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Abstract

Extant causal methods exclusively exploit the heterogeneity based on the observed covariates for
heterogeneous outcome prediction. Even with nowadays big data, the collected covariates may not
contain complete confounders. When some confounders are absent, the methods can suffer from
confounding bias and missing heterogeneity. To address these two issues, we propose to leverage
the factual observation in the observational data to recover the latent confounders. Since the learned
confounder representation exploits the heterogeneity of latent confounders, it leads to finer granular
heterogeneous outcome prediction, which is closer to the individual-level than prediction conditional
on only covariates. Specifically, we propose a novel Factual Observation based Heterogeneity
Learning (FOHL) algorithm with an encoder for confounder representation learning and a decoder
for outcome prediction. Theoretical analysis reveals the validity of recovering confounders from
factual observations to make the heterogeneous prediction closer to the individual-level. Furthermore,
experimental results demonstrate that our FOHL method can outperform the existing baselines.
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Figure 1: The diagram of heterogeneous outcome estimation conditional on observed covariates
(i.e. location) v.s. complete confounders (i.e. all the three factors). When conditioning on
only location, the resulting estimation (the average of m individual outcome) ignores the
outcome variation among the sub-population. When we recover the latent confounders (i.e.
income and age), we can obtain finer granular heterogeneous outcome prediction which
steps closer to the individual-level.

1. Introduction

Predicting the counterfactual outcomes of different treatments is of significant importance in many
applications relevant to decision-making (Bica et al., 2020a; Bottou et al., 2013; Li et al., 2015). The
common practice is to train an outcome predictive model by leveraging the observational datasets
which are common and cheap (Hassanpour and Greiner, 2020, 2019; Johansson et al., 2016; Shalit
et al., 2017; Yao et al., 2018). It has been supported by previous literature that the counterfactual
outcome of treatments varies in different parts of the population and identifying heterogeneous
outcomes can help improve the effectiveness of decisions (Lee et al., 2020). Therefore, it is of urgent
need in many applications to estimate the heterogeneous response of treatments, such as precision
medicine (Dahabreh et al., 2016) and personalized recommendations (He et al., 2017; Rendle, 2010).
To resolve this task, some papers estimate the heterogeneous counterfactual outcome by partitioning
the population based on the observed covariates which characterize the individuals to some extent
(i.e. expected outcome conditional on observed covariates) (Shalit et al., 2017; Johansson et al., 2016;
Yao et al., 2018; Zou et al., 2020; Hassanpour and Greiner, 2020, 2019; Assaad et al., 2021; Qian
et al., 2021; Bica et al., 2020b; Yoon et al., 2018).

However, due to the limitation in information acquisition, some confounder variables which affect
both outcome and treatments practically are absent in the observed covariates X. This phenomenon of
missing confounders brings two challenges to the predictive methods: confounding bias and missing
heterogeneity which is a new perspective provided by us and also the focus of this paper. The former
challenge, namely the confounding bias, has been investigated by many methods using different
tools such as instrumental variables and negative controls (Hartford et al., 2017; Heckman, 1997,
Miao et al., 2018; Miao and Tchetgen Tchetgen, 2017). However, the methods mentioned above only
estimate the expectation of outcome (conditional on the observed covariates) formally E[y|X, do(t)],
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which is an incomplete characterization of one individual. As the missing confounders also play a
vital role to depict the individualized causal effect, we define the missing heterogeneity problem as
the variation of outcome in the sub-population with the same covariates X due to the heterogeneity of
the missing confounders. Therefore, simply using the expected outcome value of the sub-population
E[y|X, do(t)] as the estimation result and ignoring the variation of outcomes between individuals
can lead to extra predictive error for individuals. To address the confounding bias and further the
missing heterogeneity problem, it is a sensible idea to recover the complete confounders Z and then
estimates heterogeneous outcome conditional on them E[y|Z, do(t)] which is at a finer granular level
and steps closer to individual-level counterfactual prediction. One example of the comparison of
the heterogeneous outcomes at different granular levels is shown in Figure 1.

Fortunately, since the confounders affect the generation of factual treatments and outcomes
in the observational dataset, some information about the latent confounders is encoded into them.
Therefore, the factual observations (i.e. previously assigned treatments and particular outcomes) in
the dataset present an opportunity to recover the latent confounders for simultaneously overcoming the
confounding bias and missing heterogeneity problem. Drawing support from the rapidly developed
latent variable models, we can model the underlying distribution of treatments, covariates, and
outcomes with confounders, and then learn the representation of latent confounders from them. By
conditioning on the learned confounder representation, we are capable of alleviating the missing
heterogeneity problem and achieving finer granular heterogeneous outcome prediction than prediction
conditional on only covariates. Notably, our idea of latent representation learning is inspired by
the abduction step in solving the counterfactual query of the retrospective hypothetical scenarios in
causal ladders (Pearl, 2009b, 2019). Although some works (Pawlowski et al., 2020; Khemakhem
et al., 2021) have investigated this counterfactual query by inferring the latent exogenous noise in
the framework of structure causal models (SCM) (Pearl, 2009a), they neglect the confounding bias
problem and are restricted to some strong assumptions on SCM. For example, they need to access
the full observations on the ancestor variables (corresponding to confounders and treatments in our
problem).

In this paper, we consider the setting of multiple treatments, which is ubiquitous in reality (Qian
etal.,2021; Zou et al., 2020; Wang and Blei, 2019). To simultaneously overcome the confounding bias
and missing heterogeneity, we develop a novel Factual Observation based Heterogeneity Learning
(FOHL) algorithm for recovering the latent confounders. The model is built upon the technique of
variational inference (Khemakhem et al., 2020; Kingma and Welling, 2013; Rezende et al., 2014)
to model the underlying distribution of the observed covariates, latent confounders, treatments and
outcomes. With the encoder component, we can infer the latent confounder representation from
factual observations. With the decoder component, we can predict heterogeneous outcomes at a finer
granular heterogeneity level than prediction conditional on covariates by feeding into the inferred
confounder representation and counterfactual treatments. Creatively, we set the covariates as the
ancestor of latent confounders to practically avoid the complicated assumption on the covariate
distribution and resist the influence of observational noise. Theoretical analysis shows the validity
of our strategy. We also empirically conduct extensive experiments on the synthetic datasets and
semi-synthetic datasets to show that our method outperforms the existing baselines.

The main contribution of this paper are summarized as follows:

* To the best of our knowledge, we are the first to investigate the missing heterogeneity problem
under the setting of missing confounders. We propose a novel and easy-to-implement Factual
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Observation based Heterogeneity Learning (FOHL) algorithm to overcome both this problem
and confounding bias by learning latent confounder representation.

* Theoretical analysis reveals that our strategy can remove confounding bias and more im-
portantly alleviate missing heterogeneity for finer granular heterogeneous prediction than
prediction conditional on only covariates. We conduct extensive experiments on both synthetic
datasets and semi-synthetic datasets to show the effectiveness of our FOHL method.

2. Related Works

2.1. Heterogeneous outcome prediction conditional on covariates

There have been a large number of works that predict heterogeneous treatment outcomes conditional
on covariates. One important branch of literature considers the setting without missing confounders.
The effort of these methods is mainly devoted to reducing the correlation between the treatments
and confounders. Motivated by the ideas in domain adaptation (Tzeng et al., 2014; Ganin and
Lempitsky, 2015; Bousmalis et al., 2016), some methods propose the paradigm of learning treatment
invariant representation to remove the correlation between the treatments and confounders and predict
the outcome based on the learned representation (Shalit et al., 2017; Johansson et al., 2016; Yao
et al., 2018; Bica et al., 2020a; Xu et al., 2021; Berrevoets et al., 2020; Zeng et al., 2020). Since
over-enforcing the balancing property of representation may harm the predictive power (Assaad et al.,
2021), sample re-weighting is an alternative solution (Zou et al., 2020; Hassanpour and Greiner,
2020, 2019; Lim, 2018; Assaad et al., 2021) to make the treatments and confounders independent
in the re-weighted dataset. In addition, some papers resort to data augmentation to generate the
counterfactual data points (Qian et al., 2021; Bica et al., 2020b; Yoon et al., 2018).

When faced with missing confounders, many methods are proposed to overcome the confounding
bias and estimate the treatment outcome (conditional on covariates). Instrumental variables (Hartford
et al., 2017; Heckman, 1997) and negative controls (Miao and Tchetgen Tchetgen, 2017; Miao et al.,
2018) are two classical tools to remove the impact of missing confounders. However, these variables
with restricted assumptions that are hard to seek in practice. In contrast, Louizos et al. (2017)
proposes to infer the missing confounders from the proxies. Under the setting of multiple treatments,
Wang and Blei (2019) observe that dependencies among the treatments can be leveraged to infer
the missing confounders for removing confounding bias and obtaining unbiased treatment effect
estimation. Miao et al. (2022) also gives two strategies and proves the theoretical validity with some
additional assumptions. Nevertheless, these works still ignore the missing heterogeneity problem
and integrate the effect of latent confounders in average/conditional treatment effect estimation.

2.2. Counterfactual Inference with Exogenous Noise Abduction

Answering counterfactual queries belongs to the third ladder of causality (Pearl, 2019), which is the
most complicated and difficult one. This problem is usually resolved in the framework of the structural
causal model (SCM) with three steps: abduction, action, and prediction (Pearl, 2009b). With the
step of exogenous noise abduction, we can achieve a more accurate prediction for each instance than
the intervention query (i.e. the second ladder of causality). Owing to the rapid development of deep
generative models (Kingma and Welling, 2013; Rezende and Mohamed, 2015; Goodfellow et al.,
2020), many methods utilize these flexible models to build the relationships between the variables
and exogenous noises with weak specifications. Pawlowski et al. (2020) proposes three mechanisms
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to specify the structure equations and utilizes normalization flows, variational auto-encoders (VAE),
and generative adversarial networks (GAN) to resolve them respectively. Based on the significant
progress in generative energy-based models recently (Song et al., 2021; Ho et al., 2020), Sanchez
and Tsaftaris (2021) propose to use the advanced diffusion model to construct the deep structural
causal model. Khemakhem et al. (2021) generalizes the classical additive noise models (Hoyer et al.,
2008) and proposes to use autoregressive flow models (Huang et al., 2018) to specify the equation
which guarantees causal identifiability under some additional assumptions.

The methodologies above assume that the exogenous noise is independent of the endogenous
variables. However, this assumption is usually overly restrictive when our heterogeneous outcome
prediction problem is formulated into this framework. The latent confounders in our problem is
likely to be correlated with the observed covariates as well as treatments which further results in
confounding bias. Therefore, it is inappropriate to simply formulate the latent confounders as the
exogenous noise and solve the problem in the SCM framework.

3. Problem Formulation

In this paper, we investigate the heterogeneous outcome prediction for individuals based on obser-
vational datasets. The observational datasets consists of the treatments variables T € T = {0,1}4,
outcomes y € R, and the observed covariates X € X C R? which can contains some confounder
information. We mainly consider that setting that the covariates X are the noisy observation of latent
confounders in this paper. For example, researchers usually can not obtain the true mental state of
people but can partially observe it through questionnaire. For the brevity of description, we define
Z ¢ Z C R? as the complete confounder vector. The data generation process of these elements
coincides with the graph in Figure 2(a). Empirically, the observational dataset can be denoted as
{(xi,ti,yi) 1<i<n, Where n is the sample size.

In many applications, the investigator can not collect all the confounders into the observed
covariates X. For the individual with complete confounder Z, we denote the individual-level
outcome of counterfactual treatment T by Yz(T) which is the ultimate goal of counterfactual
prediction. We assume overlap, stable unit treatment value (SUTVA) (Rosenbaum and Rubin, 1983)
are satisfied in this paper.

Because of confounding bias, directly applying supervised learning to estimate E[y|X, T]
is a biased estimation of the heterogeneous outcome conditional on covariates E[y|X, do(T)].
Furthermore, even unbiased heterogeneous estimation E[y|X, do(T)] at a coarse granular level
is still not accurate outcome prediction for individuals with confounders Z because of missing
heterogeneity problem. Therefore, to step closer to individual-level prediction, it is necessary
to recover the latent confounders to achieve finer granular heterogeneous outcome prediction by
addressing confounding bias and missing heterogeneity.

4. Proposed Method

In this section, we introduce our proposed Factual Observation based Heterogeneity Learning (FOHL)
algorithm in detail.
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Figure 2: The graph of (a) the data generation process and (b) the probabilistic graph of our model.
The grey circle means latent variables, and which white circle means observed variables.

4.1. Distribution Modelling

From the graph shown in Figure 2(a), we can observe that given the latent confounders Z, the
treatments T and outcomes y are conditional independent of the covariates X. Therefore, we model
the joint distribution of these elements based on the probabilistic graph in Figure 2(b), which is
Markov equivalent to Figure 2(a).

For implementation, we develop our model based on the architecture like IVAE (Khemakhem
et al., 2020) to fit the empirical joint distribution of the dataset. The model architecture consists
of three components, conditional prior component p,(Z|X), encoder g4(Z|X, T,y) and decoder
Po(T,y|Z). The components are designed as follows:

QQS(Z‘XaTaY):H‘M)(Zz ) , pp Z’X pr z’X

Pe(T,y|Z) = po(T|Z)py(y|Z, T) , p,(T|Z) = prt 12),

where we set

4(2,:1X, T,y) = N (1 (X, T,y), (0) (X, T,¥))?) , pp(24X) = N (1 (X), (67(X))?),

7

Po(yZ,T) = N(1#(Z,T),(69)°) , py(ti|Z) = Bernoulli(g] (Z)).

The functions p(»%%)(.), o(P)(.) and g?(-) are implemented by deep neural networks with parame-
ters p, @, . We set 0¥ as hyper-parameter. With the architecture above, we train the model to fit the
distribution of the dataset by maximizing the evidence lower bound (ELBO) as follows:

ﬁelbo = Z Ez~q¢(z|xi,ti,yi) [Ingcp(ti|z) + logpgo(yi‘za ti) - DKL(q¢>(Z|X7L7 t;, yi)|pp(zlxi))] .
=1
(1

We can observe that the design of conditional prior component p,(Z|X), makes our model
compatible with the prediction of individuals outside the datasets. It enables us to infer the latent
confounder representation based on only covariates and give the degenerate prediction at a coarse
heterogeneity level which is the expected value of outcome conditional on the covariates.
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We set covariates X as an ancestor of confounders Z rather than descendants for avoiding the
intractable distribution assumption on covariates. In the wild application scenarios, the covariates
can be continuous variables and mutually correlated of which the distribution is difficult to model.
Furthermore, some noisy variables which are irrelevant to treatments and confounders may inevitably
be collected into covariates (Zhang et al., 2021). However, the representation learned by our method,
which maximizes the ELBO of [[;", p(t;, yi|x;), does not reconstruct the covariates and will be
less vulnerable to the noisy variables. This will be empirically demonstrated in the section on
experiments.

4.2. Outcome Prediction

For the convenience of description, we define Y (do(t)|x, t,y) as the predicted outcome of treatment
t¢ derived from our model for the individual with observed covariates x, treatment t and outcome .
Our prediction process is composed of two steps.

At first, for the it sample in the dataset, we can easily obtain the posterior distribution of the
confounder representation with the encoder, z; ~ q¢(z|xi, t;, yi). Then given the posterior distri-
bution of z;, we can infer the outcome distribution of counterfactual treatment t¢ with the decoder
Pe(Y|Z,T) as Eg, g, (a)xi ti ) [P (¥12i, £°)]. We estimate the expected value of the distribution as
the prediction result, that is

Y(do(tc) |X’i7 ti? yl) = E2i~q¢(z\xi,ti,y,¢) [/’L(p(Y|i’L? tc)] * (2)

Empirically, the estimation result can be approximated by repeatedly sampling ig ~ qg(2|%i, ti, i),
1 < 7 < m and calculate the following equation:

A 1 X .
Y (do(t%)[xi, ti, yi) = o Zu“"(z{,t ). 3)
j=1

Besides, the trained model can also be applied to new individuals outside the datasets for
degenerate prediction at a coarse heterogeneity level. Similarly, we define Y (do(t¢)|x) as the
prediction result conditional on only observed covariates x. For adapting the method to this scenario,
we instead sample the confounder representation from conditional prior distribution in the first step,
formally z ~ p,(z|x;). The second step in Equation 3 remains unchanged. The pseudo-code of the
whole algorithm can be found in the appendix.

5. Theoretical Analysis

To show the validity of our strategy, we theoretically analyze the performance comparison of
heterogeneous outcome prediction based on respectively the latent confounder representation learned
from factual observations and only observed covariates under some mild conditions. More specifically,
we assume that the distribution of latent confounder can be identified up to an invertible transformation
as follows, which is also admitted by some previous works (Louizos et al., 2017; Miao et al., 2022).

Assumption 1 There exists an invertible mapping f from the true latent confounder z to inferred
latent confounder representation z'. Formally, p'(z' = f(z),x,t, y)ﬁdet(%)\ = p(z,x,t,y), where
det(g—i) is the determinant of Jacobian matrix of f, p(z,x,t,y) and p'(z',x, t,y) are respectively
the true joint distribution and the distribution derived from our model.
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With this assumption, we can prove that our outcome prediction results are unbiased.

Proposition 1 If the Assumption 1 holds, we have Y (do(t°)|x,t,y) = Ely|x,t,y, do(t)] and
Y (do(t%)[x) = E[y|x, do(t)].

Before presenting our theoretical results on missing heterogeneity, we make the following
definition of counterfactual predictive error:

Definition 2 We respectively define the predictive error based on the latent confounder representa-
tion and only covariates as follows:

gFOHL Bz x t,y~p(zx.t,y) to~pt (t) [(Yz(tc) - Y(do(tc)\x,t,y))ﬂ ’

X = Epplatep(t) | (Yalt) = ¥ (do(t)x))°)
where p*(t) = 2% is the uniform distribution over the treatment space.

With the assumptions, definitions, and propositions above, we can prove the following proposi-
tion:

Proposition 3 Assuming the individual outcome satisfies Y,(t) = g(z,t) + € where ¢ is a noise
term with zero mean and o2 variance, E¥OHL X can be written as following:

SFOHL = Etc,\,pu(t) [Ex,t7ywp(x7t,y) [Varzwp(z|x,t,y) [g(zvtc)]“ + 02’ )

SX = IE’tcwpu(t) [Exwp(x) [Varzwp(zb() [g(z,tc)]]] + 02' &)

According to the law of total variance, we have EFOHL < £X,

Proposition 3 reveals the validity of heterogeneity learning from factual observations for ad-
dressing the missing heterogeneity problem. In this way, we deal with the outcome variation in
the sub-population with the same covariates X and achieve finer granular heterogeneous outcome
prediction (i.e. closer to individual-level). Detailed proof of the propositions above can be found in
the appendix. Empirically, the superiority of our strategy can also be verified in practice. We show it
in the section of experiments.

6. Experiments

In this section, we present our experimental results to show the effectiveness of our method. The
evaluation requires the ground truth of counterfactual outcomes for individuals, which is not satisfied
by the observational study in reality. Hence the experiments are conducted on synthetic datasets and
semi-synthetic datasets.

6.1. Experimental Setup

We give a brief overview of the baselines and the evaluation metrics used in the experiments.
Baselines We compare our FOHL method with the methods listed below:
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* Vanilla counterfactual prediction (Vcp): It directly applies feed-forward neural networks
taking observed covariates and treatments as input to predict individual outcomes. The model
is trained on the re-weighted dataset which removes the correlation between treatments and
covariates. The sample weights are computed by density ratio estimation (Qin, 1998; Sugiyama
et al., 2012; Bickel et al., 2007) as in Arbour et al. (2021).

¢ CEVAE (Louizos et al., 2017): It uses variational autoencoder (VAE) (Rezende et al., 2014;
Kingma and Welling, 2013) to capture the joint distribution of latent confounders, observed
covariates, treatments and outcomes. Although the original version is designed for conditional
average treatment effect estimation of binary treatment, we make some effort to extend
this method for heterogeneous outcome prediction of multiple treatments by learning latent
confounder representation from factual observations.

* DSCM (Pawlowski et al., 2020): It simply formulates the treatments and covariates as the an-
cestors of the outcome, and conducts counterfactual query on this SCM. We use the variational
inference to model the structural equation as the amortised, explicit setting in Pawlowski et al.
(2020).

* Deconfounder (Wang and Blei, 2019): It uses a factor model to compute the latent variables
which can render the treatments conditionally independent as substitute confounders. Then it
trained a predictive model taking substitute confounders and treatments as input. We choose
VAE as the factor model which makes weaker assumptions about the data generation process.

* Deconfounder(+): It trained the predictive model which takes observed covariates, substitute
confounders learned by Deconfounder and treatments as input.

Evaluation Metrics The methods are evaluated by the root mean square error (RMSE) of
outcome estimation of the samples with all possible treatments in 7. Intuitively, the smaller RMSE
implies that the estimation achieved by the method is closer to the individual-level counterfactual
prediction, with a better recovery on the missing heterogeneity. Specifically, there are two evaluation
settings in our experiments, which are within-sample setting and out-of-sample setting.

Under the within-sample setting, we evaluate methods on the samples in the observational dataset
which is with factual observations. Latent confounder representation can be inferred by leveraging
the previous treatment assignments and outcomes.

Under the out-of-sample setting, the evaluation is conducted on the samples out of the observa-
tional dataset which is in absence of previous observed treatments and outcomes. Since Deconfounder
and Deconfounder(+) rely heavily on the assigned treatments to infer hidden confounders, they can
not be easily adapted to the out-of-sample setting. Vcp keeps the same between the two settings.
Therefore, only DSCM, CEVAE, and our FOHL method are applicable and meaningful to this setting.
The performance comparison between the two settings can reveal the advantage of heterogeneity
learning from factual observations to address missing heterogeneity problem.

6.2. Synthetic Datasets

We give a brief overview of how to generate the synthetic datasets and then present the experimental
results on the datasets.

Datasets We generate the synthetic datasets in several steps. We generate the hidden confounders
Z, where the elements are sampled from a gaussian distribution Z ~ N (0, ¥#). Then for each
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sample in the dataset, we assign treatments based on the hidden confounders Z. To be specific,
we firstly compute the vector L = Z - A + ¢, where L, e, € R, A € R**¢, The elements in
A are independently generated from N(0,0.8%) and fixed for all the samples. The noise vector e,
is generated once from N(0, 1.82) for each sample. Then the treatment variable T is calculated
from L. For each j € {1,2,...,d}, if1; > 0, we set t ; = 1, otherwise we set t ; = 0. The
outcome is determined by both confounders Z and T. We generate it from a pre-defined function:
Y =2 S 2 jd; 1t x, where D € R** is a constant matrix. The observed covariates consist
of two parts. One is the noisy measurement of (partial) hidden confounders X" € RP*. For each
jed{1,2,...,p}, x"l = 7 + g, Where g, ~ N(0,02) is measurement noise. The other part
is noisy observations X" € RP2. The noisy observations are sampled from gaussian distribution
X™ ~ N(0,%7%) and irrelevant to treatments and outcomes. Finally, the observed covariates are
the concatenate of the two parts. Formally, X = [X", X"]. Since only partial information of
confounders is observed, it brings missing heterogeneity and confounding bias into the dataset.

For evaluation, we randomly assign new treatments to each sample by sampling treatments from
uniform distribution: t 1,t 2, ...,t 4 ~ Bernoulli(0.5), and generate new outcomes. We calculate
the RMSE of estimation of the new outcomes to compare different methods.

In these experiments, we set confounder dimension s = 5, treatment dimension d = 20,
dimension of noisy observation ps = 10, and sample size n = 10000. More detailed information
on the experimental setup is described in the appendix. We also conduct experiments under the
setting where the latent confounders are generated from observed covariates. The detailed results are
included in the appendix and show that our method still achieve superior performance.

Results We conduct experiments under different settings by varying the dimension p; and noise
scale of hidden confounder measurement o,,. For each experiment setting, we repeatedly conduct
the experiments for 10 times and calculate the mean value and standard deviation of RMSEs in the
outcome estimation. The performance under both the within-sample setting and the out-of-sample
setting is reported in Table 1.

10
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Table 1: The experimental results on synthetic datasets. Mean and STD refer to the average value
and standard deviation of the RMSE results in 10 times repeated experiments. Lower
metrics means better performance. The best performance among the methods is marked

bold.
Varying confounder measurement dimension p;, Fixing noise scale o, = 0.3
Within-Sample Setting
P1 | m=0 | m=1 | m=2 | m=3 | m=4 | p=5
Methods | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
Vep 4.161 | 0.043 | 3.768 | 0.062 | 3.430 | 0.061 | 2.853 | 0.042 | 2.039 | 0.038 | 1.391 | 0.051
Deconfounder | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203
Deconfounder(+) | 4.392 | 0.287 | 3.998 | 0.485 | 3.874 | 0.395 | 3.233 | 0.411 | 2.964 | 0.308 | 2.073 | 0.242
DSCM 3.784 | 0.022 | 3.265 | 0.029 | 3.023 | 0.018 | 2.536 | 0.034 | 1.787 | 0.026 | 1.190 | 0.024
CEVAE 2.107 | 0.234 | 2.016 | 0.041 | 1.844 | 0.031 | 2.283 | 0.058 | 1.588 | 0.021 | 1.551 | 0.092
FOHL 1.920 | 0.081 | 1.862 | 0.030 | 1.722 | 0.024 | 1.703 | 0.050 | 1.449 | 0.040 | 1.172 | 0.030
Out-of-Sample Setting
DSCM 4.069 | 0.014 | 3.514 | 0.022 | 3.183 | 0.012 | 2.651 | 0.028 | 1.817 | 0.021 | 1.210 | 0.021
CEVAE 3.715 | 0.032 | 3.060 | 0.017 | 2.754 | 0.020 | 2.520 | 0.041 | 1.754 | 0.016 | 1.620 | 0.070
FOHL 3.732 | 0.022 | 3.071 | 0.013 | 2.740 | 0.015 | 2.300 | 0.028 | 1.662 | 0.032 | 1.189 | 0.027

Varying noise scale o, , Fixing confounder measurement dimension p; = 4

Within-Sample Setting

O | 02=02 | o0,=04 | 0,=06 | 0,=08 | 0,=10 | o,=12
Methods | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
Vep 1.799 | 0.043 | 2.275 | 0.054 | 2.719 | 0.018 | 3.074 | 0.050 | 3.338 | 0.050 | 3.519 | 0.042
Deconfounder | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203 | 3.259 | 0.203
Deconfounder(+) | 2.467 | 0.167 | 2.899 | 0.477 | 3.036 | 0.257 | 3.279 | 0.275 | 3.460 | 0.583 | 3.777 | 0.570
DSCM 1.611 | 0.027 | 1.988 | 0.025 | 2.386 | 0.022 | 2.710 | 0.027 | 2.950 | 0.027 | 3.143 | 0.031
CEVAE 1.534 | 0.030 | 1.682 | 0.031 | 1.800 | 0.031 | 1.869 | 0.027 | 1.895 | 0.034 | 1.883 | 0.035
FOHL 1.384 | 0.026 | 1.555 | 0.098 | 1.678 | 0.120 | 1.724 | 0.120 | 1.751 | 0.102 | 1.755 | 0.073
Out-of-Sample Setting

DSCM 1.631 | 0.021 | 2.042 | 0.023 | 2.487 | 0.016 | 2.859 | 0.022 | 3.135 | 0.017 | 3.348 | 0.019
CEVAE 1.606 | 0.024 | 1.900 | 0.024 | 2.226 | 0.022 | 2.494 | 0.016 | 2.699 | 0.021 | 2.861 | 0.021
FOHL 1.524 | 0.024 | 1.848 | 0.059 | 2.210 | 0.047 | 2.506 | 0.042 | 2.734 | 0.030 | 2.921 | 0.027

From the results in Table 1, we can observe that when less confounder information is contained
in the observed covariates (e.g. smaller p; and larger o), Vcp performs worst among the different
methods because it suffers from the confounding bias and missing heterogeneity problem due to
the lack of confounder information in the data. Deconfounder can infer the hidden confounders
when treatments are available and reduce RMSE based on Vcp to some degree when few individual
information are measured. Deconfounder(+) roughly concatenates the inferred representation and
noisy observations, therefore achieving unsatisfactory performance. DSCM assumes the latent
confounders are marginally independent of observed covariates and treatments. Hence it suffers from
the confounding bias and performs poorly under different settings. CEVAE and our FOHL method
both learn the latent confounder representation from the factual observations to achieve finer granular
heterogeneous prediction. The counterfactual prediction results are more accurate for individuals
under the within-sample setting. The performance comparison between within-sample setting and
out-of-sample setting highlights the advantage of addressing missing heterogeneity for finer granular
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heterogeneous outcome prediction. Since CEVAE learns the latent confounder representation to
reconstruct observed covariates, it is vulnerable to noisy observations in the covariates. This has also
been studied by previous literature (Rissanen and Marttinen, 2021). Therefore, our method achieves
the best performance among all the methods.

We conduct confounder estimation experiments with o, = 0.3, which trains a neural network to
predict the true underlying confounders based on the learned representations of different methods
or only covariates. The results shown in Figure 4 reveal that our method which simultaneously
leverages covariates, treatments, and outcomes, achieves the smallest estimation error and performs
best in recovering the underlying confounders. We also conduct experiments to predict the noisy
observations X" based on the representation learned by FOHL and CEVAE. The prediction MSE of
representation learned by CEVAE and FOHL are respectively around 1.800 and 9.800 under various
settings. This shows that our method can resist the influence of noise in the covariates while CEVAE
suffers from it. We empirically investigate the influence of the noisy measurement dimension on
performance. The results in Figure 3 show that the performance of our method is overall stable w.r.t
the quantity of noisy measurement in the observed covariates. However, CEVAE is vulnerable to it.

We explore the influence of latent variable dimension and hyper-parameter 0% in the model on
the performance. The results of these experiments can be found in the appendix.

6.3. Semi-synthetic Datasets

We conduct some experiments on the semi-synthetic datasets generated by Recsim (Ie et al., 2019)
which approximates the recommendation scenarios.

Datasets There is an environment! simulating document recommendation in Recsim. Each
document is depicted by its category and quality. The confounder of a user is a vector of affinity
to each document category Z € R®, where s is the number of categories. The recommended items
form the treatment vector T € {0, 1}¢, where d is the number of documents in the pool and each bit
means whether the corresponding document is recommended.

To generate the observational dataset, we assign treatments in a similar manner to that of synthetic
datasets. Given the user confounders and recommended documents (i.e. treatments), the simulator
can generate the click probability on the recommended document bundle, which is treated as the
outcome. We also concatenate the noisy measurement of user confounders and noisy observations
as the observed covariates. For evaluation, we calculate the RMSE of prediction in the testing
dataset, where each document is recommended independently with 50% probability. Due to the
space limitations of the main paper, we leave a detailed description of the experimental setup in the
appendix.

Results We conduct experiments under different settings by varying the confounder measurement
dimension and noise scale of confounder measurement. The results are shown in Table 2.

From the results of the semi-synthetic dataset, we can observe a similar trend to that of experi-
ments on synthetic datasets. When the confounder information in the observed covariates is little,
the performance of FOHL and CEVAE under the within-sample setting is superior to the counter-
part under the out-of-sample setting. This coincides with the intuition and indicates the benefit of
leveraging factual observations to heterogeneity learning for finer granular heterogeneous outcome
prediction, especially when little individual confounder information is observed in covariates.

1. https://github.com/google-research/recsim/blob/master/recsim/environments/interest_exploration.py
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Table 2: The experimental results of click probability prediction on semi-synthetic datasets (x107~1).

Varying confounder measurement dimension p;, Fixing noise scale o, = 0.5

Within-Sample Setting

P1 | m=0 | m=1 | m=2 | m=3 | m=4 | p=5
Methods | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
Vep 1779 | 0.014 | 1.629 | 0.036 | 1.539 | 0.020 | 1.502 | 0.026 | 1.258 | 0.022 | 1.181 | 0.052
Deconfounder | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117
Deconfounder(+) | 1.443 | 0.325 | 1.380 | 0.273 | 1.379 | 0.243 | 1.165 | 0.103 | 1.126 | 0.285 | 1.117 | 0.222
DSCM 1.633 | 0.007 | 1.511 | 0.017 | 1.414 | 0.013 | 1.408 | 0.041 | 1.267 | 0.066 | 1.168 | 0.063
CEVAE 1.326 | 0.200 | 1.185 | 0.044 | 1.125 | 0.046 | 1.162 | 0.037 | 1.083 | 0.030 | 1.049 | 0.039
FOHL 1115 | 0.224 | 1.037 | 0.101 | 1.051 | 0.086 | 1.003 | 0.104 | 0.934 | 0.059 | 0.830 | 0.035
Out-of-Sample Setting
DSCM 1.788 | 0.008 | 1.651 | 0.011 | 1.545 | 0.018 | 1.517 | 0.028 | 1.308 | 0.043 | 1.214 | 0.042
CEVAE 1.778 | 0.046 | 1.467 | 0.039 | 1.362 | 0.018 | 1.271 | 0.040 | 1.105 | 0.040 | 1.063 | 0.042
FOHL 1.696 | 0.016 | 1.437 | 0.014 | 1.333 | 0.017 | 1.245 | 0.026 | 1.047 | 0.044 | 0.952 | 0.023

Varying noise scale o, , Fixing confounder measurement dimension p; = 4

Within-Sample Setting

Ox | 0.=02 | 0,=04 | 0,=06 | 0,=08 | o0,=10 | o,=12
Methods ‘ Mean ‘ STD ‘ Mean ‘ STD ‘ Mean ‘ STD ‘ Mean ‘ STD ‘ Mean ‘ STD ‘ Mean ‘ STD
Vep 0.700 | 0.032 | 1.105 | 0.033 | 1.385 | 0.019 | 1.524 | 0.019 | 1.616 | 0.020 | 1.668 | 0.017
Deconfounder 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117 | 1.450 | 0.117
Deconfounder(+) | 0.916 | 0.247 | 1.054 | 0.153 | 1.251 | 0.274 | 1.353 | 0.248 | 1.296 | 0.164 | 1.348 | 0.528
DSCM 0.690 | 0.016 | 1.120 | 0.067 | 1.325 | 0.082 | 1.453 | 0.072 | 1.545 | 0.064 | 1.555 | 0.023
CEVAE 1.029 | 0.098 | 1.046 | 0.035 | 1.084 | 0.032 | 1.107 | 0.040 | 1.127 | 0.038 | 1.147 | 0.032
FOHL 0.681 | 0.017 | 0.940 | 0.046 | 0.906 | 0.052 | 0.902 | 0.046 | 0.929 | 0.077 | 0.968 | 0.101

Out-of-Sample Setting

DSCM 0.705 | 0.016 | 1.156 | 0.052 | 1.393 | 0.054 | 1.542 | 0.049 | 1.644 | 0.046 | 1.670 | 0.030
CEVAE 1.077 | 0.074 | 1.060 | 0.036 | 1.147 | 0.036 | 1.238 | 0.056 | 1.335 | 0.054 | 1.408 | 0.058
FOHL 0.692 | 0.014 | 1.004 | 0.038 | 1.075 | 0.036 | 1.168 | 0.025 | 1.260 | 0.037 | 1.343 | 0.040

7. Conclusion

In this paper, we investigate the problem of finer granular heterogeneous outcome prediction under
the setting of missing confounders which is closer to individual-level counterfactual prediction. We
propose a Factual Observation based Heterogeneity Learning (FOHL) method to simultaneously
address the confounding bias and missing heterogeneity problem. Theoretical analysis reveals the
advantage of our strategy. Extensive experimental results show the effectiveness of our method.
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Appendix A. Proofs

Proposition 4 (Restated) If the Assumption 1 holds, we have Y (do(t°)|x, t,y) = E[y|x, t,y, do(t°)]
andY (do(t°)|x) = E[y|x, do(t°)].

Proof According to Assumption 1, we have:

t
p(xty) = /p(z x,t,y)dz' _/ (z'),x, ,y)dZ/
7/ \det )\z ()

p(z7 X7t’y)
= /|det(af)\ : |d€t(£)|dz = /p(Z,X,t,y)dZ = p(x, t,y).
VA Oz z

peya) = [ oot = [ oot @)ldet 5 ldx ©

= 6.y, 1()det(G)] Q
p7) = Pt S ldet(G)] ®
pix.z) = plx f@)ldet(2D), ©)

0z

Therefore, denoting z’ as the latent representation derived from our model and p’(y'|x, t, y, do(t€))
as the outcome distribution with intervening t° given observed x, t and y, we can conclude that

Y. )

/1! 4C _ ) &y — 1ope—1/_1 c
py'lz,t9) = ) p(yY'|f(2),t%) (10)
(2, %, t, (2 |x, t,
b (X7t7y) ’det(ﬁﬂzszl(zl)
PO tdo(t) = [ ety 61 ) (12)
- / 2] ) 1 o) ) (13)
|d€t ‘z f1 (z')
( |X,t,y) /
= [RlEE) o ) (14)
/z |det(901)]
= /p(Z!X7t,y)p(y/!Z,tC)dZ = p(y'|x, t,y, do(t%)) 15)
Then we can have Y (do(t)[x, t,y) = Eyp (y|x,t.y.do(te)) [Y] = E[y|x, t,y, do(t)]. |

Proposition 5 (Restated) Assuming the individual outcome satisfies Y,(t) = g(z,t) + € where ¢ is
a noise term with zero mean and o2 variance, EFO1L £X can be written as following:

gFOHL = Etc"‘pu(t) [Ex,t,ywp(x,t,y) [Varz'\’p(Z'x?tvy) [g(z7 tc|)]]] + 02’ (16)
gX = Etc,\,pu(t) [Exwp(x) [VaTZNp(Zb() [g(Z,tC)H] + 0'2. (17)

According to the law of total variance, we have EFOHL < £X,
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Proof

grofit = / P (t°) / p(x, t,y)p(zlx, 6, ) [E[(V2() = Eyopiainsy [9(2, ) )|dxdtdydadt®
te x,t,y,2z

= / pu (tc) / p(X, ta y) [Varzwp(z\x,t,y) [g(Z, tc)] + UQ]dthdZdtc
te x,t,y

Egepr() [Exctympoty) [V @ amp(alxty) [9(2: )] + 0

= Egenpr(t) Bxnp) [Bymptaln) [V ampaxty) [9(2, t9)]]]] + 0

Similarly, we can also have

EX = Et“Np”(t) [EXNP(X) [V(M‘ZNP(ZIX) [g(z7tc)]“ +0”.

According to the law of total variance, we have
Varz~p(z|x) [g(Z7 tc)] > IEt,ywp(t,y|x) [Varzrwp(z|x,t,y) [g(Z, tC)H ?Vtc € T? xeX.

The equality only holds when Vx, t, y, t°, E,p(2x) [9(2, t)] = Epp(zjx,t,y) [9(2, t°)].
Therefore, we have EFOHL < gX,

Appendix B. Pseudo-code of FOHL

The pseudo-code can be found in Algorithm 1.

Appendix C. Experimental details

In the synthetic datasets, the matrix % € R**%, For i # j, Eij = 0.2 and for ¢ = j, Eij = 1.0. The
matrix X% € RP2*P2, For i # j, Y7 ; = 0.8and for i = j, ¥i; = 1.0. The matrix D is generated
from gaussian distribution, d; ; = a; j/4 + N(0,0.1%) 4 0.1.

In the semi-synthetic datasets, the user confounder Z is also sampled from gaussian distribution
N(0,%%). Fori # j, %f; = 0.3 and for i = j, %3 ; = 1.0.

The observed covariates in the semi-synthetic datasets also consists of two parts. One is the
noisy measurement of hidden confounders X" € RP!. For each j € {1,2,...,p1}, X =1z;+
€4, where €, ~ N(0,02) is measurement noise. The other part is noisy observations X" €
RP2. The noisy observations are sampled from guassian distribution X" ~ AN(0,X%). Finally,
the observed covariates is the concatenate of the two parts. Formally, X = [X™ X"]. ¥* =

PaxP2 (k)

Diag(W, 3, 56)). For k € {1,2,3}, £*) € R% 3. Fori # j, %) = 0.85 and for i = j,

EE? = 1.0. We set the sample size n = 10000, the dimension of confounders s = 5, the dimension
treatment d = 50, the dimension of noisy observations p, = 15.

The encoder, decoder and conditional prior components are implemented by a neural networks
with two hidden layers of size 50. The learning rate is set to be 1073. We use the ELU function
as activation functions. The model is trained by 3000 epochs using Adam optimizer. The hyper-
parameter (0¥)% = 1.0 in the experiments of synthetic datasets and (0¥)? = <L in the experiments

— 800
of semi-synthetic datasets.
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Algorithm 1 Factual Observation based Heterogeneity Learning (FOHL)

Input: Observational data {(x;,t;,9;)}, <, learning rate A, new treatments for the ith sample
under within-sample setting t?, new samples and new treatments (X"“t, t"“t) under out-of-
sample setting.

Output: Predicted treatment outcome " and y°%*.

Train the model, including encoder ¢4(Z|X, T, y), decoder p,(T|Z), p,(y|Z, T) and conditional

prior p,(Z|X).

Set ™ < 0. // Under within-sample setting.

fork=1,2,...,mdo

Sample r ~ N (0, I).
Compute 27" +— p?(x;, ti, yi) + r © 0?(xs, ti, yi).
Update y™ + y™ + L. (2™, ),

end

Set y°“ <— 0. // Under out-of-sample setting.

fork=1,2,...,mdo

Sample r ~ N(0, I).

Compute z°% + pP(x°%) +r ® o (x°4)

Update yout — yout 4 % . M«p(iout7 tout).
end

Return predicted outcome 3" and y°*.

Within-sample RMSE Out-of-sample RMSE Within-sample RMSE Out-of-sample RMSE

3.0 3.4
3.0 3.0
25 2.7 2.5 3.2
2.0 2.5 2.1 2.9
1.
50.1 0.250.5 1.0 2.5 5.0 2'20.1 0.250.5 1.0 2.5 5.0 16 2 3 4 5 6 7 2.7 2 3 4 5 6 7
o? o? Dim of latent variable Dim of latent variable

—s=— FOHL (ours) —— CEVAE

Figure 5: The influence of ¥ and latent variable dimension on RMSE of counterfactual prediction.
We conduct experiments under the original synthetic dataset of main paper where p; = 3
and o, = 0.3 for analysis on 0¥ and p; = 2 and o, = 0.3 for analysis on latent variable
dimension.

Appendix D. Parameter Analysis

We conduct parameter analysis on synthetic datasets to show the characteristic of our method. To
show the influence of (¢)? and the latent variable dimension in model on the performance, we plot
the curve of prediction error results in Figure 5. The results reflect that the performance of FOHL
and CEVAE is stable w.r.t to the latent variable dimension. When the dimension is excessively small,
the performance significantly declines.
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Table 3: The experimental results on synthetic datasets where confounders are generated from

covariates.
Varying observed dimension p;, Fixing o, = 0.3
Within-Sample Setting
P | m=0 | m=1 | m=2 | m=3 | m=4 | p=5
Methods | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
Vep 4.016 | 0.041 | 3.938 | 0.042 | 3.652 | 0.044 | 3.065 | 0.061 | 2.789 | 0.070 | 1.496 | 0.045
Deconfounder | 3.393 | 0.287 | 3.393 | 0.287 | 3.393 | 0.287 | 3.393 | 0.287 | 3.393 | 0.287 | 3.393 | 0.287
Deconfounder(+) | 3.614 | 0.284 | 3.862 | 0.306 | 3.793 | 0.310 | 3.287 | 0.225 | 3.657 | 0.357 | 2.529 | 0.208
DSCM 3.674 | 0.028 | 3.452 | 0.019 | 3.104 | 0.032 | 2.653 | 0.046 | 2.430 | 0.020 | 1.330 | 0.054
CEVAE 2468 | 0.254 | 2.358 | 0.094 | 2.542 | 0.256 | 2.372 | 0.033 | 2.946 | 0.269 | 1.495 | 0.037
FOHL 2.198 | 0.066 | 2.191 | 0.096 | 2.173 | 0.082 | 1.946 | 0.071 | 1.746 | 0.043 | 1.337 | 0.046
Out-of-Sample Setting
DSCM 3.880 | 0.011 | 3.514 | 0.022 | 3.338 | 0.021 | 2.743 | 0.037 | 2.487 | 0.023 | 1.342 | 0.051
CEVAE 3.612 | 0.038 | 3.450 | 0.055 | 3.286 | 0.307 | 2.683 | 0.015 | 2.988 | 0.144 | 1.515 | 0.033
FOHL 3.695 | 0.036 | 3.494 | 0.033 | 3.026 | 0.030 | 2.600 | 0.032 | 2.321 | 0.033 | 1.347 | 0.042

Varying o, , Fixing p1 = 3

Within-Sample Setting

Os | 0,=02 | 0.=04 | 0,=06 | 0,=08 | o,=10 | o0,=12
Methods | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
Vep 2.902 | 0.044 | 3.233 | 0.057 | 3.633 | 0.038 | 4.068 | 0.048 | 4.603 | 0.046 | 5.071 | 0.039
Deconfounder | 3.694 | 0.322 | 3.797 | 0.280 | 3.742 | 0.249 | 3.809 | 0.387 | 4.389 | 0.225 | 4.751 | 0.595
Deconfounder(+) | 3.157 | 0.221 | 3.603 | 0.471 | 3.753 | 0.412 | 3.933 | 0.533 | 4.286 | 0.607 | 4.721 | 0.494
DSCM 2.573 | 0.045 | 2.786 | 0.044 | 3.129 | 0.043 | 3.542 | 0.041 | 4.027 | 0.029 | 4.536 | 0.037
CEVAE 2.435 | 0.080 | 2.422 | 0.080 | 2.709 | 0.211 | 3.148 | 0.385 | 3.459 | 0.320 | 3.857 | 0.278
FOHL 1.897 | 0.063 | 2.040 | 0.062 | 2.303 | 0.058 | 2.655 | 0.053 | 3.206 | 0.086 | 3.784 | 0.109
Out-of-Sample Setting

DSCM 2.619 | 0.037 | 2.912 | 0.034 | 3.330 | 0.024 | 3.778 | 0.022 | 4.286 | 0.014 | 4.807 | 0.024
CEVAE 2.599 | 0.037 | 2.816 | 0.040 | 3.203 | 0.109 | 3.657 | 0.134 | 4.069 | 0.110 | 4.509 | 0.103
FOHL 2453 [ 0.031 | 2.782 | 0.033 | 3.191 | 0.037 | 3.669 | 0.023 | 4.274 | 0.052 | 4.921 | 0.067

Appendix E. Results of Experiments where covariates point towards confounders

In some scenarios, the latent confounders may be generated from covariates. For example, the salary
level is the privacy of many people while their jobs can be observed. To verify the effectiveness of
our method under this setting, we set X! ~ A/(0, $*) where Y* keeps same as in the main paper.
The latent confounders are generated by z ; = ij +ée,6, ~N(0,02),1 < j < 5. The observed
covariates consists of two parts, X = [X" X"]. X" € RP! consists of p; dimension of X* while
X" keeps same as in the main paper. The generation of the other elements is the same to the setting
in the main paper. The results are reported in Table 3.

21



	Introduction
	Related Works
	Heterogeneous outcome prediction conditional on covariates
	Counterfactual Inference with Exogenous Noise Abduction

	Problem Formulation
	Proposed Method
	Distribution Modelling
	Outcome Prediction

	Theoretical Analysis
	Experiments
	Experimental Setup
	Synthetic Datasets
	Semi-synthetic Datasets

	Conclusion
	Proofs
	Pseudo-code of FOHL
	Experimental details
	Parameter Analysis
	Results of Experiments where covariates point towards confounders

