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Abstract

Fairness guarantees that the ML decisions do not result in discrimination against individuals
or minority groups. Identifying and measuring reliably fairness/discrimination is better
achieved using causality which considers the causal relation, beyond mere association,
between the sensitive attribute (e.g. gender, race, religion, etc.) and the decision (e.g.
job hiring, loan granting, etc.). The big impediment to the use of causality to address
fairness, however, is the unavailability of the causal model (typically represented as a causal
graph). Existing causal approaches to fairness in the literature do not address this problem
and assume that the causal model is available. In this paper, we do not make such an
assumption and we review the major algorithms to discover causal relations from observable
data. This study focuses on causal discovery and its impact on fairness. In particular, we
show how different causal discovery approaches may result in different causal models and,
most importantly, how even slight differences between causal models can have significant
impact on fairness/discrimination conclusions.
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1. Introduction

Several fairness criteria have been introduced in the literature to assess discrimination (statisti-
cal parity Darlington (1971), equal opportunity Hardt et al. (2016), calibration Chouldechova
(2017), etc.) Makhlouf et al. (2021). The most recent fairness criteria, however, are causal-
based Makhlouf et al. (2020a) and reflect the now widely accepted idea that causality is
necessary to appropriately address the problem of fairness. There are at least three benefits
of using causality to assess fairness. First, in the presence of a common cause (confounder)
between the sensitive attribute A (e.g. gender) and the decision Y (e.g., job hiring) as in
Figure 1(a), using conditional probability P(Y |A) leads to wrong conclusions about the
dependence of Y on A. Confounders are the reason why we say that “correlation is different
than causation”. A more reliable measure of the dependence between Y and A is the causal
effect of A on Y which is typically computed by adjusting on confounders. Second, causality
is well equipped to carry out mediation analysis, that is, distinguishing the different paths of
causal effects as shown in Figure 1(b), A causal effect between two variables A and Y can
be classified as direct (A→ Y ), indirect (A→ R→ Y and A→ E → Y ), or a path-specific
effect (only through A → R → Y or A → E → Y ). This is very relevant to fairness as a
direct effect is always unfair, while an indirect or a path-specific effect may be unfair or fair
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depending on the mediator variable: an indirect effect through a redlining/proxy variable
(R) is unfair, while an indirect effect through an explaining variable (E) is acceptable (fair).
Third, in some legal liability frameworks such as disparate treatment Barocas and Selbst
(2016), discrimination claims require the plaintiff to demonstrate a causal connection between
the challenged decision (e.g. hiring, firing, admission) and the sensitive attribute (e.g. gender,
race, age). The main impediment to causal inference is the unavailability of the true causal
graph which indicates the causal relations between variables. Causal graphs can be set
manually by experts in the field, but are very often generated using experiments (also called
interventions). The process of identifying the causal graph from the data is called causal
discovery or structure learning.

A Y

C

(a)

A Y

R

E
(b)

Figure 1: Causal graphs illustrat-
ing confounding (a) and media-
tion analysis (b).

A large number of causal discovery algorithms exist in the litera-
ture. The majority of causal discovery algorithms fall into three
categories: constraint-based, score-based, and procedures that
exploit semi-parametric assumptions. In the constraint-based
category, algorithms rely mainly on the (conditional) indepen-
dencies present in the data to discover causal relations between
variables. Therefore their efficiency depends on the reliability
of the conditional independency test procedure. Score-based
algorithms rely instead on goodness-of-fit tests. They learn
causal graphs by maximizing a scoring criterion such as the

Bayesian Information Criterion (BIC) Schwarz (1978) which trades-off accuracy (fitness of
graph to the data) with complexity (the number of parameters in the model). Algorithms in
the third category use additional assumptions to learn causal relations more efficiently and
in more details. The most common assumptions relevant to the third category are linearity
of the model and non-gaussianity of the regression residuals.

This paper studies the problem of discovering causal graphs1 to be used to assess fairness of
machine learning-based decision systems. As reference, we provide, in Appendix A, an intu-
itive explanation of the major causal discovery algorithms (PC Spirtes et al. (1999) and its FCI
extension Spirtes et al. (1999), GES Hauser and Bühlmann (2012), directLiNGAM Shimizu
et al. (2011), and the fairness related discovery algorithm SBCN Bonchi et al. (2017)). This
is helpful to understand why different discovery approaches may generate different causal
structures. The main contribution of the paper is to use real-world fairness benchmark
datasets to illustrate the consequences of slight differences in causal structures on fairness
conclusions.

2. Causal Structure and Fairness

Several fairness notions rely on causality to assess fairness and hence require a causal graph.
The most basic causal-based fairness notion is total effect (TE) Pearl (2009)2 which considers
the overall effect of a variable A on a variable Y . Assume that the sensitive variable A can
take two possible values a0 (e.g. female) and a1 (e.g. male) and that the positive outcome is
y+ (e.g. hiring), TEa1,a0(y

+) is defined as P[Y=y+ |do(A=a1)]− P[Y=y+ |do(A=a0)] which

1. Interested readers can find in Appendix A quick descriptions of commonly used causal discovery algorithms
2. Known also as average causal effect (ACE).
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measures the effect of the change of A from a1 to a0 on Y = y+ along all the causal paths
from A to Y . P[Y=y |do(A=a)] denotes the probability of Y = y after an intervention
do(A = a). This is equivalent to the probability of Y = y after forcing all individuals in the
population to have value A = a. P[Y=y |do(A=a)] is denoted P[ya] for short.

Direct effect (DE) is another fairness notion which focuses exclusively on the direct path
A→ Y (ignoring all indirect paths between A and Y ). The most general formulation of DE
is natural direct effect (NDE) Pearl (2001) defined as NDEa1,a0(y

+) = P[y+

a1,Za0
]− P[y+

a0 ]

where Z is the set of mediator variables and P[y+

a1,Za0
] is the probability of Y = y+ had A

been a1 and had Z been the value it would naturally take if A = a0. Indirect effect (IE),
which focuses rather on the indirect paths from A to Y , can be computed using the natural
indirect effect (NIE) Pearl (2001) formula NIEa1,a0(y

+) = P[y+

a0,Za1
] − P[y+

a0 ]. Using the
identifiability theory of causal inference Shpitser and Pearl (2008); Makhlouf et al. (2022),
the above expressions of fairness notions, involving interventions and counterfactuals, can be
expressed in terms of observable probabilities.

A Y

C

(a) C is a me-
diator

A Y

C

(b) C is a con-
founder

Figure 2: Two simple causal
graphs differing only on the direc-
tion of the edge between A and C.

To see the impact of the causal graph structure on how these
fairness notions can be identified and computed, consider the
two simple graphs in Figure 2. Although both graphs differ in
the orientation of a single edge between A and C, they lead
to significantly different expressions for the causal fairness
notions.

TE is identifiable in both graphs. In the left graph, since there
is no confounder, an intervention on A (do(A = a)) coincides
with conditioning on A = a. Hence, TEa1,a0(y

+) = P[y+
a1 ] −

P[y+
a0 ] = P[y+ |A=a1] − P[y+ |A=a0] which coincides with total variation (TV ) Makhlouf

et al. (2020a). However, in the slightly different graph on the right, C is a confounder,
and hence TE is computed by adjusting on C 3: TEa1,a0(y

+) = P[y+
a1 ] − P[y+

a0 ] =∑
c∈dom(C) (P[Y=y+ |a1, c] − P[Y=y+ |a0, c]) P[C=c]. For NDE, it is computed the same

way in both graphs since it requires blocking all non-direct paths which is achieved by adjust-
ing on variable C: NDEa1,a0(y

+) =
∑

c∈dom(C) P[C=c] (P[Y=y+ |a1, c] − P[Y=y+ |a0, c]).
For the indirect effect, NIE is equal to zero in the right graph since there is no causal
indirect path between A and Y , while for the left graph, it is equal to: NIEa1,a0(y

+) =∑
c∈dom(C) P[y+ |a0, c](P[c |a1]− P[c |a0]).

The disparity of identifying causal fairness notions due to slight differences in the causal
graphs holds also for other fairness notions Makhlouf et al. (2020a). This is further illustrated
in the following experimental analysis section.

3. Experimental Analysis

We apply the different causal discovery algorithms on one synthetic dataset and three real-
world fairness benchmark datasets. We use Tetrad Ramsey et al. (2018) implementation of
PC, FCI and GES algorithms with a significance threshold (α) set to 0.01 for conditional

3. We are considering the discrete case.
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independence testing. For SBCN discovery, we use the same implementation as the original
paper Bonchi et al. (2017). The only background knowledge we use in this study is temporal
order using tiers. Variables are split into a set of ordered tiers (tier 1, tier 2, . . . tier n) which
imply the following constraints. A variable in tier i can be the cause of variables in the
same tier or in subsequent tiers (i+ 1 . . . n) but not of variables in previous tiers (1 . . . i− 1).
We use five different causal-based fairness notions, namely, ATE_IPW , TE, DE, ID,
and ED which correspond, respectively, to average total effect using inverse propensity
weighting Imbens and Rubin (2015), total effect, direct effect, indirect discrimination, and
explainable discrimination. Indirect discrimination and the explainable discrimination
compute both the indirect causal effect between the sensitive variable and the outcome.
However, indirect discrimination measures the path-specific effect with a proxy/redlining
variable while the explainable discrimination considers the path-specific effect with an
explaining variable. Thus, while the first is discriminatory, the second is legitimate and
hence should be removed from the causal effect estimation. These and other causal-based
fairness notions are described by Makhlouf et al. Makhlouf et al. (2020b). The paths package
implementation Zhou and Yamamoto (2020) is used to estimate TE, DE, ID, and ED.
Computing (or estimating) discrimination consists in subtracting the probability of positive
(desirable) output (e.g. hiring, granting a loan, etc.) for the protected group (e.g. female)
from the probability of positive output of the privileged group (e.g. male) as expressed in
Section 2. This leads to values in the range [−1,+1]. A value of 0 means the outcome is fair
(no discrimination), a positive value indicates a discrimination against the protected group,
and a negative value indicates a discrimination in favor of the protected group. Estimating
discrimination using all the above measures requires the knowledge of the confounder and
mediator variables. However, PC, FCI, and GES algorithms can output partially directed
graphs (PDAG) which do not guarantee to tell if a certain variable is a confounder or a
mediator since some edges are left undirected. In such cases, we consider all possible ways of
directing the (typically few) undirected edges (as long as they do not introduce a v-structure).
For instance, if there are two undirected edges X−W and Z−Y , there are 4 ways of directing
them: X → W and Z → Y , X ← W and Z → Y , X → W and Z ← Y , and X ← W
and Z ← Y . For each combination, we compute the discrimination and finally we report
the range of values. This can be seen as bounding the discrimination value. Interpreting
variables differently (explaining vs redlining) can also result in a range of values in mediation
analysis (computing DE, ID, and ED).

3.1. Synthetic linear dataset

We generated a continuous linear dataset with a very simple causal structure (Figure 3(a)) to
illustrate the main properties of the causal discovery algorithms discussed in this article. In
general, synthetic datasets are crucial for testing causal discovery algorithms systematically
because, unlike real-world datasets, the ground truth graph is known. Each edge in Figure 3(a)
has a weight that was chosen randomly, and each node has a gaussian source of noise whose
standard deviation is indicated in red. The value of a node is the weighted sum of the
values of the parents plus the noise. For instance, the values of X1 and X5 are generated
as X1 = N (0, 0.3) and X5 = 1.3X2 + 1.2X3 + N (0, 1.3) respectively. Figure 3 shows the
graphs generated by each algorithm for 100000 samples. On the one hand, PC, FCI, and
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Figure 3: Generated causal graphs for the synthetic dataset with gaussian noise and *uniform noise.

GES generate the same CPDAG structure with 4 (correctly) directed edges, and the Markov
equivalence class of this CPDAG contains indeed the ground truth DAG in Figure 3(a).
On the other hand, LiNGAM leaves no edge undirected and produces a DAG. Since the
residuals of this experiment are the gaussian noises, LiNGAM is unable to perform correctly
(Figure 3(e)). However, if the experiments are repeated using uniform sources of noise centered
at zero, then LiNGAM is able to recover the causal structure4, as shown in Figure 3(f ).
Importantly, the 3 undirected edges in Figures 3(b), 3(c) and 3(d) can not be directed by
any of the three algorithms regardless of the number samples used. This occurs because it
is possible to invert some of the arrows, e.g. X4 → X2 → X1, and tune the weights of the
noises and the edges so as to get the same joint probability distribution. As a consequence,
the only way to direct the CPDAG undirected edges is by means of background knowledge.
For instance, if it was known that X1 preceded X2 temporally, this constraint would force
the algorithms to direct X1 → X2 as well as X2 → X3 because a v-structure would appear
at X2 otherwise.

DirectLiNGAM, however, could generate the correct skeleton as well as the correct directions
of the edges successfully. This is possible because the first dataset satisfies exactly the
assumptions for the applicability of LiNGAM. That is, functional relations between variables
are linear, values are continuous, and the noise distribution is non-Gaussian (uniform).

3.2. Compas

The Compas dataset includes data from Broward County, Florida, initially compiled by
ProPublica Angwin et al. (2016) and the goal is to predict the two-year violent recidivism.
That is, whether a convicted individual would commit a violent crime in the following two
years (1) or not (0). We consider race as sensitive feature. Five variables are used for the
structural learning, namely: race, sex, age, priors and recidivism. Three tiers in the partial
order for temporal priority are used: race, sex and age are defined in the first tier, priors is
in the second tier and recidivism is defined in the third tier. When found to be mediator,
variables age and sex are considered as redlining, whereas priors as explaining. As Compas
dataset Angwin et al. (2016) contains mixed data, LiNGAM is not applied. Figure 4 shows
the generated causal graphs for PC, FCI and GES. Figure 4(d) shows the SBCN for the
protected group (non-white defendants)5.

4. Using the threshold α = 0.05. Smaller values lead to extra false edges, e.g. α = 0.03 detects X3 → X6.
5. Note that Figure 4(d) shows a subgraph of the generated SBCN graph of the Compas dataset including

solely the causal paths between the protected group and the outcome.
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Figure 5: Estimation of causal effects of the Com-
pas dataset.
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Figure 6: Estimation of causal effects of the
Adult dataset.
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Figure 4: Generated causal graphs and SBCN for the Compas dataset. Recid. stands for recidivism.

It is important to mention that the obtained graphs for Compas dataset do not agree on the
direct edge from the sensitive attribute (race) to the outcome variable (recidivism). There is
such an edge according to PC and FCI, but not according to GES and SBCN. This is of
crucial importance to fairness as the direct effect is always discriminatory.

Figure 5 shows the different discrimination measures using the different graphs. Both TE
and ATE_IPW produce positive values which indicate a discrimination against non-white
defendants. Considering the PC CPDAG (Figure 4(a)), the highest value of TE is obtained
when there are no confounders (the two undirected edges are directed as race → age and
race → sex). In such graph, TE coincides with TV which is equal to 0.125. The same
high value of TE is obtained with GES CPDAG (Figure 4(c)) when the undirected edge
is directed as race → age. In such no confounding case, the presence or absence of the
direct edge race→ recidivism does not matter for TE. The smallest value for TE (0.050)
is only obtained in FCI PAG (Figure 4(b)) where both age and sex variables are confounders.
This implies that the total effect is going through only two paths race → recidivism and
race → priors → recidivism. Such low TE value cannot be obtained in PC nor in GES
CPDAGs because the edges age→ race and sex→ race will create a new v-structure, and
hence, lead to a causal graph outside the Markov equivalence class. ID is highest (0.096)
with PC when both age and sex are mediators (race→ age and race→ sex). This is inline
with GES as ID is highest (0.084) with the same directions of the edges (race→ age and
race→ sex). This is expected as this yields two redlining paths (race→ age→ recidivism
and race→ sex→ recidivism). Surprisingly, when age is a confounder while sex remains a
redlining, the indirect discrimination against blacks (0.096) becomes indirect discrimination
in favor of blacks (−0.064). This is an example of Simpson’s paradox Simpson (1951); Bickel
et al. (1975) when conditioning on a variable changes significantly the statistical conclusions.
In the case where the edges are directed as race→ age and sex→ race, both PC and GES
graphs produce the same ID value (−0.018). The case that leads the highest discrepancy in
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ID values between PC and GES is age → race and race → sex (age is a confounder and
sex is a mediator). In such setup, according to PC, ID is lowest (−0.064) while according to
GES, ID is zero as there are no redlining paths between race and recidivism. For GES, ID is
highest when age is a mediator (redlining) and the indirect discrimination is conveyed through
the path race→ age→ recidivism. If age is confounder (age→ race), there is no redlining
variables, and hence ID is zero. It is important to mention here that if a causal path is
going through redlining and explaining variables (e.g. race→ sex→ priors→ recidivism),
it is considered as part of explained discrimination. The rule of thumb is that any path
containing at least one explaining variable is considered as part of explained discrimination6.
ID is zero for FCI and SBCN for the same reason (absence of redlining paths). ED values
according to all graphs are comparable as all explained discrimination is going through
the single explaining variable (priors). For ED, there are three possible paths from race
to recidivism: race → priors → recidivism, race → sex → priors → recidivism, and
race→ age→ priors→ recidivism. For PC, all paths are possible. For FCI, only the first
path is possible, while for the others, only the first two are possible. Therefore ED for GES
and SBCN are equal. As a summary, estimating TE using graphs generated by different
causal discovery algorithms can lead to a significant inconsistency (0.125− 0.050 = 0.075)
in assessing the amplitude of the discrimination against non-white defendants. Moreover,
graphs generated by the same discovery algorithms (belong to the same Markov equivalence
class), can lead to very different discrimination values (ID goes from a positive discrimination
of 0.096 to a negative one (−0.064) due to reversing the direction of a single edge) which can
be seen as a form of Simpson’s paradox. Finally, the value of the threshold to decide about
causal relations can have important consequences on fairness conclusion as well (missing
race→ recidivism edge in GES and SBCN).

3.3. Adult

The Adult dataset7 consists of 32, 561 samples and the goal is to predict the income of
individuals: ≤ 50K (negative outcome) or > 50K (positive outcome). Only 7 variables are
used for structural learning namely: age, sex, education level, marital status, work-class and
number of working hours per week. Three tiers in the partial order for temporal priority are
used: age and sex are defined in the first tier, education and marital status in the second
tier, and work-class, number of working hours per week and the income are defined in the
last tier. When found to be mediators, variables age and marital status are considered as
redlining, whereas education as explaining. The causal graphs generated by PC, FCI and
GES are shown in Figure 7. Figure 8 shows the SBCN for females. As in the Compas dataset,
LiNGAM cannot be used as data is mixed as well.

6. This interpretation can be justified by considering the simple path race → priors → recidivism. Such
path is clearly part of explained discrimination as priors is explaining variable. However, it contains also
a “redlining” variable which is the sensitive attribute race!

7. https://archive.ics.uci.edu/ml/datasets/adult.
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Figure 7: Generated causal graphs for the Adult dataset.

There are two important notes about the generated graphs. First, only SBCN exhibits a
direct edge between sex and income. Second, all remaining graphs have undirected edges
(in particular, between sex and age). This leads to variability in the fairness measures as
shown in Figure 6. For instance, although all TE and ATEIPW values are positive which
indicates a discrimination against females, there is some variability in the extent of this
discrimination. The highest discrimination can be seen in the GES CPDAG (Figure 7(c))
where sex → age (age is a mediator) yields to TE = 0.196 whereas age → sex (age is a
confounder) yields to TE = 0.157. DE is zero according to all graphs except for SBCN
since it is the only one with a direct edge between sex and income. For PC and FCI graphs
(having the same structure with two undecided edges), ID value ranges between −0.003
and 0.184 where the former is obtained with age→ sex and education→ marital and the
latter is obtained with sex→ age and education→ marital. This is expected as sex→ age
opens an additional redlining path sex → age → income. In other words, having only
one redlining path sex → marital → income shows a very small indirect discrimination
in favor of females. Opening the other redlining path (through age) turns that into a
clear indirect discrimination against females. A possible explanation is that young married
women tend to have low income due to motherhood responsibilities, while older married
women passed that part of their life and are more available for their professional careers.
Notice that, the lowest value of ID in GES (0.119 obtained with age→ sex) is significantly
higher than the lowest ID value in PC and FCI (−0.003). The reason is that in GES,
there is only one indirect path sex → marital → recidivism while in PC and FCI, there
are three different paths (sex → marital → income, sex → education → income, and
sex→ education→ marital→ income). Hence, the causal effect between sex and income
in GES is only conveyed through the redlining path. Whereas in PC and FCI, it is split
between the redlining path and also the two other explained discrimination paths. For ED,
the highest value (0.132) is obtained in PC and FCI when age is a confounder (age→ sex)
and marital status is a mediator between education and income (education → marital).
The smallest value (−0.027) is obtained in GES when age is a mediator (sex → age)
which indicates a small explained discrimination in favor of females through the path
sex → age → education → income. This path is only possible as a single explaining
path in GES CPDAG. In all the graphs obtained by the other algorithms, such path is
possible but along other explaining paths, in particular, sex→ education→ income. This
explains why the discrimination in favor of females is only observable with GES. It is
interesting to notice that in PC and FCI graphs, the explained discrimination through
sex → education → income is slightly positive (0.016) whereas in GES graph, adding
another mediator sex → age → education → income yields a slightly negative explained
discrimination. As there is no overlap between the ranges of ED values in PC and FCI graphs
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on one hand and GES on another, and that values (although small) have different signs
(positive vs negative), the explained discrimination conclusions depend on which algorithm
is used to discover causal relations.

Compared to Compas dataset, the mediation analysis on adult dataset reveals two additional
fairness relevant observations. First, a specific causal path can be discovered by several causal
discovery algorithms. However, the causal effect through that path may significantly differ
depending on the presence of other causal paths not necessarily with the same interpretation
(redlining or explaining paths). Second, even with the same causal path (e.g. sex →
education → income), considering a mediator (e.g. age) can reverse the type of the
discrimination (e.g. sex→ age→ education→ income).

female low
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low-hours

work-other
work-self

young-age

no-college

unmarried

work-gov

.0
43

.260

.196
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.447
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.16
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.215
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.324
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.18
4
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49

.036

Figure 8: SBCN of Females in the Adult dataset.

There is a significant variability in the
values of ED for PC and FCI because
there are three possible paths for ex-
plaining discrimination that depends on
the direction of the undirected edges,
namely, sex → education → income,
sex → education → marital → income,
sex → age → education → income, and
sex → age → education → marital →
income. For GES, ED is either zero
(when age is a confounder) or indicates a small discrimination through a single path,
sex → age → education → income. Note that the edge education − marital in PC
and FCI graphs should be oriented as education → marital. Otherwise, a new collider
(education) will be created.

4. Conclusion

The main contributions of the paper are two-fold. First, we show how the subtle differences
between the causal discovery algorithms can explain why they generate different causal
graphs. Second, and foremost, we demonstrate how slight differences between causal graphs
may have significant impact on fairness/discrimination conclusions. Most of the causal
approaches to fairness in the literature do not tackle the causal graph generation task. With
this study, we hope to raise the awareness about the importance of this step in the fairness
assessment and enforcement pipeline as any difference in the structure of the graph may
lead to very different fairness conclusions. A natural follow-up work after this study is to
design a new causal discovery algorithm specifically tuned for fairness. It looks promising,
for instance, to focus around the sensitive attributes by using ideas from local discovery
algorithms Gupta et al. (2022). Another future direction would be to study the impact of
pre-processing transformations on the structure of the generated graph and consequently on
the fairness conclusions.
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