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Abstract
Quantifying cause and effect relationships is an important problem in many domains. The gold
standard solution is to conduct a randomised controlled trial. However, in many situations such
trials cannot be performed. In the absence of such trials, many methods have been devised to quan-
tify the causal impact of an intervention from observational data given certain assumptions. One
widely used method are synthetic control models. While identifiability of the causal estimand in
such models has been obtained from a range of assumptions, it is widely and implicitly assumed
that the underlying assumptions are satisfied for all time periods both pre- and post-intervention.
This is a strong assumption, as synthetic control models can only be learned in pre-intervention pe-
riod. In this paper we address this challenge, and prove identifiability can be obtained without the
need for this assumption, by showing it follows from the principle of invariant causal mechanisms.
Moreover, for the first time, we formulate and study synthetic control models in Pearl’s structural
causal model framework. Importantly, we provide a general framework for sensitivity analysis of
synthetic control causal inference to violations of the assumptions underlying non-parametric iden-
tifiability. We end by providing an empirical demonstration of our sensitivity analysis framework
on simulated and real data in the widely-used linear synthetic control framework.
Keywords: Synthetic Control, Sensitivity Analysis, Structural Causal Models

1. Introduction

Understanding and quantifying cause and effect relationships is a fundamental problem in numer-
ous domains, from science to medicine and economics—see Gilligan-Lee (2020); Richens et al.
(2020); Lee and Spekkens (2017); Jeunen et al. (2022); Dhir and Lee (2020); Reynaud et al. (2022);
Gilligan-Lee et al. (2022); Perov et al. (2020); Vlontzos et al. (2021). The generally-accepted gold
standard solution to this problem is to conduct a randomised controlled trial, or A/B test. However,
in many situations such trials cannot be performed; they could be unethical, exorbitantly expensive,
or technologically infeasible. In the absence of such trials, many methods have been developed to
infer the causal impact of an intervention or treatment from observational data given certain assump-
tions. One of the most widely used causal inference approaches in economics Abadie et al. (2010),
marketing Brodersen et al. (2015), and medicine Kreif et al. (2016) are synthetic control methods.

To concretely illustrate synthetic controls, consider the launch of an advertising campaign in a
specific geographic region, aimed to increase sales of a product there. To estimate the impact of this
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campaign, the synthetic control method uses the number of sales of the product in different regions,
where no policy change was implemented, to build a model which predicts the pre-campaign sales
in the campaign region. This model is then used to predict product sales in the campaign region in
the counterfactual world where no advertising campaign was launched. By comparing the model
prediction to actual sales in that region after the campaign was launched, one can estimate its impact.

In the standard synthetic control set-up, the model is taken to be a weighted, linear combination
of sales in the no-campaign regions. To train the model, one needs to determine the weights for
sales in each no-campaign region that minimise the error when predicting the sales in the campaign
region before the campaign was launched. The linearity of the model is justified by assuming an
underlying linear factor model for all regions, or units, that is the same for all time periods, both
before and after the intervention. Recent work by Shi et al. (2022) has removed the need for the
linear factor model assumption and proven identifiability from a non-parametric assumption: that
units are aggregates of smaller units. This assumption is reasonable in situations like our advertising
campaign example, where total sales in a region is just the aggregate of sales from each individual
in that region. However, in many applications, this assumption does not apply. In medicine for
instance, patients are not generally considered to be aggregates of smaller units. When the aggregate
unit assumption can’t be justified, can the causal effect of an intervention on a specific unit be
identified from data about “similar” units not impacted by the intervention?

Returning to our example, the reason sales in different regions provide good synthetic control
candidates is that the causes of sales in most regions are very similar, consisting of demographic
factors, socioeconomic status of residents, and so on. Informally, sales in “similar” regions act as
proxies for these, generally unobserved, causes of sales in the campaign region. That is, before the
campaign, the causes of sales in the campaign region are also causes of sales in the no-campaign
region—they are common causes of the campaign and no-campaign regions. This relationship be-
tween the target variable and synthetic control candidates is illustrated as a directed acyclic graph,
or DAG, in Figure 1(a). Shi et al. (2021b) combined this formulation with results from the proximal
causal inference literature to prove one can identify the causal effect of an intervention on the target
unit from data about the proxy units not impacted by the intervention. See Tchetgen et al. (2020)
for an overview of proximal causal inference. Hence, in our example, observing sales in multiple
no-campaign regions allows one to predict the contemporaneous evolution of sales in the campaign
region in the absence of the campaign without needing any linearity assumptions.

However, in all previous identifiability proofs, it is implicitly assumed that the underlying as-
sumptions are satisfied for all time periods, both pre- and post-intervention (see assumption 3” in
Shi et al. (2021b), and assumption A2 in Shi et al. (2022)). This is a strong assumption, as models
can only be learned in pre-intervention period. That is, one of the main assumptions underlying
the validity of synthetic control models is that there is no unobserved heterogeneity in the relation-
ship between the target and the control time-series observed in the pre-intervention period. Such
unobserved heterogeneity could, for instance, be due to unaccounted-for causes of the target unit.

In this paper we address this challenge, and prove identifiability can be obtained without the
need for the requirement that assumptions hold for all time periods before and after the intervention,
by proving it follows from the principle of invariant causal mechanisms. Moreover, for the first time,
we formulate and study synthetic control models in Pearl’s structural causal model framework.

As the assumptions underlying our identifiability proof cannot be empirically tested—as with
all causal inference results—it is vital to conduct a formal sensitivity analysis to determine robust-
ness of the causal estimate to violations of these assumptions. In propensity-based causal infer-
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ence for instance, sensitivity analysis has been conducted to determine how robust propensity-based
causal estimates are to the presence of unobserved confounders, see Veitch and Zaveri (2020) for
an overview. These sensitivity analyses derived a relationship between the influence of unobserved
confounders and the resulting bias in causal effect estimation. This understanding allows one to
bound bias in causal effect estimation as a function of unobserved confounder influence. From this
a domain expert can offer judgments of the bias due to plausible levels of unobserved confounding.

However, despite the importance of this problem—and the wide use of synthetic control meth-
ods in many disciplines—general methods for sensitivity analysis of synthetic control methods are
under-studied. This work’s contributions seek to remedy this discrepancy and provide a general
framework for sensitivity analysis of synthetic control causal inference to violations of the assump-
tions underlying our non-parametric identifiability proof.

In summary, our main contributions are as follows:

1. We formulate synthetic control models in Pearl’s structural causal model framework.

2. We provide a non-parametric identifiability proof in Pearl’s structural causal model frame-
work that doesn’t require assumptions to be satisfied before and after the intervention. Our
proof relies on the invariant causal mechanism principle.

3. We provide a general framework for sensitivity analysis of synthetic control causal inference
to violations of the assumptions underlying our non-parametric identifiability proof.

4. We empirically demonstrate our sensitivity analysis approach on real-world data.

Paper Organisation As discussed in the introduction, our goal is to identify the causal effect of
an intervention, or treatment, on the unit to which it was applied using data from “similar” units
not impacted by the treatment. First we overview related work, then formulate synthetic control
models in Pearl’s structural causal model framework, where we prove identifiability using results
from proximal causal inference and the assumption that causal mechanisms are invariant. Finally,
we provide a formal sensitivity analysis when the assumptions of our identifiability proof fail.

2. Related work

Identifiability of synthethic controls The standard approach to synthetic control models uses
the assumption that the data is generated by an underlying linear factor model to derive prove the
counterfactual is identified as a linear combination of units not impacted by the treatment, see
Abadie and Gardeazabal (2003); Abadie et al. (2010). Recent work in Shi et al. (2022) proved
that this linearity emerges in a non-parametric manner if treatment and control units are coarse-
grainings of “smaller” units, and if causal mechanisms are independent. Recent work by Shi et al.
(2021b), removed the need for this “aggregate unit” assumption, and proved that the counterfactual
can be identified as a function of the control units—but this function need not be linear. The result
of Shi et al. (2021b) uses tools from the proximal causal inference literature, see Tchetgen et al.
(2020) for an overview. Initial proximal causal inference results were reported in Kuroki and Pearl
(2014); Miao et al. (2018), and have since been developed further and used in long-term causal
effect estimation Imbens et al. (2022). See Shpitser et al. (2021) for a formulation of proximal causal
inference in the graphical causal inference framework. We note that all the aforementioned works
are formulated in the potential outcomes framework for causal inference. Moreover, as mentioned
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(a) (b)

Figure 1: (a) DAG for synthetic control method. Orange nodes are observed variables, green latent.
Intervention is applied at timepoint t+1. For simplicity, I is taken to be 0 for all time points before
t+ 1, and 1 for all timepoints from t+ 1 on-wards. (b) Twin network for target unit. Superscript ∗

denotes counterfactual world.

previously, in all these works it is taken that the underlying assumptions are satisfied for all time
periods. This is a strong assumption, as models can only be learned in pre-treatment period.

Invariant causal mechanisms As mentioned, in this paper we prove identifiability can be ob-
tained without the need for this assumption, by showing it follows from the principle of invariant
causal mechanisms.Causal mechanisms are invariant if they take the same form in different do-
mains, even though the data distributions may vary with domain. Previous work on invariant causal
mechanisms can be found in Mitrovic et al. (2020); Guo et al. (2022); Wang et al. (2022); Chevalley
et al. (2022). Importantly, this principle is related—yet distinct from—the principle of independent
causal mechanisms, which says that the mechanism that maps a cause to its effect is independent
of the distribution of the cause in a given domain Parascandolo et al. (2018); Stegle et al. (2010).
In the independent causal mechanism principle, the mechanism itself need not be the same across
domains, it just cannot contain information about the distribution of the cause.

Sensitivity analsysis Later in the paper, we use our identifiability proof to formally investigate
synthetic control models from a sensitivity analysis standpoint for the first time. Previous work on
sensitivity analysis has investigated omitted variable bias in propensity-based models. This sen-
sitivity analysis work originated in Imbens (2003); Rosenbaum and Rubin (1983) with modern
extensions in Veitch and Zaveri (2020) and Cinelli and Hazlett (2020); Cinelli et al. (2019).

3. Methods

3.1. Non-parametric identifiability from proxies and invariant causal mechanisms

We work in the structural causal model framework of Pearl (2009). We now will present our defini-
tion of a synthetic control structural causal model, define invariant causal mechanisms, and formally
define proxy variables following the proximal causal inference literature of Tchetgen et al. (2020).
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Definition 3.1 (Synthetic Control Structural Causal Model ) A synthetic control structural causal
model consists of a set of latent variables U and their distributions, a set of observed variables
Y,X, I representing the target unit, donor units, and the intervention, and a set of deterministic
functions mapping parents to their children in the causal structure in Figure 1(a)(a), represented
as a directed acyclic graph (DAG), each indexed by a specific time point t, such that:

1. ut = mt(ut−1, εtu) where εtu is an independent, exogenous error term with εtu ∼ P (εtu)

2. yt = gt(ut, It, εty) where εtu is an independent, exogenous error term with εty ∼ P (εty)

3. xti = f t(ut, εtxi
) where εtxi

is an independent, exogenous error term with εtu ∼ P (εtxi
)

For simplicity, we follow Zhang and Bareinboim (2022) and suppress the functional dependence on
the exogenous error terms.

The above formulation in terms of structural causal models generalises the standard formulation
of synthetic controls in terms of linear factor models. For instance, yt is considered an arbitrary
function of ut, It, rather than a linear function of them. In what follows we treat xt, yt as the
variables we are concerned with. Sometimes we abuse notation and use the same xt, yt to denote
the values those variables take. The difference will be clear from the context.

The collection of functions and distribution over latent variables induces a distribution over ob-
servable variables: P t(xt) =

∑
ut P t(xt | ut)P t(ut) =

∑
ut δf t(ut)=xtP t(ut).Where δf t(ut)=xt =

1 when ut satisfies f t(ut) = xt, and 0 otherwise. For any variable in a causal model, its causal
mechanism is the deterministic function that determines it from its parents in the causal structure.
This function is equivalent to the conditional distribution of that variable given it’s parents. For
instance: xt = f t(ut) ⇐⇒ P t(xt | ut) = 1.

Definition 3.2 (Invariant causal mechanisms) In the context of synthetic control causal models,
a causal mechanism is said to be invariant if it doesn’t depend on the time point t.

The structural causal model framework allows us to define (strong) interventions via the do-
operator, which replaces the original causal mechanism with assignment of that variable to a specific
value, disconnecting the intervened variable from its parents in the causal structure Pearl (2009).

To formally define when a collection of variables are to be considered proxies for other variables,
we need the following completeness condition.

Definition 3.3 (Completeness condition for proxy variables) For any square integral function f ,
if E

(
f(xt1, . . . , x

t
N ) | ut

)
= 0 then f(xt1, . . . , x

t
N ) = 0 for any t.

This completeness condition characterizes how much “information” the xt have about the ut, in
the sense that xt have sufficient variability relative to the ut—that is, any variation in ut is captured
by variation in xt. Such completeness conditions are widely assumed in recent proximal causal
inference literature Tchetgen et al. (2020), and under these conditions the xt can be viewed as
proxy variables for the latents ut.

To quantify the impact of an intervention I = 1 on unit y at time t, we must estimate the effect
of treatment on the treated:

Et
(
yt | do(It = 1), It = 1

)︸ ︷︷ ︸
Observed

−Et
(
yt | do(It = 0), It = 1

)
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As we observe the first term, all that is required is to identify and estimate the second term.
The below Theorem 3.1 and proof is based on Theorem 4 in Shi et al. (2021a). The main differ-

ence is our assumptions and the causal framework we work in. We work in Pearl’s graphical causal
model framework, where independence of causal variables follow from graphical conditions in the
given causal structure, represented as a DAG. Indeed, even conditional independence of counter-
factual variables can be seen to follow from graphical requirements—this time by considering the
structure of the twin network associated with the causal structure, see Vlontzos et al. (2021); Gra-
ham et al. for an overview of twin networks. Shi et al. (2021a) work in the potential outcomes
framework, and thus require explicit assumptions for various conditional independence statements.
Additionally, Theorem 4 in Shi et al. (2021a) assumed the existence of a function that maps the
control units to the target unit that is consistent and unchanged across all time points. We do not
make this assumption. Rather in our Theorem 3.2 we remove this assumption and prove that such a
function1 is the same for all time points if causal mechanisms are invariant.

For simplicity, we will denote the collection of donor units at timepoint t, {xt1, . . . , xtN}, by xt.

Theorem 3.1 There exists a function ht such that at time point t we have

E
(
yt | do(It = 0), It = 1

)
= E

(
ht(xt, It = 0)

)
,

where
E
(
yt | do(It = 0), It = 1

)
=

∫
ytP t

(
yt | do(It = 0), It = 1

)
dy,

and
E
(
ht(xt, It = 0)

)
=

∫
ht(xt, It = 0)P t

(
xt
)
dx.

Proof In general nonparametric models, the completeness condition of Def. 3.3 together with some
additional technical conditions (see the appendix for these technical conditions) imply the existence
of a function2 Ht such that

P t(yt | ut, I) =
∫
Ht(yt, xt, It)P t(xt | ut, It)dx (1)

This implies that

E
(
yt | ut, It

)
=

∫∫
ytHt(yt, xt, It)P t(xt | ut, It)dydx

A
=

∫
P t(xt | ut)

[∫
ytHt(yt, xt, It)dy

]
︸ ︷︷ ︸

:=ht(xt,It)

dx

=

∫
ht(xt, It)P t(xt | ut, It)dx

A
=

∫
ht(xt, It)P t(xt | ut, It)dx

B
= E

(
ht(xt, It) | ut, It

)
.

1. Existence of such a function for a single timepoint follows from proximal causal inference, as shown in Theorem 3.1.
2. To gain some intuition about the existence of such functions, a simple example is: P (Y ) =

∫
P (Y | X)P (X)dx =∫

H(Y,X)P (X)dx.
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Where on lines A we use the fact that xt is independent of It conditioned on ut.
Now, consider the following:

E
(
yt | ut, It = 1, do(It = 0)

) C
= E

(
yt | ut, It = 0

)
D
= E

(
ht(xt, It = 0) | ut, It = 0

)
E
= E

(
ht(xt, It = 0) | ut

)
Line C in the above follows from examining the twin network in Figure 1(b) and applying d-
separation. Line D is just the application of line B, above. Line E follows as xt is independent
of It given ut. Marginalising over ut yields: E

(
yt | do(It = 0), It = 1

)
= E

(
ht(xt, It = 0)

)
Theorem 3.1 proved existence of a function mapping control units to the target unit at a given

time. We now prove this function is the same for all timepoints if causal mechanisms are invariant.

Theorem 3.2 If causal mechanisms are invariant, then there exists a unique function h, such that
for all time points t we have:

E
(
yt | do(It = 0), It = 1

)
= E

(
h(xt, It = 0)

)
Proof All we need to show is that the solution to the integral equation from Eq. 1 in the proof of
Theorem 3.1 for time point t is also a solution for any other time point t′.

To show this, first reconsider Eq. 1:

P t(yt | ut, It) =
∫
Ht(yt, xt, It)P t(xt | ut, It)dx.

Consider the left hand side P t(yt | ut, It). This is the causal mechanism for determining yt. As
causal mechanisms are invariant, this means P t(yt | ut, It) = P t′(yt | ut, It). Moreover, con-
sidering the right hand side of the above Eq. 1, as xt is independent of It conditioned on ut:
P t(xt | ut, It) = P t(xt | ut), which is the causal mechanism for determining xt. Again, as
causal mechanisms are invariant, one has that P t(xt | ut) = P t′(xt | ut).

Hence a solution to the integral equation for one time point t, is a solution for any other time
point t′. All that remains is to prove uniqueness of ht for a given time point, as this will imply
there exists a unique function h for all time points via the above argument. Suppose there are two
functions that are each solutions to line E: E

(
ht(xt, It) | ut, It

)
= E

(
h̃t(xt, It = 1) | ut, It = 1

)
As xt is independent of It conditioned on ut we have: E

(
ht(xt, It = 1)− h̃t(xt, It = 1) | ut

)
= 0

As this is the expectation of a function of xt conditioned on ut, the completeness condition in
Definition 3.3 implies that ht(xt, It) = h̃t(xt, It), completing the proof.

In the standard synthetic control case, h is a linear function of the proxies, as in Abadie et al. (2010).

3.2. Sensitivity analysis and bias when identifiability fails

If there is a latent cause wt with unobserved proxies zt, as graphically illustrated in Figure 2, this
impacts our identification strategy. In this situation, the updated argument of Theorem 3.1 proceeds
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Figure 2: DAG for synthetic control model when there are latent causes of the treated unit that we
don’t have observed proxies for. Orange nodes are observed, green nodes are latent.

as follows. There exists a function H such that P (yt | ut, It, wt) =
∫∫

H(yt, xt, zt, It)P (xt, zt |
ut, It, wt)dxdz. This implies that:

E
(
yt | ut, It

)
=

∫∫∫∫
ytH(yt, xt, It, zt)P (xt, zt | ut, It, wt)P (wt)dydxdzdw

A
=

∫∫∫∫
ytH(yt, xt, It, zt)P (xt | ut)P (zt | wt)P (wt)dydxdzdw

A
=

∫
P (xt | ut)

∫ [∫
ytH(yt, xt, It, zt)dy

]
︸ ︷︷ ︸

:=g(xt,It,zt)

P (zt)dzdx

=

∫
EP (zt)

(
g(xt, It, zt)

)
P (xt | ut, It)dx

= E

EP (zt)

(
g(xt, It, wt)

)︸ ︷︷ ︸
:=h(xt,It,P (zt))

| ut, It

 .

Where lines A follow as xt, zt are independent of I , and wt, ut respectively. Yielding the Theorem:

Theorem 3.3 The introduction of latent wt with no observable proxies, as graphically depicted in
Figure 2, changes the estimand in Theorem 3.1 to:

E
(
yt | do(It = 0), It = 1

)
= E

(
h(xt, It = 0, P (zt))

)
.

Hence our estimation of the counterfactual depends on the distribution P (zt). If this distribution
is the same for all time periods, our estimation should proceed in an unbiased fashion. However,
if there is a distribution shift in P (zt) between the pre-intervention period (time points for which
I = 0) and the post-intervention period (time points for which I = 1) then our estimate for the
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effect of treatment on the treated could be biased. Why is this? Well when we learn the function h,
we only have access to pre-intervention data. Hence, if the latent cause—and thus the unobserved
proxies—undergo a distribution shift, this can bias our model, as the h we learn depends on the
distribution of the proxies at the time at which we learnt it, which is before the intervention was
applied. The bias is thus given by:

Bias =
∣∣E (h(xt, It = 0, Ppre(z

t))
)
− E

(
h(xt, It = 0, Ppost(z

t))
) ∣∣ (2)

3.3. Bounding bias in standard linear synthetic control models

When we consider the case where h is a linear function of the proxies—the standard case employed
in previous works, see Abadie et al. (2010)—the bias takes on a simpler form. That is, if the zt are
the unobserved proxies of the latent wt, as shown in the DAG in Figure 2, then we can write:

h(xt, I = 0, P (zt)) = EP (zt)

 N∑
i

βix
t
i +

M∑
j

γjz
t
j

 =

N∑
i

βix
t
i +

M∑
j

γjEP (ztj)

(
ztj
)

In this case, Theorem 3.3 implies that the bias can be written as:

Bias =
∣∣E (h(xt, I = 0, Ppre(zt))

)
− E

(
h(xt, I = 0, Ppost(zt))

) ∣∣
=

∣∣∣∣ M∑
j

γjEPpre(ztj)

(
ztj
)
−

M∑
j

γjEPpost(ztj)

(
ztj
) ∣∣∣∣

≤M max
j

(|γj |)max
j

(
|EPpre(ztj)

(
ztj
)
− EPpost(ztj)

(
ztj
)
|
)

As this bound on the bias is in terms of latent quantities, an analyst will need to make plausibility
judgments in order to devise a bound in terms of observable quantities. Indeed, if an analyst believes
they have not missed latent causes as important to our problem as the ones they included proxies
for, then we can upper bound the bias in the worst case by taking the maximums in the above bound
on the bias to be the maximums in the observed proxies. This then leads to the following upper
bound on the bias in terms of observable quantities:

Bias ≤ N ×max
i

(|βi|)×max
i

(
|E (xprei )− E

(
xposti

)
|
)

(3)

4. Experiments

We now assess the validity of this bound on a series of synthetic and real world data. Using simu-
lations, we investigate our bound in a valid and invalid setting. Moreover, we test on the California
Tobacco Tax and German Reunification data-sets to demonstrate the bound in a real world setting.

4.1. Synthetic Experiments

Our synthetic experiments are constructed such that the unobserved latent w experiences a distri-
bution shift after the intervention, leading to bias as defined in Equation 2. To test validity of our
bound in Equation 3, we consider two examples: one where the plausibility bounds are satisfied,
illustrated in Figure 3(a), and one where they are violated, illustrated in Figure 3(b). Data generation
is outlined in Appendix B. Results and discussion are in the caption of Figure 3.
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(a) (b)

Figure 3: Simulation to evaluate the validity of bound For Scenario (a) we have a valid bound
and for Scenario (b) an invalid bound on the bias, i.e. the bounds do not capture the true bias (red,
bottom row). The intervention occurs at T = 6. The first row shows the outcome of interest, as
well as its untreated state Y | do(I = 0), written as Y (0) in the figure and depicted in black. The
synthetic control is shown as a dashed orange line contained by the bounds in green. The second
row shows the average treatment effect on the treated (ATT) by subtracting the synthetic control
from the observed outcome and averaging. The third row shows the cumulative effect over time.
Row four shows the progression of all proxies, observed and unobserved as well as the outcome
over time. The last row shows the bias as defined by the true untreated outcome subtracted from the
synthetic control. (a): The bias (red) is contained by the bounds. Given the bounds do not contain
0 in the ATT plot, the effect measured is still positive even if we had a worst case bias, given our
assumptions. Thus, when our plausibility assumptions are satisfied, so too is our bound on the bias.
(b): The observed proxy X shifts less during the intervention time (blue) such that the bound is
smaller as we measure a smaller change in the proxies. As a consequence, the bias (red) is outside
the bounds. Hence, when our plausibility assumptions are violated, so too is our bound on the bias.
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(a) (b)

Figure 4: Real World Examples (a): German Reunification: The reunification occurred in 1991
leaving West Germany with a visible drop in its previous growth. Our bound of 2321.84 does
not allow to conclude that, given our assumptions, the average ATT is not reversed by other latent
variable shifts by u. The bound on the bias is primarily driven by the high levels of variation in
Switzerland (red, bottom plot) which around the time of the reunification also changed into a phase
of slower growth. (b): California Tobacco Tax: Our bound of 14.65 is smaller than the average ATT
of -17.45 and allows us to conlcude, that given the assumptions, that even if there was an unobserved
bias as big in contribution as the observed proxies, the negative causal effect would persist. Based
on that reasoning, the California Tobacco Tax can be deemed as effective in reducing smoking.

4.2. Real Data

In our first experiment on real data, we look into a tobacco tax increase of 25 cents introduced
in California in 1988 Abadie et al. (2010). We build a synthetic control to predict the untreated
annual per-capita cigarette sales of California, using sales data from the states used in the literature:
Colorado, Connecticut, Montana, Nevada, Utah. For our second experiment we refer to the 1990
reunification of West and East Germany in Abadie et al. (2015). Here, we build a synthetic control
model to predict the untreated GDP of West Germany using GDP data from the countries used in
the literature: USA, Austria, Netherlands, Switzerland, Japan. We run a linear regression for each
synthetic control, without intercept and allowing for negative coefficients. In line with Brodersen
et al. (2015), we calculate the ATT as a running average in Tpost.

Table 1 shows the bounds our method yields. For German Reunification, we have N = 4
as Japan’s coefficient is zeroed. The biggest beta coefficient corresponds to Austria with 0.46.
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Data N Max. Beta Max. Proxy Change Bound average ATT
Germany, 1990 4 0.46 1252 ±2321.84. -1726.80
California, 1981 4 0.4 9.1 ± 14.65 -17.45

Table 1: Bounds on bias of ATT for the California Tax and German Reunification Example

The proxy change is 1252, yielding a bound of 2321.84. With an average ATT of -1726.8, given
our assumptions, this bound on the bias tell us that the causal effect we have estimated is very
sensitive. This is, in the worst case, the causal estimate in this case can be entirely due to a shift
in an unobserved latent. For California Tobacco, we have N = 4 as the regression zeroes the
coefficient on Utah, leaving 4 proxies. Montana has the biggest regression coefficient with 0.4. The
maximum change in the proxies is 9.1, yielding a bound of 14.65, which is smaller than the average
ATT of -17.45. In contrast to the German Reunification example, our bound in this example allows
us to conclude that—given our assumptions—even with the worst case bias, the tobacco tax will
still have a negative causal effect. See Figure 4 for the corresponding synthetic control plots.

By design, sensitivity analysis is a subjective method, as it relies on domain expert knowledge
to make a judgement on the empirical evidence given. Our method offers a conservative upper
bound on the bias, where both the maximum beta and proxy change are empirical, and the domain
expert is left with the decision which proxies to incorporate into their analysis. Effectively, this
is equivalent to the unobserved parameters commonly introduced to models in classical sensitivity
analysis Imbens (2003), on which the expert has to make their judgement. Here, our aim was not
a final judgement on the real world examples shown, but instead to demonstrate of how to enrich
expert discussion with our bound for any synthetic control analysis. Ultimately, it is the expert that
has to make plausibility judgements in the scientific discourse, and these bounds are a necessary
addition to understand robustness against bias.

5. Conclusion

One of the most widely used causal inference approaches are synthetic control methods. However,
in all previous identifiability proofs, it is implicitly assumed that the underlying assumptions are
satisfied for all time periods both pre- and post-intervention. This is a strong assumption, as mod-
els can only be learned in pre-intervention period. In this paper we addressed this challenge, and
proved identifiability without the need for this assumption by showing it follows from the principle
of invariant causal mechanisms. Moreover, for the first time, we formulated and studied synthetic
control models in Pearl’s structural causal model framework. Importantly, we provided a general
framework for sensitivity analysis of synthetic control models to violations of the assumptions un-
derlying non-parametric identifiability. We concluded by providing an empirical demonstration of
our sensitivity analysis approach on real-world data.
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Appendix A. Technical conditions for proofs

The proof of Theorem 3.1 relies on some technical conditions which we now overview. See Ap-
pendix C of Shi et al. (2021b) and references therein for further details. In order to prove the
existence of the function Ht, we need the following.

Consider the space of all square-integrable functions s, denoted L2{F (s)}, with respect to
a cumulative distribution function F (s). This is a Hilbert space with inner product given by
〈f, g〉 =

∫
f(s)g(s)dF (s). Let Kx denote the conditional expectation operator L2{F (w|x)} →

L2{F (λ|x)}, with Kxh = E[H(w)|λ, x] for H ∈ L2{F (w|x)}, and let (τx,n, ϕx,n, ψx,n)
∞
n=1 de-

note a singular value decomposition of Kx. Given the following regularity conditions:

1.
∫∫

f(w|λ, x)f(λ|w, x)dwdλ <∞

2.
∫
f2(y|λ, x)f(λ|x)dλ <∞

3.
∑∞

n=1 |〈f(y|λ, x), ψx, n〉|2 <∞

Then Picard’s theorem implies the existence of the required function Ht in Theorem 3.1.

Appendix B. Definitions of Synthetic Experiments

Our synthetic experiments are constructed such that the unobserved latent w experiences a distribu-
tion shift after the intervention, leading to bias as defined in Equation 2.

ε ∼ N (0, 1), u ∼ N (1, 1) (4)

Y =

{
au+ bw + ε, in Tpre , w ∼ Bin(1/2)
au+ bw + 2I + ε, in Tpost , w ∼ Bin(1)

(5)
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Z =

{
dw + ε, in Tpre , w ∼ Bin(1/2)
dw + ε, in Tpost , w ∼ Bin(1)

(6)

X =

{
cu+ ε, in Tpre , ε ∼ N (0, 1)

cu+ ε, in Tpost , ε ∼ N (0.5, 1)
(7)

I =

{
0, in Tpre
Bin(sigmoid(u)) + ε, in Tpost

(8)

Given this data generation process, we have:

Synthetic Control E(Y ) =
a

c
E(X) +

b

d
E(Z), True Bias = |b{Epre(w)− Epost(w)}|,

Proxies Bias = | b
d
{Epre(Z)− Epost(Z)}|, Our bound on bias = |a

c
{Epre(X)− Epost(X)}|

Following from the above equation for the Synthetic Control E(Y ), our bound on the bias holds
if the following conditions hold: (1) a

c >
b
d , i.e the weighting of the contribution of the mean of the

unobserved proxies Z is smaller than of the mean of the observed proxies X . (2) The change in the
mean of proxies X is bigger than the change in the mean of unobserved proxies Z.

Given access to the unobserved w and its proxies Z through this simulation, we can validate the
bounds. Setting (a, b, c, d) = (1, 0.5, 1, 0.5), Figure 3 showcases the aforementioned conditions in
our synthetic setting under a valid and a invalid bound scenario. For Scenario (a), our maximum
mean change in proxiesX is 0.48 (not exactly 0.5 due to noise terms),N is 1 and the OLS coefficient
is 1.47, such that the bias ≤ 1× 1.47× 0.48 = 0.71. As expected, the bias (red) is captured by the
bounds as both conditions are fulfilled, see bottom graph of Figure 3 (a).

For Scenario (b), if we change the noise term on X in the post intervention stage to ε ∼
N (0.1, 1), causing a violation of the second condition, we have a mean change of 0.08 (not 0.1
due to noise), leading to a bias ≤ 1× 1.47× 0.08 = 0.12. Hence, the bounds are smaller, but more
importantly also invalid as they do not contain the true bias.

Having chosen a simple example for effective exposition, we would like to emphasize that the
validity (and invalidity) of the bounds in these scenarios naturally extend to more complex scenarios
with higher number of latents u and proxies X .
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