties.

Proposition 8 Suppose the distribution of Y is Markov and faithful with respect to two distinct
Markov equivalent graphs G and G'. Then, there must exist nodes W and U such that W — U in G
and U — W in G', while P = pag(U)\{W} = pag:(W)\{U}.

Remark 9 Proposition 8 is at the heart of many proofs of DAG identifiability, which combine it
with suitable probabilistic conditioning to reduce the comparison of two DAG models to bivariate
problems involving the two graphs W — U and W <— U. However, in our setting, a key new chal-
lenge arises because the form of the Hurdle conditionals precludes us from applying conditioning to
form sets of bivariate distributions that are of the considered Hurdle type. Indeed, conditioning on
descendants of the considered variables (i.e., other variables that in the graph can be reached along
directed paths) generally gives conditional distributions that are no longer of the Hurdle type used
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in the definition of our model class. Similar to Proposition 8, our results also require faithfulness,
which is natural in this setting, as limits of parameters recover the Gaussian/binary case for which
faithful distributions exist.

We claim that the intersection of sets of joint distributions represented by two distinct Markov
equivalent G and G’ must be a subset of 2-Gaussian type distributions with respect to a triplet
(W, U, P) obtained from Proposition 8.

Theorem 10 (General Identifiability) Ler Y, G, G/, W, U, P be as in Proposition 8. Let Y have
a \"-density that factors w.r.t. both graphs G and G'. For each H = G, G’, let the node conditionals
in the factorization be Hurdle conditionals with the parameters (049\})1/61/ and (ﬁ?}‘)VEV from (3),

or equivalently (p%}‘)\/ey and (;ﬂ‘}‘)vg; from (4), that are Hurdle polynomials of the form (7), where
for (V, T, H)= (U, W, G)and (V, T, H) = (W, U, G') it holds that

(i) B (yr,yp) (or uit(yr,yp)) depends on at least one of 1, and yr, or
(ii) oﬂ‘} (yr,yp) (or pzf (yr, yp)) depends on the value of yr (and maybe additionally on 1,,,).

Then the distribution of Y must be of two-Gaussian type w.r.t. (W, U, P). In this case we also say
the distribution is of two-Gaussian type w.r.t. G and G'.

Note that the assumption of faithfulness in Proposition 8 implies that we have (i) or (ii) or a con-
dition (iii) that states that of(yr, yp) (or pit(yr, yp)) depends on 1,,. only and B (yr,yp) (or
uz}‘(yT, yp)) is constant in y7. It is case (iii) that we rule out in our assumption of Theorem 10.

The result is proved in Appendix A. It is easy to show that the result also holds if we make
modifications such as restricting the maximum degree of the polynomial or excluding interactions
between the discrete and continuous components. In the two- and three-dimensional cases (i.e.,
m = 2,3) we show in Appendix A that there does not exist a joint distribution for Y that is of two-
Gaussian type with respect to two distinct Markov equivalent graphs. We thus have the following
result on full identifiability for graphs with two or three nodes.

Corollary 11 (Identifiability in two and three dimensions) If |V| < 3, ie., in a binary/triary
setting, there does not exist a joint distribution satisfying the conditions of Theorem 10 that is of
two-Gaussian type w.r.t. two distinct Markov equivalent DAGs G and G'. Thus, strong identifiability
is guaranteed as in Theorem 6, meaning that the sets of Markov and faithful distributions associated
to G and G' must be disjoint.

Theorem 6 and Corollary 11 state that the DAGs are perfectly identifiable if m = 2,3 or if
we assume the Hurdle polynomials to be strong; Theorem 10 claims that without assuming strong
Hurdle polynomials, the distributions for m > 3 from which the graph is not identifiable must be
a subset of the two-Gaussian type distributions. We conjecture that in general, with m > 3, the set
of two-Gaussian type distributions with respect to any two graphs is an empty set. In Appendix B
we show scatter plots of simulated data that give some indication of how Markov equivalent graphs
may be differentiated under our models.
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4. Estimation of DAGs from Zero-Inflated Data

Suppose now that we are given an i.i.d. sample y™), ..., y(™) comprised of m-variate observations.
The log-likelihood function ¢ of any DAG model can be decomposed into the sum of conditional (or
nodewise) log-likelihood functions ¢"" for the V' -th variable conditional on its parent variables. Let
yg/ ), e yg/n ) be the n observations of the V-th variable. For the canonical (o, B, k)-parametrization

from (3), the nodewise log-likelihood function is

v (Oév, Bv, kv ‘y(l), e y(n)> = i (av (yﬁfm) 1w+ By (yﬁfi(v)) y - kvyx(;)Q/Q

— log {\/mexp {CVU (y;;(v)> + 5\2/ (yl(j;(v)) /(2kv)} + 1}) )

for the moment (p, y, 02)-parametrization from (4) it is

A (pV,MV,O’xQ/ ‘y(l), o ) Z 1Og{1 —pv ( ég(v)”

zyV ) =0

+ > [1ogpv (80 — 5 loatenot) — {u? — v (y<'>(v>)}2/<2a%>].

i:y‘(/i>760

In the latter case, we see the sum of the log-likelihood functions from the loglstlc regression model
for py and the linear regression for - restricted to the observations with yV # 0. Here we recall
that the parameters ay, Sy, pv, py are themselves polynomials in y,,,y-) and their indicators, and
we are using them as a shorthand notation on the left-hand sides where we really mean ¢V as a
function of the parameters (i.e., coefficients) in those polynomials.

4.1. Fitting Hurdle Conditionals

Estimation of the graphical models amounts to fitting the conditional distribution of one node given
a set of others. For the canonical («, 3, k)-parametrization, the log-likelihood function is convex in
ay, By and ky . Moreover, ay and By are linear in the polynomial coefficients. Therefore, the log-
likelihood is convex in the coefficients to estimate and can be maximized by standard methods; e.g.,
coordinate descent. Estimation for the moment (p, 11, 02)-parametrization (4), on the other hand,
can be easily solved by separately fitting a logistic regression to py and a linear regression to iy .
Recall again that the two parametrizations, canonical and moment, are equivalent when assuming
a full polynomial model, i.e., when the degree and structure of the polynomials is unrestricted.
However, when restricting, for instance, the degree the two parametrizations yield different models.

The (v, 3, k)-parametrization with linear Hurdle polynomials (i.e., degree 1) naturally comes
from conditional distributions of the joint distribution defined for undirected graphical models in
McDavid et al. (2019). However, at least for higher degrees, the (p, i, 02)-parametrization may be
more intuitive and useful in practice as it leads to a decomposition into a logistic regression and
a linear regression. This decomposition enables us to use optimized standard regression solvers
for model fitting. The (p, i1, 02)-parametrization also makes it easy to apply available routines to
incorporate regularization on the coefficients/parameters into our loss, which is helpful when the
number of samples is small compared to the number of parameters. Such higher dimensionality
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of the models arises in particular when assuming a higher degree for the Hurdle polynomials. In
our implementation, we use an ¢, regularization and select its tuning parameter using the Bayesian
information criterion (BIC). We also assume the highest degree of Hurdle polynomials and select
the degree by optimizing BIC simultaneously over the degree and the /5 penalty, so the degree is
separately optimized for each regression (combination of node and its candidate parent set).

4.2. Graph Search

To estimate the underlying DAG, we consider two state-of-the-art methods: (A) exhaustive score-
based search and (B) greedy search. Both methods rely on a model score which we take to be the
BIC defined as v log n — 2¢, where v is the total number of parameters in the model, n is the sample
size, and / is the log-likelihood as introduced in Section 4.

Exhaustive search. Optimizing the BIC over the set of all DAGs is possible for moderately small
m using the dynamic programming algorithm of Silander and Myllymaki (2006). This approach is
justified by the asymptotic consistency of the BIC as well as the identifiability of our model (recall
Section 3). The experiments of Silander and Myllymiki (2006) suggest that for Gaussian models
the search is practical for m < 32. Estimation of our models is computationally more challenging
but exhaustive search is feasible at least for m < 16.

Greedy search. Instead of optimizing BIC over all DAGs, we may apply a greedy search that iter-
atively improves BIC by moving to a neighboring DAG that provides the largest improvement. The
neighborhood is defined using edge additions, deletions, and reversals; compare Chickering (2003).
While Chickering (2003) discusses consistency of graph recovery in terms of equivalence classes,
in our case the algorithm determines individual graphs. For faster estimation in sparse settings, we
consider restricting the maximum node in-degree (i.e., the maximum number of parents).

There are various approaches that may help accelerating the estimation process. As an example,
one can use caching (Ramsey et al. 2017) and dynamic updating (Goudie and Mukherjee 2016) to
save time on computing the likelihoods and checking acyclicity in the current estimated graph. To
speed up the estimation, we cache the BICs of all the nodewise regressions that have been fit so far,
which requires little memory overhead. As the greedy search may be stuck in a local minimum,
the most obvious way to circumvent this is to run the greedy algorithm initialized with multiple
random DAGs with the same number of nodes and different sparsity levels, and choose the output
that has the lowest BIC. Alternatively, one can first estimate an undirected graph using the method
of McDavid et al. (2019), and initialize the search with multiple directed graphs whose moral graph
is the estimated undirected graph. Moreover, to scale to larger m, we can first use the procedure of
McDavid et al. (2019) to identify the connected components of the estimated undirected graph and
then estimate the directed edges in each connected component. This procedure is justified by the
fact that the connected components for the underlying true undirected and directed graphs coincide.

5. Numerical Experiments

Our numerical studies in this section aim to verify identifiability and exact DAG recovery. Due to
space limitation, we present the results for the exhaustive search in the main paper. Following the
discussion in Section 4.2, we use our self-implemented greedy search (GDS) (Chickering 2003) with
BIC score, as well as an exhaustive search with dynamic programming (Silander and Myllyméki
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20006). The results for the greedy search—which facilitates estimation of much larger DAGs—show
similar trends and are presented in Appendix B.

To illustrate the performance of exhaustive search, we consider three DAG structures: (i) chain
graph with m = 10, (ii) complete graph with m = 10, and (iii) lattice graph with m = 9. For each
structure, we consider true generating conditional distributions using the following parametriza-
tions: a) (v, 3, k)-(canonical) parametrization with linear Hurdle polynomials, b) (p, i1, % )-(moment)
parametrization with linear Hurdle polynomials, and ¢) (p, 1, 02)-(moment) parametrization with
quadratic Hurdle polynomials. We note that the distributions represented by c) is a superset of those
by a) and b). By (5), distributions represented by a) and b) are disjoint because log(p/(1 — p)) is a
weighted sum of o and 32.

Recall the definition of Hurdle conditionals in (3) and (4) in Section 2.2. In our experiments,
whenever pa(V) = @, we generate yy ~ fo such that fo(z) = 3(1 — 1,) + 3¢(z;0,1), where
¢ is the standard normal density. Otherwise, for parametrization a), we use Hurdle conditionals
with parameters kv = 1, av(Ypav)) = Bv(Ypar)) = 2Zvepa(v) (Lyy — yu); similarly for
parametrization b) we take o = 1, log 1f%(ypa(v)) = ZUepa(V) (1y, +yu)and MV(ypa(V)) =
> Uepa(v) (Lyy — yu); finally, for parametrization c) we take o = 1 and log 1f#(ypa(v)) =

2
> Uepa(V) (]lyU +yu + %) + 15 ZU,VE;I;};;(V)(H?JU +yu)(Ly, +yv), and py (Ypar)) =

2
> Ucpa(V) <]1yu —yu — %) + 15 ZU,I/Z?;;(V) (Lyy 1y, —youly, —yvly, —yvyu). We then

normalize the coefficients in the above expressions (1, £1/10) such that ay, By, log py /(1 —py)
and py have means O and 1, respectively, across the samples. This normalization ensures that
the marginal probability of being nonzero, the marginal mean, and the marginal variance for each
node are stabilized, in order to show that the DAGs are truly recovered based on the conditional
dependency structure instead of additional signals from these marginal quantities. In fact, in the
generated samples the marginal probability is about 0.5 and the marginal mean is about O for all
nodes, and the marginal variance for the nonzero part only is about the same for all except the source
node (see Figure S2 in the Appendix for some scatter plots of the data generated). To assess the
effect of misspecified parametrizations, for each combination of true DAG and true data generating
parametrization—(c, 3, k)-linear and (p, u1, 0%)-linear and quadratic—we estimate the DAG using
all three parametrizations for generating data.

The results are shown in Figures 2. Due to space limitation, only results for correctly specified
models are presented in the main paper, and the expanded results with misspecified models are given
in the Appendix. Each row of the figure corresponds to one of the three graphs (chain, complete,
lattice) and each column corresponds to results using one estimating parametrization. The plots
show the average true positive rate (TPR) and false discovery rate (FDR) over B = 100 iterations,
defined as TPR = |S N Sp|/|So| and FDR = |S\Sp|/ max{|S|, 1}, where S denotes the estimated
set of (directed) edges, and .Sy the set of true edges.

The results indeed indicate that in all settings, exhaustive search with correct parametrization
almost always identifies the exact DAG for large n. The results in the Appendix show that model
misspecification does not seem to negatively impact the performance. Overall, our simulation stud-
ies confirm the identifiability theory (Theorem 6).

10
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6. T Helper Cell Data

In this section we present the results of applying our model to a T helper cell expression dataset.
Specifically, the dataset is considered in McDavid et al. (2019) and contains both single cell and
10-cell expression measurements for T helper cells for 80 genes in eight healthy donors. We use all
1951 single cell measurements for these donors (a superset of the 465 measurements in McDavid
et al. (2019)) to ensure we have a large enough sample size to produce reliable estimates. In partic-
ular, McDavid et al. (2019) consider only the T-follicular (CXCR5*PD1%) cells that produce high
levels of proteins CXCRS5 and PD1, while we do not make this restriction. Instead, we add the in-
dicators of CXCR5* and PD1*" as regressors when fitting the conditional distributions. Following
McDavid et al. (2019), we choose the 61 genes that have at least 5% zero and 5% nonzero values.

While the measurements are all nonnegative, the minimum, mean, and standard deviation of the
nonzero values in the dataset are 7.89, 18.53, and 1.91, respectively. We thus assume zero-inflated
conditional Gaussianity without considering the effect of truncation from below at 0. Following
Section 4.2 we first estimate the connected componenets using the method from McDavid et al.
(2019) for undirected graphs, and proceed with estimation of DAGs for each component. We use
the (p, u1, 02)-parametrization as it is more flexible than the (o, 3, k), and extra fixed covariates
and controlling factors can be easily added, since fitting the conditionals only involves linear and
logistic regressions. As discussed in Section 5, the (p, i1, 02) is also more robust than (a, 3, k). We
use polynomials up to degree three and data-adaptively choose the optimal degree by BIC.

To estimate the DAG, we use the greedy search (GDS) algorithm, which shows promising per-
formance in the simulations in Appendix B. We also use the stability selection procedure of Shah
and Samworth (2013) to control the FDR at 10% for each connected component. For smaller con-
nected components, if controlling the FDR at 10% is not possible, we pick the sparsest graph that
maximally maintains the connectivity. Finally, we restrict the node in-degrees to five, in order to
both speed up estimation and to constrain the search space. This constraint is motivated by the fact
that in gene regulatory networks, each gene is only expected to be regulated by a small number of
other genes (Albert 2005). In contrast, since genetic networks often involve hub genes that regulate
many others, we do not restrict the out-degree.

Figure 3 shows the estimated directed network along with the undirected network obtained using
the method of McDavid et al. (2019). Overall, the estimated DAG structure is very similar to the
undirected graph, with few differences including isolated nodes that only have a single edge with
weak association in the undirected network.

7. Discussion

Motivated by the recent advent of single-cell sequencing technologies, we propose new methods
for learning DAGs from zero-inflated data. Our procedures take advantage of two key features of
single-cell transcrimtomics data, namely, the zero-inflation, and the large number of observations
from individual samples. Our key contribution is establishing identifiability of DAGs from obser-
vational zero-inflated data. Specifically, we prove that the exact DAG can be recovered from the
joint distribution under reasonable assumptions. We also show that in the most general case, the
distributions from which the DAGs are not identifiable only form a small subset, which we prove to
be empty in the bivariate and trivariate cases. While our proof uses a very general result on DAGs
from Peters et al. (2014) as its first step, our models do not fit into the framework in that paper; we
thus take a different approach that considers the zero-inflation and polynomial structures directly.

11
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Figure 2: Simulation results for exhaustive search. Each row corresponds to a different graph (chain, complete, lattice).
In all cases, estimation methods match true parametrizations. ‘Q’ with solid lines: true positive rate; ‘A’
with dashed lines: false discovery rate.

Our approach is based on factorizing the joint distribution into zero-inflated conditional Gaus-
sian distributions with parameters polynomial in the parents and their indicators of having nonzero
values. We present models in terms of two parametrizations, one called («, 3, k) that is linked to
the undirected graphs studied in McDavid et al. (2019), and the other called (p, i1, o%) that directly
models the conditional moments. Both approaches have computational appeal. In particular, the
(o, B, k)-parametrization leads to convex loss functions in the parameters to be estimated, while the
(p, p, 0%)-parametrization offers the additional benefit of allowing one to utilize standard software
for logistic and linear regression. We combine these models with two state-of-the-art estimation
procedures, namely greedy DAG search (GDS) and exhaustive search with dynamic programming.
We also validate our identifiability theory using extensive numerical studies. These experiments
indicate that the exhaustive search algorithm is effective in correctly identifying DAGs with small
number of nodes. For moderate to large DAGs, the GDS algorithm offers a reasonable alternative,
with performance comparable to the exhaustive search when the sample size is large enough.
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Figure 3: Estimated graph for T helper single cell data. Left: Undirected graph using the method of McDavid et al.
(2019), with edge width and saturation representing the edge strength. Right: Directed graph using our
method with stability selection Shah and Samworth (2013) to control FDR.

Several extension of our work would be of interest. The first is to prove our conjecture that the
sets of distributions from which the DAG is not identifiable are also empty for graphs with more
than 3 nodes. The second is proving the consistency and investigating finite sample properties of
the proposed estimation procedures. Finally, it would be interesting to extend our model to zero-
inflated distributions under a truncation to the nonnegative orthant R”"*, which would be of interest
for nonnegative omics data by generalizing the score matching loss (Hyvéarinen 2005, 2007; Lyu
2009; Yu et al. 2019) to data of mixed type.
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A. Proofs

In this appendix we present proofs for the theorems and corollaries in the paper.

We first prove the following lemma that states that if two sums of distinct (ignoring the multi-
plicative constant) exponentials of polynomials in y € R™ agree almost everywhere in R™, then
they must have the same number of terms and there must be a 1-1 correspondence between the
terms.

Lemma 12 Let the number of variable be m > 1 and the degree be p > 1. Let D = {d € ZZy -
1 <377, dj < p} be the set of nonnegative integer-valued m-vectors with {1 norm € [1,p|. Given
avector a € RIPl indexed by d € D (i.e. ag € R for all d € D), define

o (yia)=exp | Y aa[]u |

deD  j=1

the exponential of the corresponding polynomial of degree < p iny € R™. Note that f"™) does not
have a constant term, and has degrees d € D and coefficients a
Suppose we have

Na
> ap ™ (y;a’ Z b6 (y; b') 8)
i=1

for almost every y = (y1,...,ym) € R with respect to the Lebesgue measure, where N, > 0,

N, >0, {a’} N, are N, distinct vectors in RIP, {b’}f\f:”1 are Ny, distinct vectors in RIP! (otherwise
just combine the coefficients), and a%, bé € R\{0} for all i. In other words, both sides of (8) are a
sum of distinct exponentials of polynomials.

Then we must have N, = Ny, and there is a permutation w of {1, ..., N, } such that al = b
and a% = bg(l), i.e. there is a 1-1 correspondence between the summands on both sides of (8).
Proof [Proof of Lemma 12] First note that both sides of (8) are continuous functions, and so is their
difference, which is 0 almost everywhere by assumption. Thus, the inverse image of the open set
R\ {0} under the difference is also open, and must be the empty set since it has measure 0. (8) thus
holds for all y € R™.

We prove by induction on m, and first show the result for m = 1. In this case, f(V(y1;a) =
exp(a1yr + -+ apy’f), and a is just a p-vector.

First suppose N, # 0 and N, # 0. Observe that as " +oo, if ag # 0, the function
apexp(aix + - - - + a,aP) goes to

(i) ap #0ifa; =---=a, =0,0r
(i) 0ifag,, () <O where dmaxo(a) is the largest d € {1,...,p} such that ag # 0, or

(i) +00if ag,,._o(a) > O.

Rearrange the terms on the left of (8) so that for each 1 <i < j < N, we have (a’ —
aJ)dmax _o(ai—as) > 0, and denote this total order as a' > a’. Rearrange the right-hand side

similarly. By the assumption that {az}iz1 are distinct, a’ — a’ # 0, so Amax£0 (a' — a’) exists and
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this rearrangement is possible. Now dividing both sides of (8) by f()(y1;a') = exp(aly; + - +
azy}) we have

Nq Ny
@+ b Dial —al) = 30V - al) ©)
i=2 i=1

Since a(l) # 0, and by the unique maximality of a', as y; * 400, all terms in the summation
on the left go to 0 (case (ii)). Thus, the right-hand side necessarily also goes to aj # 0, landing us
in case (i) for at least one (and only one because b’ are unique) term on the right, i.e. b'—a' =0.
(A nonzero finite limit cannot come from a sum of terms that go to +oco with positive and negative
weights, since they must grow at different rates by uniqueness of b’ —a'.) Since summands on both
sides are sorted, we must have b' = a'.

Then (9) becomes al — b+ SN al fO) (y1; 0" — a') = SN, b F D (y1; b — al). If afy # b,
by the same reasoning there exists another i € {2,..., Ny} such that b' — a' = 0, violating
uniqueness of {bl}fvz”l Thus, a} = b} and @' = b, and we have reduced the number of summands
on both sides of (9) by 1 to

> apfVyia’ —a') =Y by b - al).
=2 =2

Continuing this process by each time dividing both sides by f O (y1;a’ —a’~1), we would have
matched min{N,, NV} } pairs of coefficients between the a and the b groups. If N, # N, assume
N, > N, without loss of generality, then

Ny
Z ab fV(y1;a’ — a™) = const.
i=Np+1

Here the right-hand side is a constant that could be nonzero, because the argument for aj = b}
in our first elimination step does not apply here. Dividing both sides by f (1)(y1; a™Mtl — gMv),
we have aévbﬂ + ZfV:leH ab fD(y;at — a™et) = fW(yy;aNe — a™F1). By maximality of
a™+1 among a1, ... aMNe, the left-hand side goes to ag®*! # 0as y; 7 +oo, while since
aMe > g™t the right-hand side goes to +o0, a contradiction. Thus, N, = Ny, af) = bf) and
a’ =b'fori=1,...,N,, proving the m = 1 case when N, # 0 and N}, # 0.

Now consider the case where one of N, and IV is 0; assume without loss of generality that
N, = 0, then by division by f(1) (y1; @), the right-hand side is constant 0, while the left-hand side
goes to aj # 0 unless N, = 0,s0 N, = N;, = 0.

Now suppose the result holds for some m — 1 > 1, and suppose either N, # 0 or N, # 0,
otherwise there is nothing to prove. We denote a; as the subvector of a corresponding to d with
di > 1, 1.e. {ad}deD, d;>1, and a_1 as that of a with d; = 0. Separating out the terms involving

Y1,

m m
Fyra)y=expd S Y vl |wirexn | Y @G J]wf

d=1 \deD,dy=d j=2 deD,di=0  j=2
=Y (yi:al, (y_y) F™ D(y_y;a’ ),



YU DRTON SHOIJAIE

where al,(y_;) : R™~! — RP is a vector-valued function in y_,, with d-th coordinate a polyno-
. ; d; . . ; .

mial 3 5cp g, —q g H;”:2 y;’,and coefﬁqents correspondmg to af. Note that there is a one-to-one

correspondence between such a function a’, and vector aj. So we can rewrite (8) as

Nq
Zaﬁf(l)(yﬁazu(yq))f(m_ (y_1;a’y) Zbof (13 b1 (y_ 1)) S D (y_y5bLy)

i=1

for all y € R™. Then collecting terms with the same f(1) (same a? (a’,) or b (b},)),

C

k}b
> V(i cl(y-y) § a fmV(y | q +§ b”fm D(y_;;69) 3 =0, (10)
/=1

j=1

where C' > 0, each ¢! (coefficients for cf,) is some a’ or bi, and {cf}¢ /—; are distinct. Here, let
{k{q, ... ,kin%, v kg, k%nac} be a permutation of {1,..., N,}, and {k},, ... ,kll’ by

koo, .. ,kgnb } a permutation of {1,..., Np}.
C

Since {c{}7 | are distinct, {c{,}¢ , are distinct finite polynomials in y_, € R™~1. For each
pair of such distinct polynomials, the lemma of Okamoto (1973) implies that they only agree at a
Lebesgue-null subset of R” !, so all polynomials are distinct except on a null set. Thus, for almost
every fixedy_; € R™1, the left-hand side of (10) is a sum of C' > 0 distinct f(1)’s in y; multiplied
by constant weights depending on y_;. But the right-hand side is a sum of 0 terms, so by the result
for m = 1 we necessarily have

a
Ty

S ag? frD(y_y;al Z b D (g6 (an

J=1

forall ¢ = 1,...,C for almost every y_;. F1x1ng € E {1,...,C}, forany 1 < j; < jo < nf,

ka. ka. k k .
a1 # a %2 and a1 =a, 2 implies a i £a ’2 , and similarly for b. Thus, each term on

the left-hand side of (11) has its unique coefﬁ01ents and similarly for the right-hand side. Since
(11) holds for almost every y_4, by the result for m — 1 variables, we must have nj = nlg and each
ko, Kb . k. Kb .
ao“ = bol“(] ) and af{ = bff @) for some permutation 7 of {1,... ,n;}, which in turn implies
a b
a’li = b0 for all Jj = 1,...,n§ by construction of the groups £ = 1,...,C. Since this holds
forall /, N, = 260:1 ny = Zg’;l nY = N, and we have thus again matched each a’ with a b’ as
well as the corresponding ag’s with bg’s. This ends the proof for m, and the entire proof. |

Proof [Proof of Theorem 6] Suppose G and G’ have the same node set V and are Markov equivalent,
otherwise the distributions represented by them are trivially not identical.

Now suppose p(Y') is Markov and faithful with respect to G and G’, and factorize w.r.t. both
graphs with strong Hurdle polynomial parameters. Then by Proposition 8, there exist V; and V5
such that V; — V5 in G, Vo — Vi in G’ and P = pag(V2)\{V1} = pag/(V1)\{V2}. Following
the arguments in the proof of Proposition 8 in Peters et al. (2014), recursively marginalizing out
nodes without children but having the same parents in both graphs, we eventually obtain structures
as follows, where .4 and B are some unknown node sets and V5 does not have any children in Graph

g:
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Vi Vp Vi Vp
NN N\
V1 — V2 V1 — V2
{ l
Vi Vi
Graph G Graph G’

We consider the (v, 3, k)-parametrization only, since the result for the (p, 11, o%) naturally fol-
lows from their relationship (5). For notational simplicity write V; and V5 as nodes 1 and 2. Suppose
after marginalization above we are left with nodes Vy C V which include 1, 2, V4, Vg and Vp
illustrated above. Now let Y77 = 0 for all U € Vp\{2}, and let Y5 # 0. Then the joint distribution
p(Ys = y2 # 0,9y, = 0) using G is proportional to

I exp{av (Ypag(v) Ly, + Bo(YUpag 1)) yv — kvyir/2}
vey, V 27T/kV exp{av(ypag V)) + /BV(ypag(V))Q/(2kV)} +1

o exp{B2(0)ys — kay3/2}

Y270,9y\ {23 =0

since 2 does not have any child in G. But using G’, the same joint distribution is proportional to

H eXp{aV ypag/(V)) yvy + BV(ypag/(V)) kQ/y\%'/2}
AL 2Ty exp{a (Upagy (1)) + B Wpagy ()2 (2 )} + 1

oc exp{35(0)y2 — kjy3/2}

Y270,9y,\ {23 =0

1
X
eroti Ll o) VTR el () + o OF @)} 1

where in the case where pag/(2) = @ replace a5(0) and 35(0) by constants a5 and S35, and
ay;(y2,0) and B}, (y2, 0) denote setting all parents other than 2 in the Hurdle polynomials «; and
B, to 0. Since the two joint distributions derived from both graphs must be proportional to each
other, we get for yo # 0

exp [y2{B5(0) — B2(0)} — (k5 — k2)y3/2]
T [V e om0+ Btm 0@k} 41 a2)

UecPU{1}, 2€pag (U)

Note that 2 € pag (1) and thus the product on the right of (12) has at least one term. Thus, suppos-
ing that for at least one of U € P U {1} such that 2 € pag (U), af;(Y2,0) + 3;,(Y2,0)%/(2k;)
is nonconstant in Y2 # 0, then the right-hand side of (12) can be expanded into a sum of at least
two exponentials of polynomials in y» (including the constant 1 as a degenerated exponential poly-
nomial), while the left-hand side is a single polynomial in 2. This is a contradiction according
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to Lemma 12, and thus the assumption of having strong Hurdle polynomials as the parameters in
the Hurdle conditionals implies that p(Y") cannot be represented by both G and G’, which ends the
proof. |

Proof [Proof of Theorem 10] As in the proof of Theorem 6 using Proposition 8, under the assump-
tions there exist V; and V5 such that P = pag(V2)\{Vi} = pag (V1)\{V2} with Vi — V3 in G
and Vo — V7 in G'. Following the arguments in the proof of Proposition 8 in Peters et al. (2014),
recursively marginalizing out nodes without children but having the same parents in both graphs,
we again obtain structures as follows:

Vi Vp Vi Vp
NN N\
V1 — V2 V1 — V2
\ 1
Vi Vi
Graph G Graph G’

To ease the notation assume we again write V| = 1 and V5 = 2.Note that the distribution of each
node conditional on some other nodes is the sum of a point mass at 0 and a continuous distribution
over R, which follows by induction and the fact that the indefinite integral of a continuous density
is continuous and that the sum of continuous densities is continuous. We focus on the continuous
components, and wish to reach the conclusion using the factorization

Py, p2|Yp =yp) = P(|Y» = yp)P(y2ly1, Y » = yp)
= P(yp|Yp =yp)P(n1ly2, Yr = yp),

where the second terms in both decompositions are a regular Hurdle conditional w.r.t. G and G,
respectively, and we write the first terms as

P |Yp =yp) ocexp{ly, o1 + fi(y1)}

and
P(ya|Yp = yp) o exp{ly,d5 + fo(y1)}

in terms of the conditional densities w.r.t. \. Here f; and f} are continuous functions in R with no
additive constant term, and 67 and (55 are constants.

We prove the results in the («, 3, k)-parameterization only, since results for the (p, 1, o?)-
parameterization would follow from their relationship (5). In our model, we assumed the « and
[ parameters for each node to be polynomial in the parents and their indicators. We also assumed
that for each node, either the 3 function is nonconstant in any of the parents, or o depends on the
value of all of its parents.

Consider a generic [ function associated with some generic parent set P = P; LI {po} with
po € P1 # @ and suppose that 5 is nonconstant in any of P, and write 5(yp) equivalently as

B(Ypos yp,)- Then B(yp) has the form B_1(yp,) + fo(yp, )Ly, + Sy Bi(yp,)yi, where by
construction 31 through 3 are (potentially constant or even zero) Hurdle polynomials in yp, , but
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there must exist some j = 0, ...,k such that 3; is nonzero. By the lemma of Okamoto (1973),
Bj(yp,) # 0 for (Lebesgue) almost every yp, € RIP1I. Thus, 8 (Ypo» Yp, ) is nonconstant in 3y, for
almost every yp, € R, Formally, define

V3 .po P = {yP1 e RPI . I3 (ypo, 31731) nonconstant function in ypo} .

Thus RI71| \V3,po, P, has zero Lebesgue measure assuming /3 is nonconstant in its any of 7. Hence,
by a similar argument, under the assumptions of the theorem, letting

Va.Bpo P = {yP1 er™l.p (Ypo» yp,) nonconstant function in y,, or

& (Ypo> Yp,) depends on the value of yp, } ,

the set R‘P”\ym 8,po,P1 has zero Lebesgue measure.

Now we go back to G and G’. Suppose P # & and that the Hurdle density of node 2 conditional
on {1}LIP in G have o and 3 parameters aa(y1, Yy ) and B2(y1, yp), and let those for 1 conditional
on {2}UP in G' be o} (y2, yp) and B (y2, yp). We also denote Vi = Va, 6,,1,,NVar g1 2., Which
by discussion above contains almost every yp C RIPI.

From now on we thus fix yp € Y, and condition on Y p» = yp, and omit the dependency of the
« and B functions on P, and write them as scalar functions instead notation-wise. By discussion
above, 2 becomes a nonconstant function in y; and ﬁi becomes a nonconstant function in yo. Note
that for P = @, we do not fix or condition on any parent variables and o/l, a9, Bi and (39 are
automatically univariate functions, with 8] and 32 nonconstant by assumption.

The joint density of P(y1,y2|Y p = yp) w.r.t. A thus has two characterizations (up to normal-
izing constants)

exp{lly, 61 + f1(y1) + Ly,02(y1) + y282(y1) — y5ka/2}
V27 [kyexp{az(y1) + Ba(y1)?/(2k2)} + 1
{0 + f5(y2) + Lys 01 (v2) + 9151 () — yiki/2}
V2 /Ky expled (y2) + {81 (y2) 12/ (2k1)] + 1 ’

where as(y1) has the form cqy —1 + Can0ly, + Caoay1 + -+ + ca2,kylf with coefficients being
polynomials in y and their indicators (or constants if P = &), and similarly for S2(y1), o (y2)
and /31 (y2). Note that if the values of 1,, and 1,, are given, these four functions are just polynomials
in y; and yo, respectively.

First condition on the event 1, = 1,, = 1 that has a positive probability. Then (13) becomes

(13)

exp{f1(y1) + ca(y1) + y2Ba(y1) — yska/2} 1
V2 [y exp{as(yr) + Ba(y1)?/(2ka)} +1 "
o exp{ f3(y2) + o4 (y2) + v181(y2) — yik1/2} 1
V27 K] exp{a) (y2) + (B (12)2/ (2K} + 177
for all (y1,y2) € (R\{0})2. (14) has the form

exp{f1(y1) + Pi(y1,92)} _ exp{fo(y2) + Ps(y1,92)}
exp{P2(y1)} +1 exp{Pi(y2)} +1

(14)
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where P; and Ps are polynomials in 4; and y» simultaneously, possibly with interactions from the
y2P2(y1) and y1 81 (y2) terms, and P, and Py are univariate polynomials in y;, y2, respectively. By
cross-multiplication,

exp{fi(y1) + Pi(y1,92) + Pa(y2)} + exp{fi1(y1) + P1(y1,y2)}
= exp{f3(y2) + P3(y1,92) + Pa(y1)} + exp{fo(y2) + Ps(y1,52)}. (15)

Differentiating both sides of (15) with respect to y,

0

i {f1(y1) + Pu(y, ?/2)}} exp {f1(y1) + Pr(y1,92) + Pa(y2)}
+exp{fi(y1) + Pi(y1,92))}

- aa?/l {P3(y1,92) + P2(yl)}} exp { f5(y2) + Ps(y1,v2) + Pa(v1) }

+{621P3(y1>y2)}exp{f§(yz) —I—P3(Z/1,y2)}. (16)

Plugging (15) into the left-hand side of (16),

(A + P1<y1,y2>}] foxp {73(un) + Pa(yr.2) + Palon))}
] + exp { fo(y2) + P3(y1,42) }]

- 882/1 {P3(y1,92) +P2(y1)}] exp{fé(w) + P3(y1,y2) +P2(y1)}

+ {;ylpzz(yl, 3/2)} exp {fa(y2) + Ps(y1.v2)}

which simplifies to

aa{fl(yl) + Pi(y1,92) — P3(y1,92) —P2(?/1)}]
n
x exp { f5(y2) + P3(y1,y2) + Pa(y1) }
+ 88 {f(y1) + Pi(yr, 92) — P3(yhy?)}]
n

x exp { f5(y2) + P3(y1,42)} = 0.

Since exp { f5(y2) + P3(y1,y2)} # 0, this becomes

8?;1 {fityr) + Pi(y1,y2) — Ps(y1,y2) — Pz(y1)}] exp{Pa2(y1)}

+ |:(98y1 {fl(yl) + P1(y1,2/2) — Pg(yl,yQ)} =0. (17)

Focusing on the components that involve y2, we see that
0
o {Pne) — Palons )} e {Pa(u)} + 1
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does not depend on ys. Since (exp(P2(y1)) + 1) > 0, we have

82
0y10y2

{P1(y1,y2) — P3(y1,92)} = 0.
Recall that
Pi(y1,y2) — P3(y1,y2) = ao(y1) + y2B2(y1) — y3ka/2 — o (y2) — v1 B (yo) + yiki /2. (18)

2 d ds! . . .
S(? 0= ﬁ{ﬂ (y1-, Y2) — Pg(:yl, yo)} = %ﬁ“) - B&y(in) implies that 32 and /3] are both linear
with the same coefficient on the linear term. Now that (35 has the form S (y;) = CBy,—1FtCpy 01y, +
CB,,1Y1, Write B2._1,0 = g, —1 + C8y,0 = 2(0) + s, ,0 as a shorthand notation for 5, with indicator
set to 1 while y; set to 0. Similarly define 3._; o = cg 1 + ¢z 0 = B1(0) + cg; 0. Then for

y1,y2 # 0since cg, 1 = Cp; 1, We necessarily have

Yy202(y1) — 181 (y2) = y2(cpy—1 + o0 + Cap151) — y1(car 1 + cpr o+ cpr1y2)
= 420210 — ¥181._1.0,
and so by (18)

Pi(y1,y2) — Ps(y1,y2)
= (o2(y1) — 1B _10 + ¥ik1/2) — (o) (y2) — y2B2-10 + Y3k2/2)
= P 3(y1) — (function in y only).

Plugging this into (17), we get

{d?h {fily1) + Pr3(y1) — P2(y1)}] exp{Pa(y1)} + [d(zin {filyr) + P173(3/1)}}

equals 0, or equivalently

[d?/l {fi(yr) + P1,3(3/1)}] lexp{P2(y1)} + 1] = {djlpz(yl)} exp{P(y1)}-

Then
filw) = / eXP{iig}g{(jS?}(il)l/ uik dyr — P13(y1)
=log[1 + exp{P2(y1)}] — P13(y1) + const.
So for y; # 0,

1 +exp{P(y1)}
exp{P1,3(y1)}

_ 1+ /2n/ksexplaz(y) + Ba(y1)?/(2k2)}
exp{aa(y1) — B, 1 oy1 + yik; /2}

= exp{—az(y1) + ylﬁi;—l,o - y% 1/2}
+/ 27 [ka exp{y1B1. 1 o + Ba(y1)?/(2k2) — yik1/2}. (19)

exp(fi(y1))
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Now condition on the event 1,,, = 1 and 1, = 0. Then (13) becomes

exp{f1(y1)}
V2 [ky exp{as(y1) + B2(y1)?/(2k2)} + 1

which implies that for y; # 0,

1, exp{y151(0) - 3/% /1/2}]1?;17

exp{f1(y1)} o< exp{y181(0) — yik}/2}
+ /27 kg exp {1181(0) — yTk1/2 + ca(yn) + Ba(y1)?/(2k2) } . (20)

Applying Lemma 12 to (19) and (20), by matching the terms we have (conditional on y; # 0) either

—az(y1) + y181, 1,0 = ¥151(0) + const;  or 21
—a2(y1) + y181,_1,0 = ¥151(0) + az(y1) + Ba(y1)?/(2ks) + const  and
y1B1;-1,0 + Ba(y1)?/ (2k2) = y181(0) + const. (22)

Conditional on y; # 0, in the first case (21), aa(y1) = Y1cg; o + const; in the second case (22),

as(y1) + B2(y1)?/(2k2) = const and B2(y1)?/(2k2) = —Y1¢p; o + const, which implies S2(y1) =
const and as(y1) = const for y; # 0, and cp; 0 = 0, which in turn implies (21). Thus, in either
case, a2(Y1) = Cap,0ly, +y1cg; o + const, i.e. az is linear (or constant) in y1 # 0 with coefficient
on y; equal to cg o. By (21) for y1 # 0,

exp{f1(y1)} o< exp{y161(0) — yiky/2}
+ V27 /ky exp{y1 8110 + B2(y1)?/ (2k2) — yiki/2}, (23)
clearly a single univariate Gaussian or a mixture of two univariate Gaussian distributions (since

B2 is at most linear in y;). Similarly, we must have o} (y2) = y2532.-1.0 — y252(0) + const =
Y2Cp, 0 + const for yo # 0, and for yo # 0

exp{f3(y2)} o exp{y232(0) — y3k2/2}
+ /27 /K] exp{yaBa; 1.0 + 81 (y2)°/ (2K)) — y3ka/2}.  (24)

Now suppose by contradiction that exp { f1(y1)} given y; # 0 has only one Gaussian compo-
nent, instead of being a sum of two Gaussian densities. Then by (23), 31(0) = 31, _; 5 and 2(y1)
is a constant given 1,,, i.e. f2(y1) = cg,—1 + €8,0 = P2,—1,0 for y1 # 0. Plugging this into
the left-hand side of (13) and integrating w.r.t. A\(y;), the continuous part (y2 # 0) of the marginal
distribution of y» given Y p = yp is

exp{f1(0) + a2(0) + y22(0) — y3k2/2}
/27 [k exp{aa(0) 4+ $2(0)2/(2k2)} + 1

a2 exp{d1 + f1(y1) + aa(y1)}
+ exp{y2f2;-1,0 Z/zk‘2/2}/R Jom T oxplaan) + Galon)?) (k)] 1

which is a mixture between N (82(0)/k2, 1/k2) and N(B2,-1,0/k2, 1/k2), i.e. the variance in both
components are equal. Note that the integral in the second term is a Lebesgue integral. This together

exp{fa(y2)}

dyi,
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with (24) implies that 3] (y2) cannot depend on the value of yo given yo # 0, i.e. 81 (y2) = ¢ _1 +
cgr0 = B1,_1,0- Since we already know that 81 (0) = j3;,_; o by discussion above, this implies that
f1 is an absolute constant in ys and 1,,, and also that ap may depend on y; only through 1,,, a
contradiction to the assumption of the theorem.

Thus, (23) and (24) will both have to be mixtures of precisely two Gaussians, and so by defini-
tion the joint distribution p(Y") of Y must be of 2-Gaussian type with respect to G and G'. |

Proof [Proof of Corollary 11] When |V| = 2, in Proposition 8 we always have P = @ and V}
does not have a parent in G, so P(Yy; = y|Yy, # 0) by definition is just a Gaussian, not a mixture
two Gaussians, and hence p(Y') cannot be of 2-Gaussian type with respect to any pairs of distinct
Markov equivalent graphs.

Now consider |V| = 3, and assume the two vertices with reversible edges in Proposition 8 are
V1 and V5, and that V; — V5 in G and V; < V5 in G'. If neither V] or V5 has V3 as its parent in both
graphs, then we can marginalize V3 out and it reduces to the 2-d case. Suppose otherwise. Then we
must have (1) V; — Vo < V3in G, or (2) Vo — V; < V3in G, or (3) an additional edge between
V1 and V3 added to (1), or (4) an additional edge between V5 and V3 added to (2).

For (1) and (2) both graphs are the only graph in their Markov equivalence class; for (3) the
reversible edge becomes V;—V3 violating the assumption (and in fact one can marginalize out the
common child V5 and get back to the 2-d case), and similarly for (4). Thus, we have again ruled out
the possibility of any pair of distinct Markov equivalent graphs with respect to which p(Y") can be
of 2-Gaussian type. |

Remark 13 In the proof of Theorem 10, we proved that whenever p(Y') factorizes with respect to
two distinct graphs G and G' (whenever identifiability does not hold), everything up to (24) in the
proof must hold. Specifically, conditioning on almost every yp, as and B2 in G as well as o/ and
B in G’ can be at most linear in yy and vy, respectively, namely

Bi(y2) = car 1+ cproly, +cgrayz,  Bo(yr) = ey 1+ cay 01y, + o101,

/
1
/
1(42) = cay, -1+ o olys +Car1Y2,  Q2(Y1) = Cas—1 + Can, 01y, + Can,1Y1,

L

with coefficients depending on yp where

Ca’l,l = (33,00 Cas,l = Cﬁi}o, 651,1 = CBy,1- 25)

It is noted that, although not used in deriving our conclusion involving 2-Gaussian type distribu-
tions, we in addition also have the following results.

Ca),—1 = Caz,—1,  Ca/,0 = Ca2,0, Caf,—1 + Ca/,0 = Caz,—1 + Cas0 = 0.

These might shed some light on how to show that distributions of 2-Gaussian type do not exist for a
general m > 4.

Proof [Proof of Remark 13]
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By (13), (23), (24), the joint distribution of Y7 and Y5 conditional on Y p has two characteriza-
tions (up to normalizing constants)

exp{ly,d1 +4181(0) — y2k1/2 + Ly a0(y1) + y2Pa(y1) — yska/2}
V21 [ky exp {az(y1) + Ba(y1)?/(2k2)} + 1
LV 21 kg exp{1ly, 61 + Y181, 1 o + Ba(y1)?/(2k2) — yTK1 /2 + Ly, ca(y1) + y2Ba2(y1) — y3ka/2}
v2m/kaexp {az(y1) + B2(y1)?/(2k2)} + 1
~ exp{lLy, 8 + y252(0) — y3ka/2 + 1y, o (y2) + 4181 (y2) — yiki/2}
V2 /Ky exp{a)(y2) + B1(y2)?/(2k)} + 1
L V/2m/k exp{ly, 0 + yabByi-10 + Bi(y2)?/ (2K) — yaka/2 + Ly, ad (o) + 9181 (o) — yka /2
v 2/ Ky exp {a (y2) + B1(y2)?/(2k1)} + 1

(26)

Divide both sides by exp(y1 31 (0) +y282(0) — y3k} /2 — y3ks/2) and expanding 3] (y2) and B2(y1),
this becomes

exp{ly,61 + Ly,a2(y1) + y2¢p, 01y, + Y192¢8,1}
V2m [ky exp {aa(y1) + Ba(y1)?/(2k2)} + 1
Y 27 [k exp{1ly, 61 + y1cgr o + Ba(y1)?/(2k2) + Ly, a(y1) + yacp, 01y, + Y1y2cs, 1}
V2 /kzexp {az(y1) + B2(y1)?/(2k2)} + 1

exp{ly,d + Ly, @ (y2) + y1cpr oLy, + y1y2cs 1}
v2m/kyexp {a)(y2) + B1(y2)?/(2k))} + 1
LV 2m [k exp{1y, 0 + yacp, 0 + B (y2)?/(2k1) + Ly, oy (y2) + yicg; oly, + y1yacs; 1}
V2 /Ky exp{ay(y2) + B1(y2)?/(2k))} + 1 .

Now expanding o (y2) and a2 (y1) and using the relationships in (25), we divide both sides by
exp(Y1€ag,1ly, + y2s,,0Ly +y1y2cs,1) = exp(yicg; oLy, + yocas 11y, +y1y2cp,,1) and get

exp{1ly, 61 + Ly, (Can,—1 + Can0ly, )}
V27 [kz exp {aa(y1) + B2(y1)?/(2k2)} + 1
V27 /ka exp {]ly1‘51 T Yicg o+ B2(y1)?/ (2k2) + Ly (Cag,—1 + Coc270]ly1)}
V27 [kyexp {az(yr) + B2(y1)?/ (2k2)} + 1
_a, exp{ly,d + Ly, (car, -1 + Carolys) }
/2 T exp (a (12) + B2/ (2F))} + 1
o VIR ex0{8085 + a0+ A0/ (2H) + L 1+ o)
V2 [k exp {af (y2) + B1(y2)?/(2K7)} + 1

_'_

27
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for some Cp. Setting 1,,, = 1,, = 0(27) becomes

1+ +/27/ks exp{c%2’71/(2k2)} ‘ 1+ /27 /K] exp{c%ilﬁl/(Qk’l)}
= 0 ,
V27 /ky exp{ca, —1 + 0%27_1/(21432)} +1 V2 /kyexp{ca;, -1 + 6%1,71/(2”1)} +1
(28)

and with 1, # 0, 1, = 0 (27) becomes

1+ /27 /ka exp{yicg; o + B2(y1)?/ (2k2)}
exp(01) 5
V21 [k2 exp{Cay,—1 + Cap,0 + Can1y1 + Ba(y1)?/(2k2) } + 1
L+ 2R explc, |, /(28)}
VR exp{ea 1+ /(2K)} + 1
Since the right-hand side of (29) is a constant, by matching the numerator and the denominator of

the left-hand side using Lemma 12, we must have either (i) Yicg 0 + Ba(y1)?/ (2k2) = Cag,—1 +

Can0 + Can,1y1 + B2(y1)?/(2k2), or (ii) Yicp o + Ba(y1)?/(2ks) = const for y; # 0. But (ii)
implies that cg, 1 = cg; o = 0, which by ¢/ 1 = ¢g,,1 implies that 3] is an absolute constant in
y2 € R, a violation to the assumption. Thus (i) holds, and by €10 = Ca,1 this implies that

= Coexp(cay,—1) (29)

2;-1,0 = Cag,—1 t Can,0 = 0, and by symmetry O/l;—l,O = Cof 1 + Cal,0 = 0. (30)

Thus the left-hand side of (29) is just exp(d1). Note that the right-hand side of (29) is exp(co/1 —1)
times the right-hand side of (28). So by equating the left-hand side of (29) with exp(co/1 —1) times
the left-hand side of (28) we have

1+ /27 kg exp {0%27_1/(2]@)}

exp(d1) = exp (cj, _1) 5 (€2
VR R exp {cap, 1 + ¢, 1/ (k) } 4+ 1)
and similarly
L+ /27 /K exp { &y 1/ (2K))
exp(d5) = exp (Cay,—1) { - } (32)

VIR exp {cag 1+ ¢y, /2H)} +1

Now by (30), with 1, = 1,, = 1, (27) simplifies to exp(d1) = Cp - exp(d5). Thus by (28), (31)
and (32), one get

1++/2m ko exp{C%Q,il/(Qk:z)}

exp(cy, 1)

Co = exp(él) _ V27 /[ ks exp{ca%_r#c%%il/(2k2))+1} _ eXp(C,al’fl)CO
exp(dy) 1++/27 /K] exp{c;iL_l/(Qk’l)} exp(Cay,—1)
eXp(CoQ,_l)
V27 [k} exp{ca/l’_1+c;i’_l/(2k’1)}+1
and thus ¢, 1—1 = Cag,—1- Combining with (30), we get
Cot,—1 = Caz,~15;  Cat 0 = Caz,0, Cal,—1 1 Cat 0 = Cag,—1 1 Ca0 = 0. (33)
Note that this result holds as long as we assume identifiability does not hold. |
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B. Results of Additional Numerical Experiments

Here we provide additional details and results of numerical experiments.

Figure 4 shows the true DAG structures used in the simulation studies in Section 5.

In Figure S5, we present pairwise scatter plots of one instance of data generated with the chain
graph (upper row) and the complete graph (lower row), respectively, both with (p, i, k)-linear
parametrization. Since the true topological ordering is 1 — 2 — 3 — 4 — 5, for clarity we
exclude the source and sink nodes (1 and 5) and only include nodes 2, 3 and 4. Plots on the left are
plotted in the order 2, 3, 4 and those on the right are reversed. In the histograms on the diagonals we
only plot the continuous part.

The scatter plots indicate a slight difference in the respective marginal distributions of nodes 2
and 4 conditioned on node 3 being 0 (and vice versa). This difference intuitively explains how the
orientation 2 — 3 — 4 versus 4 — 3 — 2 can be identified. It is worth noting that other than
this difference, the marginal statistics for the three nodes are indistinguishable and there is little
noticeable difference between plots on the left and on the right.

B.1. Additional Results for Exhaustive Search

Recall that we consider the following DAG structures: (i) chain graph with m = 10, (ii) complete
graph with m = 10, (iii) lattice graph with m = 9; see Figure 4 in B for an illustration of the DAG
structures.

The results for correctly specified models are shown in Figures S6-S8. Each figure has one true
underlying DAG from those mentioned above. In all figures, each row indicates one choice of true
data generating parametrization—(c, 3, k)-linear, and (p, u1, o2)-linear and quadratic—and each
column shows the results using each estimating parametrization. Thus, plots on the diagonal (with

®

Chain, m =5 Complete, m = 5 Lattice, m = 9
Star-in, m = 9 Star-out, m = 9 Tree, m = 10

Figure 4: Example graph structures used in our experiments.
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Variable 2 Variable 4
Cor: Cor: Cor: Cor:
-0.45 0.22 -0.43 0.22
; Variable 3 1 Variable 3

- Cor: o Cor:
. -0.43 o] -0.45
. Variable 4 1 Variable 2

Cor: Cor: Cor: Cor:
-0.30 -0.061 -0.25 -0.061
: Variable 3 - Variable 3

Cor: Cor:
° -0.25 ] -0.30
- Variable 4 7 Variable 2

b
|
T
0

Figure S5: Pairwise scatterplots of zero-inflated data generated using chain graphs (upper row) and
complete graphs (lower row), both with topological ordering 1 — 2 — 3 — 4 — b;
only nodes 2, 3 and 4 are plotted. Plots on the left are plotted in the order 2, 3, 4, and
4,3, 2 on the right. Only the continuous part is plotted in the histograms on the diago-
nals. There is little noticeable difference between the histograms and scatter plots when
we reverse the graph order, yet our methods can still determine the correct topological
ordering.
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bold titles) correspond to correct parametrizations, where the estimating parametrization agrees with
the truth. Off-diagonal plots, in contrast, correspond to cases where the model parametrization is
misspecified.

The results indeed indicate that in all settings, exhaustive search with correct parametrization
almost always identifies the exact DAG for large n. Surprisingly, model misspecification does
not seem to negatively impact the results by a significant amount. Overall, our simulation studies
confirm the identifiability theory (Theorem 6).

Figure S9-S11 show exact recovery rates. In the plots, exact success rates are measured by the
percentage of times (out of B = 100 iterations for each setting) that the exact DAG is recovered,
whereas the equivalent success rates stand for the percentage of times the equivalence class of DAG
is correctly identified, and are thus no less than the exact success rates.

B.2. Results for Greedy Search (GDS)

To evaluate the performance of greedy search we consider the following graphs: (i) chain graph
with m = 100, (ii) complete graph with m = 10, (iii) lattice graph with m = 100, (iv) star-in graph
withm = 20 (j — 1 for j = 2,...,m), (v) star-out graph with m = 100 (1 — j for = 2,...,m),
(vi) tree graph with m = 100 (j — 2j for j < [m/2] and j — 2j + 1 forj < |(m —1)/2]).

Results for the greedy search algorithm are shown in Figures S12 and S13, where each row
corresponds to a different true graph, and each column corresponds to one of the three aforemen-
tioned parametrizations, where for simplicity we only present the results with correctly specified
parametrization.

The results indicate that GDS works reasonably well in all settings but may require larger sam-
ples for recovering the structure of complete/ very dense graphs, or graphs with high in-degrees.
While exhaustive search often succeeds with high probability even with small samples, it may not
be scalable for large m. In such cases, the greedy and faster GDS method, which shows promising
results, provides a viable alternative. Utilizing the stability selection method of Shah and Samworth
(2013) can further improve the GDS results.
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Figure S6: Chain graph, m = 10, exhaustive search. Each row corresponds to a different generating
parametrization, and each column a different estimating parametrization. Generating
and estimating parametrizations agree on the diagonal. ‘¢’ with solid lines: true positive
rate; ‘A’ with dashed lines: false discovery rate.
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Figure S7: Complete graph, m = 10, exhaustive search. Each row corresponds to a different gen-
erating parametrization, and each column a different estimating parametrization. Gen-
erating and estimating parametrizations agree on the diagonal. ‘(’ with solid lines: true
positive rate; ‘A’ with dashed lines: false discovery rate.
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Figure S8: Lattice graph, m = 9, exhaustive search. Each row corresponds to a different generating
parametrization, and each column a different estimating parametrization. Generating
and estimating parametrizations agree on the diagonal. ‘¢’ with solid lines: true positive
rate; ‘A’ with dashed lines: false discovery rate.
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Figure S9: Chain graph, m = 10, exhaustive search. Each row corresponds to a different generating
parametrization, and each column a different estimating parametrization. Generating
and estimating parametrizations agree on the diagonal. ‘o’ with solid lines: success rates
of exact DAG recovery; ‘V’ with dashed lines: success rates for recovery of equivalence
class.
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Figure S10: Complete graph, m = 10, exhaustive search. Each row corresponds to a different
generating parametrization, and each column a different estimating parametrization.
Generating and estimating parametrizations agree on the diagonal. ‘o’ with solid lines:
success rates of exact DAG recovery; ‘V’ with dashed lines: success rates for recovery
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Figure S11: Lattice graph, m = 9, exhaustive search. Each row corresponds to a different gener-
ating parametrization, and each column a different estimating parametrization. Gen-
erating and estimating parametrizations agree on the diagonal. ‘o’ with solid lines:
success rates of exact DAG recovery; ‘V’ with dashed lines: success rates for recovery
of equivalence class.

B.3. Details on Estimation of Connected Components

In this section we present simulation results validating our the strategy in Section 4.2, namely first
applying the procedure of McDavid et al. (2019), then estimating the directed graphs inside each
connected component of its estimated undirected graph. We measure the quality of the connected
components (CC) estimated compared to the truth. The underlying true graph is a block-diagonal
graph with m = 100 nodes, evenly divided into 10 connected components, where each connected
component has the exact same setting as the complete graph with m = 10 nodes in previous sec-
tions. Specifically in each trial, we apply the method of McDavid et al. (2019), pick the estimate
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Figure S12: Results for GDS for chain graph with m = 100, complete graph with m = 10 and
lattice graph with m = 100. Each row corresponds to a different graph structure, and
each column corresponds to a different parametrization; the generating and estimating
parametrizations are the same in the results. ‘{’ with solid lines: true positive rate; ‘A’
with dashed lines: false discovery rate.

that minimizes the BIC (with the exception of metric (b) below) and use the “and” rule to find the
undirected graph (since the estimate is asymmetric due to their neighborhood selection method).

Asin Section B.2, each column corresponds to a different parametrization (estimating parametriza-
tion = truth). As before all results shown are averaged over 100 trials. Each row contains two
different metrics with value in [0, 1], which we explain below.

(a) “Subset/eq CCs”: A trial is count as successful if each true CC is a subset of some esti-
mated CC, i.e. if any two truly connected nodes are estimated to belong to the same CC; the
proportion of successful trials is reported.
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Figure S13: Results for GDS for star_in graph with m = 20, star_out graph with m = 100 and
tree graph with m = 100. Each row corresponds to a different graph structure, and
each column corresponds to a different parametrization; the generating and estimating
parametrizations are the same in the results. ‘{’ with solid lines: true positive rate; ‘A’
with dashed lines: false discovery rate.

(b) “Correct CCs-Oracle”: From the solution path of McDavid et al. (2019) we take the graph
assuming we know the true number of CCs. Then a trial counts as successful if the estimated
CCs are exactly equal to the truth, and the proportion of successful trials is reported.

(c) “Correct #CCs”: A trial is treated as successful if the estimated number of CCs is equal to the
truth (10), and the proportion of successful trials is reported.

(d) “Avg #CCs/10”: Average of the estimated numbers of CCs over 100 trials, divided by the
truth (10).
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Figure S14: Results for GDS for chain graph with m = 100, complete graph with m = 10 and
lattice graph with m = 100. Each row corresponds to a different graph structure, and
each column corresponds to a different parametrization; the generating and estimating
parametrizations are the same in the results. ‘o’ with solid lines: success rates of exact
DAG recovery; ‘V’ with dashed lines: success rates for recovery of equivalence class.

(e)&(f) “TP/FDR”: The true positive rate and false discovery rate for undirected graph recovery.

A high (a) metric guards against the mistake of failing to keep two truly connected nodes in the
same CC, while (c) and (d) measure how many CCs the procedure actually generates, since the
trivial case where all nodes form a single CC is undesirable. Note this characterizes the statistical
versus computational trade-off discussed in Section 4.2. Metric (b), on the other hand, attempts to
test if the procedure can become perfect had it known the true number of CCs. Metrics (e) and (f)
provide additional information from the edge recovery perspective in terms of undirected graphs.
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Figure S15: Results for GDS for star_in graph with m = 20, star_out graph with m = 100 and

tree graph with m = 100. Each row corresponds to a different graph structure, and
each column corresponds to a different parametrization; the generating and estimating
parametrizations are the same in the results. ‘o’ with solid lines: success rates of exact
DAG recovery; ‘V’ with dashed lines: success rates for recovery of equivalence class.

Except for (f) which should be close to 0, one would hope for (a)—(e) to be close to 1, which indeed
is the case, except for the number of CCs for the «, 3, k parametrization.
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Figure S16: Results for the connected components (CC) estimated using the procedure in Mc-
David et al. (2019), compared against the truth (block-diagonal graph with 10 com-
plete graphs each with m = 10). See discussion in Sections 4.2 and B.3.
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