
Causal Discovery for Fairness

Appendix A. Causal Discovery Algorithms

A.1. PC and FCI

PC algorithm is a constraint-based algorithm. That is, it learns a set of causal graphs that
satisfy the conditional independencies embedded in the data at hand. There are two main
steps. The first (lines 1-1 in Algorithm 1) takes as input the data at hand along with a
significance level α and outputs a skeleton graph witch contains only undirected edges. The
second (lines 1-1 in Algorithm 1) consists of orienting the undirected edges of the skeleton
graph to form an equivalence class of DAGs. Note that the first step contributes to most of
the computational costs. The PC-algorithm is proved to be efficient for sparse graphs.
The main reason for that is that the neighbors of a particular node are dynamically updated
(line 1 in Algorithm 1) once and edge is deleted Le et al. (2016).

The FCI algorithm Spirtes et al. (1999)(Algorithm 2) is also a constraint-based algorithm and
is considered as a generalization of the PC algorithm. The main difference between PC and
FCI is that the latter takes into account the presence of common hidden confounders between
observed variables. Consequently, instead of producing a PDAG, the output of FCI is a
partial ancestral graph (PAG) with possibly five types of edges: , , , , . The
“ ” mark represents undetermined edge mark. In other words, “ ” can be either a tail “ ” or
a head “ ”. shows that there are hidden confounders between the two variables on either
side of the arrow. X Y implies that either X causes Y or there are hidden confounders
between both variables. X Y might be: X causes Y , Y causes X, there are common
hidden confounders between both variables, X causes Y and there are hidden confounders
between both variables, or Y causes X and there are hidden confounders between both
variables. As in the first step of the PC algorithm, FCI relies on statistical independence
tests to infer the skeleton of the graph. It is in the second step that FCI deviates from the
PC algorithm.

A.2. GES algorithm

GES (Algorithm 3) consists of searching over an abstract search space of states and transitions.
Each state is a CPDAG that corresponds to a Markov equivalence class of DAGs, all of which
happen to have the same BIC score Haughton (1988). The search objective is the state that
maximizes BIC score, hence, the output of GES is not a single DAG, but an equivalence
class of DAGs represented as a CPDAG.

The transitions of the search space are given by the following rule: a transition from a state
to another exists if and only if there are two DAGs, one on each equivalence class, that differ
only in the addition or removal of exactly one edge. Hence, there are two types of transitions:
forward (adding one edge) and backward (removing one edge). The neighboring states for
the state P are represented with the variable neighbors. The explicit computation of the
neighboring states is illustrated and discussed in Chickering (2002); Dor and Tarsi (1992);
Gamella (2021). The change in BIC score after following a transition can be computed
using a simple rule instead of fitting the whole global model on both states because the
BIC score can be decomposed as the sum of the local BIC scores of each of its directed and
undirected parents. This optimization corresponds to ∆BIC(P,P ′,D) in Algorithm 3. The

13

Binkytė Makhlouf Pinzón Zhioua Palamidessi

Algorithm 1: PC algorithm.
Input: Dataset D, and significance level α.
Output: PDAG P.
G← totally connected (undirected) skeleton
d← 0
while |adjG(X) \ Y |≥ d for every pair od adja-
cent vertices X − Y in G do
for each adjacent pair X − Y in G do

if (|adjG(X) \ Y |≥ d) then
for each Z ⊆ adjG(X) \ Y do

if |Z|= d and I(X,Y |Z) ≥ α then
Remove edge X − Y in G
Save Z as the separating set of X−Y
break

end
end

end
end
d← d+ 1

end
P ← G
for each triple of vertices (X,C, Y) such that
C ∈ adjP(X) and Y /∈ adjP(X) do
if C /∈ Z (separating set of X − Y) then

orient X − C − Y as X → C ← Y in P

end
end
while unoriented edges exist do

for each (X,C, Y) with X → C − Y and Y /∈
adjP(X) do
orient C − Y as C → Y in P ; // Rule 1

end
for each chain X → C → Y do

orient X − Y as X → Y in P ; // Rule 2

end
for each pair of chains X → C1 → Y and
X → C2 → Y such that C2 /∈ adjP(C1) do
orient X − Y as X → Y in P ; // Rule 3

end
end
return P

Algorithm 2: FCI algorithm.
Input: Dataset D, and significance level α.
Output: Partial ancestral graph (PAG).
G← skeleton found by PC
orient each edge in G as
for each unshielded triple (X,C, Y) do
if C /∈ Z (separating set of (X,Y)) then

orient the edges X C Y as
X C Y

end
end
repeat

if X C Y , and Y /∈ adjG(X) then
orient the triple as X C Y ; // Rule 1

end
if X C Y or X C Y , and
X C then
orient X C as X C ; // Rule 2

end
if X C∗ Y , X D Y , Y /∈
adjG(X), and D C then
orient D C as D C ; // Rule 3

end
if π = ⟨D, ...,X,C, Y ⟩ is a discriminating path
between D and Y for C, and C Y then
if C /∈ Sepset(D,Y) then

orient C Y as C Y ; // Rule 4

else
orient the triple ⟨X,C, Y ⟩ as X C
Y

end
end

until none of the above rules applies ;

greedy strategy of GES consists of repeatedly following the best forward transition at each
state that it encounters until reaching a local maximum, i.e. until the next state reduces
the BIC score, (this is the forward phase in Algorithm 3) and then, analogously (backward
phase), repeatedly following the best backward transition until a local maximum is reached.
The distinctive essential feature of GES is that its greedy technique, which prunes the search

14

Causal Discovery for Fairness

Algorithm 3: GES algorithm.
Input: Dataset D of |V | variables.
Output: CPDAG P that maximizes BIC score.
P ← disconnected CPDAG of |V | nodes
score← 0
for phase ∈ [forward, backward] do
while True do
neighbors← {P ′ : P→P ′ is a phase-transition}
if |neighbors|= 0 then
break

end
P ′ ← argmax

P′∈neighbors∆BIC(P,P ′,D)
∆score← ∆BIC(P,P ′,D)
if ∆score < 0 then
break

end
P ← P ′

Add ∆score to score

end
end
return P, score

Algorithm 4: Direct LiNGAM.
Input: Dataset with data columns

X̄, Ȳ , ..., Z̄ representing k variables
X,Y, ..., Z, and threshold α > 0

Output: DAG with weights matrix WX→Y

S ← [] Empty causal order list
while |S|< k do
X = argmin

X/∈S
∑

Y /∈S∪X I(X; rX̄→Ȳ)
Push X to the end of S
for Y /∈ S ∪ X do
Ȳ ← rX̄→Ȳ ; // Remove the effect of X on Y

end
end
WX→Y ← 0 for all X,Y ∈ S
for Y ∈ S do
pa← X : X precedes Y in S
Wpa→Y ← linear coefficients
(Y = f(pa))
Set small values in Wpa→Y to 0 (if
abs.<α)

end
return W

space dramatically, is guaranteed to find the optimal state of the whole space, provided that
the data matches the statistical model.

A.3. LiNGAM algorithm

LiNGAM is an algorithm based on causal asymmetries that, unlike the previously discussed
algorithms, yields a unique directed graph (DAG) and corresponding parameters. However,
the stronger causal discovery power comes at the expense of more assumptions that have to
be satisfied.

LiNGAM requires linearity and non-gaussianity of the variables to recover causal directions
and learn functional relationships Shimizu et al. (2006). If the assumptions are satisfied,
causal direction between two variables can be determined by fitting linear regression and
measuring the independence between the cause variable X , and the residuals rX→Y of
the effect variable Y when predicted using X. Mutual information is usually used as a
metric for independence Hyvärinen and Smith (2013), although other metrics have been
proposed Shimizu (2014).

The DirectLiNGAM implementation (Algorithm 4) learns the causal graph in two steps.
First, it finds the causal order of the variables: an ordered list, where the first is the exogenous
variable (has no parents in the graph), the second is the child of the exogenous variable,
that has the most descendants etc. Next, the causal order is used to compute the adjacency

15

Binkytė Makhlouf Pinzón Zhioua Palamidessi

matrix that specifies the strength of the connections. Specifically, starting from the end of
the list, each variable is regressed on all the others that comes before it in the causal order
(potential parents).

A.4. SBCN Algorithm

A Suppes-Bayes Causal Network (SBCN) Bonchi et al. (2017) is a different type of causal
graph that is used specifically for fairness assessment purposes. SBCN deviates from the
causal graphs used above in three aspects. First, vertices in an SBCN correspond to Bernoulli
variables with binary values. For example, ⟨ Gender = female ⟩ and ⟨ Gender = male
⟩ correspond to two different vertices. Second, causal relations between vertices follow
the Suppes’s definition of causality Hitchcock (2002); Suppes (1973) (different from the
typical definition of causality Pearl (2009)) which requires temporal priority and probability
raising. For example, a node a is a cause of a node y (a → y) if and only if, a occurs
before y (temporal priority) and the cause a raises the probability of the effect y, that
is, P(y|a) > P(y|¬a) (probability raising). Third, every edge (causal relation) is assigned
a weight corresponding to the confidence score. The weight is simply the extent of the
probability raising (W (a, y) = P(y|a)− P(y|¬a)). Discovering the SBCN structure from the
data is a hybrid approach using constraint-based as well as score-based ideas.

Algorithm 5: SBCN
Input: Dataset D with a set of Bernoulli variables V, and a partial order r of V .
Output: SBCN = (V,E∗,W).
for all pairs (x, y) ∈ V do

if r(y) ≤ r(x) and P(x | y) > P(x | ¬y) then
add the edge (x, y) to SBCN

end
end
Consider G(V,E∗,W)fit = ∅
while !StoppingCriterion() do
let G(V,E∗,W)neighbors be the neighbor solutions of G(V,E∗,W)fit
remove from G(V,E∗,W)neighbors any solution whose edges are not included in SBCN
consider a random solution Gcurrent in G(V,E∗,W)neighbors
if scoreBIC(D,Gcurrent) > scoreBIC(D,Gfit) then
Gfit = Gcurrent

∀edge(x, y) of Gfit, W (x, y) = P(x | y)− P(x | ¬y)

end
end
SBCN = Gfit

return SBCN

16

