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1. Introduction

As machine learning models permeate every aspect of decision making systems in conse-
quential areas such as healthcare and criminal justice, it has become critical for these models
to satisfy trustworthiness desiderata such as fairness, interpretability, accountability, pri-
vacy and security. Initially studied in isolation, recent work has emerged at the intersection
of these different fields of research, leading to interesting questions on how fairness can be
achieved using a causal perspective and under privacy concerns.

Indeed, the field of causal fairness has seen a large expansion in recent years (Chiappa
(2019); Khademi et al. (2019); Kusner et al. (2017); Wu et al. (2019)) notably as a way to
counteract the limitations of initial statistical definitions of fairness (Friedler et al. (2016);
Kleinberg et al. (2017); Lipton et al. (2018); Liu et al. (2018)). While a causal framing
provides flexibility in modelling and mitigating sources of bias using a causal model, pro-
posed approaches rely heavily on assumptions about the data generating process, i.e., the
faithfullness and ignorability assumptions. This leads to open discussions on (1) how to
fully characterize causal definitions of fairness, (2) how, if possible, to improve the applica-
bility of such definitions, and (3) what constitutes a suitable causal framing of bias from a
sociotechnical perspective? (Carey and Wu (2022); Fawkes et al. (2022); Kohler-Hausmann
(2019); Kasirzadeh and Smart (2021); Kilbertus et al. (2019)).

Additionally, while most existing work on causal fairness assumes observed sensitive
attribute data, such information is likely to be unavailable due to, for example, data pri-
vacy laws or ethical considerations. This observation has motivated initial work on training
and evaluating fair algorithms without access to sensitive information (Andrus et al., 2021;
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Kasirzadeh and Clifford, 2021; Kilbertus et al., 2018; Mougan et al., 2022; Yan et al., 2020)
and studying the compatibility and trade-offs between fairness and privacy (Chang and
Shokri, 2021; Cheng et al., 2021; Cummings et al., 2019; Ekstrand et al., 2018; Fioretto
et al., 2022; Jagielski et al., 2019). However, such work has been limited, for the most part,
to statistical definitions of fairness raising the question of whether these methods can be
extended to causal definitions.

Given the interesting questions that emerge at the intersection of these different fields,
we organized the Algorithmic Fairness through the Lens of Causality and Privacy workshop
(AFCP1) as part of the Neural Information Processing Systems (NeurIPS2) conference in
December 2022. Our aim was to deeply investigate how algorithmic fairness, causality
and privacy relate, but also how they can augment each other to provide better or more
suited definitions and mitigation strategies for algorithmic fairness. We were particularly
interested in addressing open questions in the field, such as:

• Are causal definitions of fairness compatible with privacy constraints? If not, what are
the trade-offs?

• How to build fair models without direct access to (or with encrypted) sensitive informa-
tion?

• What causal assumptions hold in a fairness context?

• What are the ethical concerns and moral assumptions underlying causal-based notions of
fairness?

• How can causality help in achieving intersectional fairness?

2. Workshop

The AFCP workshop was held in-person as a NeurIPS workshop on December 03, 2022.
In order to make the workshop accessible to as many people as possible and accommodate
different time-zones, we held a virtual morning session with livestreamed invited talks and
roundtables. Additionally, all in-person talks were livestreamed and all accepted papers
were able to pre-recorded a 3-minute video available on the website.

2.1. Program

AFCP 2022 featured invited talks by Deirdre Mulligan (UC Berkeley), Razieh Nabi (Emory
University), Nicolas Papernot (University of Toronto), and Catuscia Palamidessi (INRIA),
six spotlight talks from authors of accepted papers, an interdisciplinary panel discussion
with Kristian Lum (University of Chicago), Joshua Loftus (London School of Economics),
Rachel Cummings (Columbia University), Jake Goldenfein (Melbourne Law School), Sara
Hooker (Cohere For AI), one poster session and roundtable discussions. The latter consisted
in live discussions between invited researchers of mixed seniority and workshop attendees,

1. https://www.afciworkshop.org
2. https://neurips.cc
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held virtually and in-person. They engaged more than 100 researchers and covered the
following themes:

• Causality and fairness. Invited researchers: Joshua Loftus (London School of Economics),
Dhanya Sridhar (University of Montreal, Mila), Aida Rahmattalabi (SonyAI), David
Madras (University of Toronto), and Amanda Coston (CMU).

• Privacy and fairness. Invited researchers: Rachel Cummings (Columbia University), Ul-
rich Aı̈vodji (ETS Montreal), Fatemehsadat Mireshghallah (UCSD), and Sikha Pentyala
(UW Tacoma).

• Ethics and fairness. Invited researchers: Negar Rostamzadeh (Google Research), Sina
Fazelpour (Northeastern University), and Nyalleng Moroosi (Google Research).

• Interpretability and fairness. Invited researchers: Zachary Lipton (CMU), Julius Adebayo
(MIT), and Amir-Hossein Karimi (MPI-IS, ETH Zurich).

2.2. Contributed papers and extended abstracts

AFCP had two tracks: a Paper track which called for 4-9 page manuscripts of novel work and
an Extended abstract track which called for 1-page abstracts. We received 36 viable papers
submissions and 15 extended abstracts, which were sent for peer reviewing. All submissions
received at least 3 reviews, which led to the acceptance of 23 papers (acceptance rate: 64% )
and 11 abstracts (acceptance rate: 68% ). Among the accepted papers, 6 papers were related
to the use of causal methods for fairness, 10 works discussed the intersection of fairness and
privacy, and 7 described applications, mitigation techniques or metrics for fairness. Among
the selected works, 14 papers were considered for inclusion in the Proceedings, with the
authors of 4 works choosing to do so. All accepted works were presented as posters during
the conference, and contributions in the Paper track were able to pre-recorded 3 minute
video summaries which were available on the virtual NeurIPS website.

3. Themes and open questions

Throughtout the workshop, salient discussion topics were around how to conceptualize inter-
ventions on immutable sensitive attributes and the issues with modeling sensitive/immutable
traits as (exogenous) causes. Participants also discussed the identifiability of counterfac-
tual notions of fairness and how to address conflicting stakeholder views on causal graphs.
The discussion around privacy centered on how differential privacy can negatively affect
under-represented subgroups and what role synthetic datasets play in privacy-preserving
fair analysis. Finally, several issues around data were brought up including dataset con-
struction, data protection rules in face recognition applications, intellectual property and
open datasets with harmful content.

Below, we highlight some takeaways from the discussion and open questions we hope to
address in future editions:

• Causality and fairness: Domain Knowledge is important when modeling causal relation-
ships. It is important to work with stakeholders to verify the plausibility of the causal
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graph considered in context. Causality inherently relies on manipulation. Given the im-
possibility of intervening on immutable characters, what can causality really bring to the
work on fairness? Should we hold ourselves to the idea of causality through manipulation
only?

• Privacy and fairness: It is important to providing contextualized privacy explanations
(e.g., value of epsilon in different applications domains) and to study application-specific
problems. Open challenges in differential privacy include streaming, allocating privacy
budget, data heterogeneity.

• Interpretability and fairness: Counterfactual explanations can provide recommendations
with regards to causal explanation and can be restricted based on real world assumptions.
However they can increase security risks. It is important to consider real cases, contexts,
and the end-users for effective explanations. While LIME/SHAP and other techniques
are valuable, how can we move to a post LIME/SHAP world with more interactive model
correction and feedback from domain experts?

• Ethics and fairness: Participatory machine learning approaches are important in order
to co-develop and allow different contexts to be taken into account (domain, politics,
regulation, etc). When teaching ethics to machine learning and statistic students, social
and historical perspectives play an important role in order to better understand data
and ethics. Given the field’s focus on different fairness tradeoffs and impossibility results,
what is an ethical understanding of these findings?
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