
Privacy Aware Experimentation

Appendix A. Appendix

A.1. Detailed Discussion of Project Lighthouse

They consider a dataset of users with an anonymous ID and a feature vector, in their case
the number of reservations made and the number of reservations rejected. An independent
council labels each ID with a race/ethnicity using profile pictures and names. The features
are made less granular to ensure that there are at least k users with the same features,
and then joined with the IDs. If a particular feature has all the same race/ethnicity, then
ℓ-diversity is used to change some of the groups. The resulting dataset can then be used to
determine whether rejection rate is independent of race/ethnicity. It is not immediately clear
how statistical tests might be modified to detect differences between groups, as sometimes
k-anonymous features might result in very wide ranges of values. If it is later determined
that the feature vector was not rich enough, then the whole procedure needs to be redone.
Additionally, if some change had been implemented, we would like to know whether the
rejection rate difference in groups had changed. Unfortunately, k-anonymous groups do not
satisfy any composition property, so doing this procedure again with different features and
hence different groups might allow someone to be identified.

A.2. Binary Outcomes

We include detailed derivations of the corrected Z-test and general χ2 test, giving some
additional results on performance for these tests.

There are traditionally two ways to test whether the success probabilities are different
between two groups, either with a Z-test or with a χ2-test. In fact, many built in proportion
test packages in Python and R use χ2, rather than Z-tests, as the default to determine
p-values.4 One useful property of the Z-test, compared to the χ2 test is that it can readily
be used to compute confidence intervals for the difference in proportions. Furthermore, the
difference between the Z and χ2 tests comes from the experimental design. For Z-test, we fix
two sample sizes: n1 for group 1 and n2 for group 2. While for χ2-tests, we sample n data
points where there is some probability π of being in group 1, and otherwise probability 1− π
of being in group 2. It is the latter experimental design that we will be primarily interested
in, since we will assume that we do not know which group each person belongs to initially.
However, we do analyze Z-tests to see if they can still be used to compute valid confidence
intervals for the difference in proportions between two groups.

A.3. Z-test

We will assume that we have a binary variable and two groups. We will have data
{(Gi, Xi)}ni=1, where we first sample which group each Xi belongs to, which we model
with Gi ∼ Bern(π) + 1 for an unknown π ∈ [0, 1], then we have Xi|Gi ∼ Bern(pGi), where
pg ∈ [0, 1] is the probability of success for group g ∈ {1, 2}. One common test we may want to
conduct is to test the null hypothesis H0 : p1 = p2 +∆. We will write N [1] =

∑n
i=1 1Gi = 1,

N [2] = n − N [1], and X̄[g] = 1
N [g]

∑N [g]
i=1 Xi · 1Gi = g for g ∈ {1, 2}. To carry out the

4. In fact, the prop.test method in R actually computes the χ2 statistic, see RDocumentation.
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difference in proportions test, we would form the following test statistic.5

T (X̄[1], X̄[2], N [1], N [2];∆) =
X̄[1]− X̄[2]−∆√

X̄[1](1− X̄[2])/N [1] + X̄[2](1− X̄[2])/N [2]

We then compare the test statistic with its asymptotic distribution under the null hypothesis,
which is a standard normal. That is for significance level 1− α, (α = 0.05 or 0.01 typically,
but we will use α = 0.05 throughout), we reject H0 if

T (X̄[1], X̄[2], N [1], N [2];∆) /∈ [Φ−1(α/2),Φ−1(1− α/2)].

We now turn to privatizing the group membership with a mechanism M so that our
samples are {(M(Gi), Xi)}ni=1 and then analyze the resulting Z-test. We now change the set
up where each individual belonging to group g ∈ {1, 2} can be switched to the other group
3− g with some probability ≤ 1

2 . In particular, for ε-LGDP, we can use randomized response
M : {1, 2} → {1, 2} where Pr[M(g) = g] = eε

1+eε . Hence the privatized data for individual i
in group g is a mixture of two Bernoulli’s, which we write as

Xε
i |(Gi = g) = eε

1+eε Bern(pg) + 1
1+eε Bern(p3−g) = Bern( eε

1+eε pg +
1

1+eε p3−g). (5)

Note that the sample sizes of each group changes due to some outcomes from group g
switching to group 3− g. We will write the new (randomized) sample sizes for each group g
as N ε[g]. Note that n = N ε[1] +N ε[2]. Hence, the number of successful outcomes that we
see in group g is then

X̄ε[g] =

Nε[g]∑
i=1

Xε
i · 1M(Gi) = g.

Note that in the special case when ∆ = 0, we have H0 : p0 = p1 = p, which in this case we
would still have Xε

i [g] ∼ Bern(p) where p1 = p2 = p. Carrying out the standard test statistic
would give us T (X̄ε[1], X̄ε[2], N ε[1], N ε[2];∆ = 0). The main difference now is that the
number of samples N ε[g] in each group g is randomized. We then check to see if conducting
the original Z-test as if there were no privacy, still provides valid results. When ∆ ̸= 0, we
compute the expected difference between the two proportions,

E

 1
Nε[1]

Nε[1]∑
j=1

Xε
i · 1M(Gi) = 1− 1

Nε[2]

Nε[2]∑
j=1

Xε
i · 1M(Gi) = 2


However, the expectation becomes much more complicated, due to the random number of
trials N ε[g]. To approximate this expectation, we try treating N ε[g] as fixed for g ∈ {1, 2},
to get the following expression, which can then be used to correct confidence intervals.

∆ε =
(

nπeε

(1+eε)Nε[1] −
nπ

(1+eε)Nε[2]

)
∆ (6)

5. If ∆ = 0, i.e. no difference and equal variances in both groups, the test statistic can use the
pooled variance, which would result in the following term in the denominator of the test statistic:√

N [1]·X̄[1]+N [2]·X̄[2]
N [1]+N [2]

(1/N [1] + 1/N [2]).
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Figure 4: (Top Row) Confidence Intervals with n = 10000, p2 = 0.25, and various p1 = p2+∆
for ε = 1.0. We show that correcting ∆ to be ∆ε in (6) helps achieve valid confidence
intervals for π ∈ {0.1, 0.5}. (Bottom Row) We use the same parameter settings as
in the top row, but we compute the proportion of times the computed confidence
interval actually overlaps with the true difference over 1000 independent trials.

Since π is not known, we can estimate it in the following way to get an unbiased estimator
for it:

π̂ =

(
eε + 1

eε − 1

)(
N ε[1] +N ε[2]

n
− 1

eε + 1

)
.

We then consider the following Z-statistic, T (X̄ε[1], X̄ε[2], N ε[1], N ε[2];∆ = ∆ε), to
account for privacy. We compute confidence intervals in Figure 4 with level of significance
1− α = 95%. Observe that this correction gives us valid confidence intervals (top panel),
and appropriate type I error rates (bottom panel), compared to the uncorrected statistic.

A.4. Comparison with Fully Local DP

We plot power curves in Figure 5 (left, center) for our the private test, testing with ∆ = 0 and
increasing p1 − p2 > 0 in the sample, showing the number of trials that rejected H0 : p1 = p2
over 1000 independent trials. We then compare with the local DP χ2-test from Gaboardi
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Figure 5: Comparing Group Local DP with (fully) LDP χ2 tests from Gaboardi and Rogers
(2018) with the probability of being in Group 1 being π = 0.1 and ε ∈ {0.5, 1} and
n = 10000 (left, center). Proportion of trials (right panel) on the adult dataset
where the training data difference in proportion confidence interval misses the test
data difference in proportion.

and Rogers (2018). Note that we can drastically improve the statistical power of our tests for
the same level of ε in the less restrictive LGDP model compared with fully local DP tests.

We also present results on the UCI Adult dataset (Dua and Graff, 2017). Since we are
working with two sensitive groups, we will use gender as the sensitive group category, where a
sample is either Male or Female. We test whether there is a significant difference in whether
males or females make more than 50k salary. We then compute the (non-private) sample
difference in proportion on the adult test data. We then compare the traditional proportion
test that ignores the additional noise due to privacy, the Z-test with the correction given
in our paper, and our test in determining confidence intervals at the 95% significance level
(Figure 5, right panel ).

A.5. χ2 test

Given that many statistical packages use χ2 tests, rather than Z-tests, for testing the
difference between two proportions, we then consider privatizing χ2-tests and further using
these tests to compute valid confidence intervals. There has been several works on privatizing
χ2 tests, even in the more restrictive (fully) local DP setting (Gaboardi and Rogers, 2018;
Sheffet, 2018; Acharya et al., 2019a). We then compare the relevant tests in the local DP
setting with the tests in this less restrictive LGDP setting. We will adopt the general
minimum χ2 theory outlined earlier from Kifer and Rogers (2017), which was also used to
derive tests in the local DP setting by Gaboardi and Rogers (2018).

A.5.1. Non-private test

Recall Table 1, where Group 1 has probability of success p1 and Group 2 has probability
of success p2. We then want to test H0 : p1 = p2 +∆. Recall also that when we sample n
combined outcomes over groups 1 and 2, we can then consider a single multinomial random
variable Y = (Y [1, 1], Y [1, 2], Y [2, 1], Y [2, 2])⊺ ∼ Multinom(n,θ(π, p1, p2)) where we flatten
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the outcome probabilities to an array

θ(π, p1, p2) =

 πp1︸︷︷︸
Success in Group 1

, (1− π)p2︸ ︷︷ ︸
Success in Group 2

, π(1− p1)︸ ︷︷ ︸
Failure in Group 1

, (1− π)(1− p2)︸ ︷︷ ︸
Failure in Group 2


⊺

.

We use the χ2 statistic by providing an estimate for the parameters p1, p2, and π, with
p1 − p2 = ∆ given. Note that Y can be written as the sum of i.i.d. random variables {Yi},
i.e. Y =

∑
i=1 Yi. The covariance matrix C(θ) for Yi is the following, where we write Diag(θ)

to be the diagonal matrix with entries on the diagonal as θ.

C(π, p1.p2) = Diag (θ(π, p1, p2))− θ(π, p1, p2)θ(π, p1, p2)
⊺ (7)

Note that the covariance matrix is singular and has the all one’s vector in its null space.
It turns out that Diag (θ(π, p1, p2))

−1 is the generalized inverse for C(π, p1, p2) Ferguson
(1996), which we will use in our χ2 statistic. We then use the estimates p̂1, p̂2 and π̂ for
p1, p2, and π respectively where

p̂2 =
Y [1, 1] + Y [1, 2]

n
−∆π̂, p̂1 = p̂2 +∆, π̂ =

Y [1, 1] + Y [2, 1]

n
(8)

The χ2-statistic D̂ then becomes the following,

D̂(Y ; ∆) = n · (Y/n− θ(π̂, p̂1, p̂2))
⊺Diag (θ(π̂, p̂1, p̂2))

−1 (Y/n− θ(π̂, p̂1, p̂2)) (9)

We then compare D̂(Y ; ∆) with a χ2 with 1 degree of freedom, that is, if D̂(Y,∆) > χ2
1,1−α,

then we reject H0 : p1 = p2 + ∆ with significance level 1 − α. Note that this classical
hypothesis test fits with the general χ2 test outlined in Section 3 as Y actually has rank 3,
due to the all ones vector being in its null space, and Diag (θ(π̂, p̂1, p̂2))

−1 is the generalized
inverse of the covariance matrix evaluated at the estimates given.

One way to achieve valid confidence intervals for the difference p1 − p2 is to test for
multiple values of ∆ to see which intervals should be rejected under H0. That is, we search
over the space ∆ ∈ [−1, 1], with some tolerance level τ (say τ = 0.001), and check whether
D̂(Y ;∆) ≤ χ2

1,1−α. As we move from ∆ = −1, we will cross a point ∆ = ∆L where
D̂(Y ; ∆L) > χ2

1,1−α, yet D̂(Y ; ∆L + τ) ≤ χ2
1,1−α. This value ∆L will be our left-end point of

our confidence interval. We then continue searching until we reach a point ∆ = ∆R where
D̂(Y ;∆R − τ) > χ2

1,1−α yet D̂(Y ;∆R) > χ2
1,1−α. This value ∆R will be our right-end point

of our confidence interval. This simple grid search can also be replaced with a bisection root
finding approach to the left and right of the ∆ that minimizes the χ2 statistic. We will use
this method to compute confidence intervals with privatized groups in the following section
and give very similar confidence intervals to the Z-test.

A.6. Confidence Intervals

We have shown that the classical Z-test may not need modifying if we test H0 : p1 = p2, i.e.,
it still provides valid results. We can also use the Z-test with a correction on the difference
∆ → ∆ε from (6) to compute valid confidence intervals, as in Figure 6. We also show that
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Figure 6: Comparing Confidence Intervals for Group Local DP between using the corrected
Z-test and the χ2 tests with p1 = 0.25 and changing p1 − p2. The left plot uses
group 1 probability π = 0.10 and the right plot uses π = 0.5. Note that we are
showing 95% confidence intervals a single trial by generating data with different
p1 − p2.

we can use the approach outlined above that uses the χ2-test to compute the end points of a
confidence interval. We then show the results in two cases, when π = 1/2 and when π = 0.1.
Note that there is not much difference between the confidence intervals using the χ2-test,
and the Z-test with the correction factor.

Appendix B. Independence Testing with Categorical Data

We now consider testing whether the success probability is equal across several groups
simultaneously. A common test is to use the classical Pearson χ2 test for independence to
see whether the outcome is independent of the group. Given that there are multiple groups,
rather than just 2, we will compare the three private mechanisms presented in Section 2. To
design private χ2 tests for determining whether the success probability is the same across
g > 2 groups simultaneously, we follow the general χ2 test approach outlined in Section 3,
which was also used to design (fully) local DP χ2 tests in Gaboardi and Rogers (2018). We
will compare these tests with those we develop in the less restrictive private setting of LGDP.

We first set up some notation. Let Yi ∼ Multinomial(1, θ(π, p)) be the data entry for
individual i, where p ∈ [0, 1] is the success probability across all groups and π ∈ [0, 1]g is the
probability vector over all g groups, so that

∑g
i=1 πi = 1. Note that the covariance matrix of

Yi will still be of the form of the covariance matrix given in (7). Let Wi ∼ Multinomial(1, π),
which will determine which group each sample belongs to, and let the outcome for a sample
in group j ∈ [g] be written as Xi[j] ∼ Bern(pj). Hence, we have the following random vector
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that we use in the χ2 statistic.

Yi =

Wi[1] ·Xi[1],Wi[2] ·Xi[2], · · · ,Wi[g] ·Xi[g]︸ ︷︷ ︸
successes

,

Wi[1] · (1−Xi[1]),Wi[2] · (1−Xi[2]), · · · ,Wi[g] · (1−Xi[g]︸ ︷︷ ︸
failures

)

⊺

.

To match the contingency table format we had in the previous section, we will write
the coordinates of Yi = (Yi[1, 1], Yi[1, 2], · · · , Yi[1, g], Yi[2, 1], · · · , Yi[2, g]), so that the entries
whose first index is 1 are the successes and the entries whose first index is 2 are the failures.
Once we use a privatization mechanism M , whether it be g-randomized response, bit flipping,
or the subset mechanism, the resulting outcome will be Y ε

i , which will consist of some
successes/failures from group j being potentially replicated across various groups, and
perhaps removed from group j. We then receive n i.i.d. samples from the distribution of
Y ε
i to obtain counts of successes and failures in each group Y ε =

∑n
i=1 Y

ε
i . To make the

randomness in the privacy mechanism explicit, we will write the mechanism as a matrix of
noise terms multiplied by the original Yi. With each mechanism M(Wi) ∈ {0, 1}g, we write
the random matrix Zε

i ∈ {0, 1}g×g where column j is the corresponding random entries for
M(j). We can then succinctly write Y ε

i in the following way where 0 is a g by g matrix of
zeros:

Y ε
i =

[
Zε
i 0
0 Zε

i

]
Yi (10)

Here we can distinguish our work from the local DP setting considered in Gaboardi and
Rogers (2018). In particular, the matrix multiplying Yi in the (fully) local DP setting would
include terms where there is a zero block submatrix. This would correspond to successes
within group j being able to switch to a failure in another group j′. In our setting, we are
not privatizing outcomes, i.e. successes or failures, hence the zero block matrices.

With our general set up, we can then compare the various privacy mechanisms for various
levels of ε. That is, given privatized data Y ε

i for i ∈ [n] along with the privacy level ε and
the mechanism M used, we then form the χ2 statistic D̂ from (??) and compare with the
critical value χ2

g−1,1−α for 1− α level of significance.

B.1. Randomized Response

For g-randomized response, the matrix Zε
i will have column j be a multinomial of a single

trial with probability vector that is eε

eε+g−1 in position j and 1
eε+g−1 in every other coordinate.

Note that the resulting privatized data Y ε will still follow a multinomial distribution, where
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the probability vector is the following

θε(π, p) =



p
eε+g−1


eε 1 · · · 1
1 eε · · · 1

. . .
1 1 · · · eε

π

1−p
eε+g−1


eε 1 · · · 1
1 eε · · · 1

. . .
1 1 · · · eε

π


Note that because the resulting vector Y ε is still a multinomial, we do not need to write out
the covariance matrix in order to calculate the general χ2 statistic, but rather the generalized
inverse is the diagonal matrix whose entries are the inverse of the entries in θε(π, p). Note
that we have θε(π, p) = θ(πε, p), where πε =

(
eε

eε+g−1πj +
1

eε+g−1(1− πj) : j ∈ [g]
)
, so we

can use the same test statistic as in the non-private case, but with different group probabilities
that can be estimated from the privatized samples. We then need to find estimates for p and
πε based on the data Y ε. We then use the generalized version of the estimate provided in
(8) with ∆ = 0.

p̂ =

∑
j∈[g] Y

ε[1, j]

n
, π̂ε =

(
π̂ε
j =

Y ε[1, j] + Y ε[2, j]

n
: j ∈ [g]

)
.

We can then form the χ2 statistic D̂ as in (3), where C(θ̂n)
† is the diagonal matrix whose

entries are the inverse of θ(π̂ε, p̂), which we write as Diag(θ(p̂, π̂ε))−1

D̂ = min
p∈(0,1),π∈[0,1]g
s.t.

∑g
j=1 πj=1

{
n (Y ε/n− θ(π, p))⊺ Diag(θ(π̂ε, p̂))−1 (Y ε/n− θ(π, p))

}

We then compare D̂ with a χ2 distribution with g−1 degrees of freedom, as in the non-private
test, because the rank of the covariance matrix is at most 2g − 1 and we are minimizing over
g variables (p and π1, · · · , πg−1 since πg = 1−

∑g−1
j=1 πj).

B.2. Bit Flipping

The bit flipping mechanism will result in a random vector Y ε
i that is not a multinomial, so a

little more care will be needed in computing the general χ2 statistic. The matrix of noise
terms in (10) for the bit flipping mechanism will consist of the following entries,

Zε
i [j, j] ∼ Bern

(
eε/2

eε/2+1

)
, j ∈ [g] and Zε

i [j, ℓ] ∼ Bern
(

1
eε/2+1

)
, j ̸= ℓ.
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We will first compute E[Y ε
i ] = θε(π, p) when we privatize the group with the bit flipping

mechanism

θε(π, p) =



p
eε/2+1


eε/2 1 · · · 1

1 eε/2 · · · 1
...

...
. . .

...
1 1 · · · eε/2

π

1−p
eε/2+1


eε/2 1 · · · 1

1 eε/2 · · · 1
...

...
. . .

...
1 1 · · · eε/2

π


.

We now compute the covariance matrix, C(π, p; ε) = E[Y ε
i (Y ε

i )
⊺]− θε(π, p)θε(π, p)⊺

E[Y ε
i [1, j]

2] =
p

eε/2 + 1
(πje

ε/2+(1−πj)), E[Y ε
i [2, j]

2] =
1− p

eε/2 + 1
(πje

ε/2+(1−πj)), ∀j ∈ [g].

E[Y ε
i [1, j] · Y ε

i [1, ℓ]] =
p

(eε/2 + 1)2

(
eε/2(πj + πℓ) + (1− πj − πℓ)

)
, j, ℓ ∈ [g], j ̸= ℓ

E[Y ε
i [2, j] · Y ε

i [2, ℓ]] =
1− p

(eε/2 + 1)2

(
eε/2(πj + πℓ) + (1− πj − πℓ)

)
, j, ℓ ∈ [g], j ̸= ℓ

E[Y ε
i [1, j] · Y ε

i [2, ℓ]] = E[Y ε
i [2, j] · Y ε

i [1, ℓ]] = 0 j, ℓ ∈ [g], j ̸= ℓ

Unlike the case for g-randomized response, the all ones vector is not in the null space.
Gaboardi and Rogers (2018) showed that with the bit flipping algorithm in the local DP
setting, the all ones vector is an eigenvector, whose eigenvalue depends solely on the privacy
loss parameter ε. Using a technique from Kifer and Rogers (2017), they showed how one
can project out this eigenvector and the resulting χ2 statistic will have one fewer degree of
freedom (asymptotically). We will not be able to do a similar technique here in the LGDP
setting, since the all ones vector is not an eigenvector for general π, p. Hence, we will not be
able to reduce the degrees of freedom in its asymptotic distribution, at least with similar
techniques although it might be possible another way.

Next, we need to compute estimates for p and π.

p̂ =
(eε/2 + 1)

∑g
j=1 Y

ε[j]

n
(
eε/2 + g − 1

) , π̂ =

 Y ε[j]+Y ε[g+j]
n − 1

eε/2+1

2eε/2

eε/2+1
− 1

: j ∈ [g]

 .

We then plug in our estimates to the covariance matrix and form our χ2 statistic, as in (3),
and compare it to a χ2 distribution with 2g − g = g degrees of freedom (one larger than the
non-private version due to the covariance matrix being non-singular).

B.3. Subset Mechanism

The subset mechanism Ye and Barg (2017) from Definition 5 can also be used to privatize
the group membership of each sample i, which takes an additional parameter k < g.
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Column j of Zε
i will correspond to the outcome of the subset mechanism M(j). That is.

Zε
i [j, j] ∼ Bern( keε

keε+g−k ), and then the other coordinates Zε
i [ℓ, j] for ℓ ̸= j will depend on

the realization of Zε
i [j, j]. So if Zε

i [j, j] = 1, then (Zε
i [ℓ, j] : ℓ ̸= j) will sample k − 1 ones

uniformly at random without replacement, while if Zε
i [j, j] = 0, then (Zε

i [ℓ, j] : ℓ ̸= j) will
sample k ones uniformly at random without replacement. Following our framework, we first
compute θε(π, p; k) = E[Y ε

i ] when we use the subset mechanism.

θε(π, p; k) =



p

(g−1
k−1)eε+(

g−1
k )



(
g−1
k−1

)
eε

((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

((
g−2
k−2

)
eε +

(
g−2
k−1

))((
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k−2

)
eε +

(
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)) (
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)
eε · · ·

((
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k−2

)
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(
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))
...
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. . .

...((
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)) ((
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)
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(
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k−1

))
· · ·

(
g−1
k−1

)
eε

π

1−p

(g−1
k−1)eε+(

g−1
k )



(
g−1
k−1

)
eε

((
g−2
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)
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· · ·
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eε · · ·

((
g−2
k−2

)
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(
g−2
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...

...
. . .

...((
g−2
k−2

)
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(
g−2
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)) ((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

(
g−1
k−1

)
eε

π


We then compute the covariance matrix C(π, p; ε, k) = E[Y ε

i (Y
ε
i )

⊺]− θε(π, p)θε(π, p)⊺

E[Y ε
i [1, j]

2] = p

(
g−1
k−1

)
eεπj +

((
g−2
k−2

)
eε +

(
g−2
k−1

))
(1− πj)(

g−1
k−1

)
eε +

(
g−1
k

) , ∀j ∈ [g].

E[Y ε
i [2, j]

2] = (1− p)

(
g−1
k−1

)
eεπj +

((
g−2
k−2

)
eε +

(
g−2
k−1

))
(1− πj)(

g−1
k−1

)
eε +

(
g−1
k

) , ∀j ∈ [g].

Now for ℓ ̸= j and j, ℓ ∈ [g],

E[Y ε
i [1, j] · Y ε

i [1, ℓ]] =
p(

g−1
k−1

)
eε +

(
g−1
k

) (eε(g − 2

k − 2

)
(πj + πℓ) +

(
eε
(
g − 3

k − 3

)
+

(
g − 3

k − 2

))
(1− πj − πℓ)

)
E[Y ε

i [2, j] · Y ε
i [2, ℓ]] =

1− p

p
E[Y ε

i [1, j]Y
ε
i [1, ℓ]],

E[Y ε
i [1, j] · Y ε

i [2, ℓ]] = E[Y ε
i [2, j]Y

ε
i [1, ℓ]] = 0

We then consider the rank of this covariance matrix. Note that the all ones vector is in the
null space of the covariance matrix.

Lemma 6 The covariance matrix C(π, p; ε, k) corresponding to the subset mechanism has
the all ones vector 1 ∈ R2g in its null space, i.e.

C(π, p; ε, k)1 = 0
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Proof Consider element j ∈ [g] in E[Y ε
i (Y

ε
i )

⊺]1, where we ignore the coefficient p

(g−1
k−1)eε+(

g−1
k )

,

πj

(
eε
(
g − 1

k − 1

)
+

(
g − 1

k

))
+ (1− πj)

(
eε
(
g − 2

k − 2

)
+

(
g − 2

k − 1

))
+
∑
j ̸=ℓ

(
(πj + πℓ)e

ε

(
g − 2

k − 2

)
+ (1− πj − πℓ)

(
eε
(
g − 3

k − 3

)
+

(
g − 3

k − 2

)))

= πje
ε

((
g − 1

k − 1

)
+ (g − 1)

(
g − 2

k − 2

))
+ (1− πj)e

ε

(
2

(
g − 2

k − 2

)
+ (g − 2)

(
g − 3

k − 3

))
+ (1− πj)

((
g − 2

k − 1

)
+ (g − 2)

(
g − 3

k − 2

))
We then use the following properties

x

(
x− 1

y − 1

)
= y

(
x

y

)
, x

(
x− 1

y

)
= (y + 1)

(
x

y + 1

)
Hence, after simplifying, we get

E[Y ε
i (Y

ε
i )

⊺]1 =
1(

g−1
k−1

)
eε +

(
g−1
k

) [πjeεk(g − 1

k − 1

)
+ (1− πj)

(
eεk

(
g − 2

k − 2

)
+ k

(
g − 2

k − 1

))]
= kθε(π, p; k)

Furthermore, we have
θε(π, p; k)⊺1 = k.

Putting everything together, we have

C(π, p; ε, k)1 = (E[Y ε
i (Y

ε
i )

⊺]− θε(π, p)θε(π, p)⊺)1 = kθε(π, p; k)− kθε(π, p; k) = 0.

Next, we compute estimates for p and π based on the sample Y ε as well as ε and k.

p̂ =

((
g−1
k−1

)
eε +

(
g−1
k

))
·
∑g

j=1 Y [1, j]ε

n
((

g−1
k−1

)
eε + (g − 1)

((
g−2
k−2

)
eε +

(
g−2
k−1

))) =

∑g
j=1 Y [1, j]ε

nk
,

π̂ =


((

g−1
k−1

)
eε +

(
g−1
k

))
·
(
Y [1,j]ε+Y [2,j]ε

n

)
−
(
eε
(
g−2
k−2

)
+
(
g−2
k−1

))
eε
((

g−1
k−1

)
−
(
g−2
k−2

))
−
(
g−2
k−1

) : j ∈ [g]

 .

We can then use the χ2 statistic in (3) with the covariance matrix C(π, p; ε, k) that we
computed along with the estimates p̂ and π̂. Note that we showed in Lemma 6 that the
covariance is not full rank, so we will use 2g − 1 as the rank of the covariance matrix and
g − 1 degrees of freedom in the χ2 distribution in our test.
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Figure 7: Comparing non-private (top bold line), Group Local DP (solid lines), and original
LDP χ2 tests (dashed lines) for independence testing with the probability vector
over the g = 4 groups to be π = (0.4, 0.3, 0.2, 0.1) with various ε and n = 10000.
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Figure 8: Comparing various Local Group DP mechanisms with corresponding χ2 test
for testing whether there is a difference in success probability across different
sensitive groups with various ε and n = 10000. Note that with ε = 3, we get
k = ⌈g/(eε + 1)⌉ = 1, which is equivalent to g-randomized response.

B.4. Results

In our results, we start by comparing with the existing (fully) local DP χ2 tests for inde-
pendence from Gaboardi and Rogers (2018) in Figure 7. As stated earlier, the difference
between the local DP and group local DP setting is that in the latter the outcomes (successes
or failures) cannot be changed but they can in the former. We can see that the power can be
drastically improved in the less restrictive model with the same privacy loss parameter ε.

We include experiments for the subset mechanism Ye and Barg (2017), which were not
considered before for local DP χ2 independence tests. The main takeaway for the subset
mechanism is that it seems to strictly dominate over g-randomized response and bit flipping
for the same level of privacy, while in Gaboardi and Rogers (2018) there were privacy levels
where the g-randomized response algorithm outperformed bit flipping for the high ε regime
and vice versa in the low ε regime. See Figure 8 for experiments with various parameter
settings where g = 10 and π is uniform over the g groups. We can see that the subset
mechanism dominates the other two at various different privacy levels, which is to be expected
as the subset mechanism is known to be optimal for certain tasks. Recall that as ε gets large,
the Subset Mechanism and g-randomized response are the same.
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Figure 9: Comparing various Local Group DP mechanisms with corresponding χ2 test
for testing whether there is a difference in success probability across different
sensitive groups with various ε and n = 10000. Note that with ε = 3, we get
k = ⌈g/(eε + 1)⌉ = 1, which is equivalent to g-randomized response.

The tests we develop achieve higher empirical power than simply using the classical χ2

tests after privatizing the groups. We present plots in Figure 9 that shows for data generated
with the subset mechanism at various privacy levels, the general χ2 test that accounts for
the subset mechanism outperforms using the classic χ2 test, which does not account for the
privacy mechanism. We point out that when ε gets larger, the two tests seem to perform
similarly. All plots consist of the proportion of times the null hypothesis was rejected over
1000 trials.

We also evaluate our method on the UCI Adult dataset Dua and Graff (2017) adult.data,
where we will use Race as the sensitive group and the binary outcome as whether a sample
makes more than $50k salary. Note that race contains 5 groups, with labels White, Asian-
Pac-Islander, Amer-Indian-Eskimo, Other, and Black. We now want to arrive at the same
conclusion after privatizing the race of each sample as we would if we had not privatized it.
Figure 10 gives our results, which considers various levels of privacy and for each privacy
level we compute 1000 independent trials of the subset mechanism on each sample’s race and
use our general χ2 test while comparing it to the traditional χ2 test for independence, which
ignores the privacy mechanism. We see that we can achieve more power for stronger levels of
privacy, but since there is such a strong difference between proportions in the groups, i.e. we
should reject the null hypothesis that there is no difference in proportions across all groups,
for even moderate levels of privacy we arrive at the same conclusion as the non-private test
almost all the time.

Appendix C. T-tests

Recall the classical t-test to test the difference between two means between samples
{Xi[j]}

nj

i=1
i.i.d.∼ N

(
µj , σ

2
j

)
for j ∈ {1, 2}. That is, we use the t-test statistic defined as

follows where s21, s
2
2 are the sample variances for groups 1 and 2, respectively.

T =
1
n1

∑n1
i=1Xi[1]− 1

n2

∑n2
i=1Xi[2]√

s21/n1 + s22/n2
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Figure 10: Proportion of times out of 1000 independent trials that we reject the null hypoth-
esis of there being no difference in proportions across all groups on the UCI Adult
dataset. We use race as the sensitive group and the outcome is whether a sample
makes more thant $50k salary or not.

We would then compare the test statistic to a t distribution, which converges to a standard
Gaussian if n1, n2 are large. In this section, we show how to build the corresponding χ2 test
and how to modify the t-test, and give more detailed results.

C.1. A χ2 Test for Difference in Means

For binary outcomes, we were able to move from the Z-test to a χ2 test, and in fact χ2

tests are typically used instead of Z-tests in many common statistical packages. However,
for continuous outcomes, there is not a standard χ2 version of the t-test. We then present
a way to formulate the t-test as a χ2 and show similar performance. Note that for binary
outcomes, we could form a contingency table where the rows were outcomes (success/failure)
and the columns were groups (group 1 or 2). To fit this framework, a first approach would
be to discretize the outcomes into bins, and form the contingency table with r different rows,
where r is a predetermined value for the number of bins the outcomes will be placed in.
Unfortunately, this introduces additional complexity to the hypothesis test when adding
privacy, and it is not clear how to discretize the outcome set and how this might impact
statistical power.

Instead, we present a way to form a contingency table for continuous outcomes without
discretizing, by considering the moments of the samples, which we presented in Table 2.
It is easy to see that the contingency table for binary outcomes in Table 1, where instead
of having failure outcomes, we could replace it with the 0th order moment, which would
give the marginals. Recall that we use Wi ∼ Bern(π) to determine the group of sample i

and Xi[j] ∼ N
(
µj , σ

2
j

)
for j ∈ {1, 2}. The entries in the table will suffice for estimating the

population parameters µ1, µ2 ∈ R, σ1, σ2 > 0, and π ∈ (0, 1).
With this setup, we then want to test H0 : µ1 = µ2 +∆, where ∆ = 0 is common. We

will assume that the standard deviation of each group is different for each other as well. We
then consider the random vector Y =

∑n
i=1 Yi which will consist of the entries from the

contingency table above. Note that we do not require entries for both
∑n

i=1Wi as well as
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∑n
i=1(1−Wi) as one can be written in terms of the other. Hence, we have

Y =


Y [1] =

∑n
i=1Wi

Y [2] =
∑n

i=1WiXi,0

Y [3] =
∑n

i=1(1−Wi)Xi,1

Y [4] =
∑n

i=1WiX
2
i,0

Y [5] =
∑n

i=1(1−Wi)X
2
i,1

 (11)

We then consider the individual i.i,d. samples Yi where Y =
∑n

i=1 Yi so that we can compute
the expectation of Yi under the null hypothesis µ1 = µ2 +∆ for some ∆ ∈ R

θ(π, µ1, µ2, σ1, σ2) = E[Yi] =
(
π, πµ1, (1− π)µ2, π

(
µ2
1 + σ2

1

)
, (1− π)

(
µ2
2 + σ2

2

))⊺
Note that we can compute the covariance matrix and estimates for π, µ1, µ2, σ1, σ2, but

it will help to simplify the χ2 test first. In particular, when we write out the χ2 statistic, the
minimization will lead to the second moment terms (the last two entries in Y ) to contribute
nothing to the χ2 value, since we can zero out those coordinates by setting σ2

1 = Y [4]/n− µ2
1

as long as µ2
1 ≤ Y [4]/n, and similarly for σ2. Note that if it does turn out that for a particular

µ1 we have Y [4]/n− µ2
1, we should reject, i.e. return a large statistic of say 10g or so, since

that would mean that zero variance would be our best estimate for that group. Hence, we
will only consider Y = (Y [1], Y [2], Y [3])⊺ in our test. If it can be assumed that the variances
are equal across groups, then we can keep the coordinates Y [3], Y [4] in our test statistic.
Hence, we will continue with Yi denoting the first three coordinates of the random vector in
(11).

We next calculate the covariance matrix C(π, µ1, µ2, σ1, σ2) for the first 3 coordinates in
Yi

C(π, µ1, µ2, σ1, σ2) =

 π(1− π) πµ1 − π2µ1 −π(1− π)µ2

πµ1(1− πµ1) π(µ2
1 + σ2

1)− πµ1 −πµ1(1− π)µ2

π(1− π)µ2 −πµ1(1− π)µ2 (1− π)(µ2
2 + σ2

2)(1− (1− π)µ2)


Under the null hypothesis µ1 = µ2 +∆, we will use the following estimates

π̂ = Y [1]/n, µ̂ =
Y [2] + Y [3]

n
, µ̂1 = µ̂+ (1− π̂)∆, µ̂2 = µ̂− π̂∆.

σ2
1 =

Y [4]/n

π̂
− µ̂1

2, σ2
2 =

Y [5]/n

1− π̂
− µ̂2

2

We are now ready to calculate the χ2 statistic

D = min
π∈(0,1),

µ1,µ2:µ1=µ2+∆


 Y [1]/n− π

Y [2]/n− πµ1

Y [3]/n− (1− π)µ2

⊺

C(π̂, µ̂1, µ̂2, σ̂1, σ̂2)
−1

 Y [1]/n− π
Y [2]/n− πµ1

Y [3]/n− (1− π)µ2


(12)

We will evaluate the test statistic D against a χ2 with (3− 2) = 1 degree of freedom. We now
compare this χ2 based hypothesis test with the traditional t-test described in the previous
subsection, at a significance level of 95%. We consider the null hypothesis H0 : µ1 = µ2 = µ
and generate data in two groups with equal variances. First, we modify the shared mean µ
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Figure 11: (Left) Comparing confidence intervals using the standard t-test statistic and the
general χ2 statistic in (12) with µ2 = 0. The bounds are completely overlapping,
resulting in identical tests. (Right) Comparing power curves of the t-test and the
general χ2 test for H0 : µ1 = µ2, which are on top of each other. In this case we
use σ1 = 2, σ2 = 1 when we generate data.

as well as the common variance and the probability π of being in group 1. The left plot of
Figure 11 shows confidence intervals using the standard t-test statistic (assuming unequal
variances) and the general χ2 statistic using an approach similar to when we had binary
outcomes in Section A.6. When computing the left and right end points of the confidence
interval for proportions, we could simply consider ∆ ∈ [−1, 1]. However, for differences in
means, we will use the data to determine lower and upper bounds on the candidate confidence
interval region. We can simply take the sample mean in both groups and add or subtract say
10 standard deviations within each group. The results show overlapping confidence intervals.
The right plot of Figure 11 shows the average number of times over 1000 trials that each test
rejected the null hypothesis H0 : µ1 = µ2 as we change the difference µ1 −µ2 > 0, so that we
should reject more frequently. The proportion of null hypotheses rejected is indistinguishable
between the two tests.

C.2. Private Tests for Difference in Means

Recall that we use the traditional randomized response when privatizing group j ∈ {1, 2}. We
will use the general χ2 approach to design a private test for differences between two means.
This test can then be used to calculate confidence intervals, in the same way that confidence
intervals were derived from the χ2 statistic for binary outcomes in Section A.6. We will then
consider the privatized version of the random vector Y from (11), but we will only use the
first 3 coordinates, as the last two coordinates will be eliminated in the minimization of the
statistic, as we mentioned earlier.

For randomized response, we will write Zε
i [j] ∼ Bern( eε

eε+1) for i ∈ [n] and j ∈ {1, 2}, and
then write the privatized vector Y ε

i in terms of Zε
i [j],
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Y ε
i =

 Zε
i [1] ·Wi + (1− Zε

i [2]) · (1−Wi)
Zε
i [1] ·Wi ·Xi[1] + (1− Zε

i [2]) · (1−Wi) ·Xi[2]
(1− Zε

i [1]) ·Wi ·Xi[1] + Zε
i [2] · (1−Wi) ·Xi[2]


Next, we compute its expectation E[Y ε

i ] = θε(π, µ1, µ2) where

θε(π, µ1, µ2) =

 eε

eε+1π + 1
eε+1 (1− π)

eε

eε+1πµ1 +
1

eε+1 (1− π)µ2
1

eε+1πµ1 +
eε

eε+1 (1− π)µ2


We can then compute Y ε

i covariance matrix C(π, µ1, µ2, σ1, σ2; ε).

C(π, µ1, µ2, σ1, σ2; ε) = E (Y ε
i (Y

ε
i )

⊺)− E [Y ε
i ]E [Y ε

i ]
⊺

=
1

eε + 1

 eεπ + (1− π) πeεµ1 + (1− π)µ2 0
πeεµ1 + (1− π)µ2 πeε(µ2

1 + σ2
1) + (1− π)(µ2

2 + σ2
2) 0

0 0 π(µ2
1 + σ2

1) + (1− π)eε(µ2
2 + σ2

2)


− θε(π, µ1, µ2)θ

ε(π, µ1, µ2)
⊺

Now, we need to assign estimates for the parameters π, µ1, µ2, σ1, σ2. Here, we have the
null hypothesis H0 : µ1 = µ2 +∆ and sample data Y ε. Beginning with π̂, µ̂1, and µ̂2, we use

π̂ = (eε + 1)

(
Y ε[1]/n− 1

eε+1

eε − 1

)
[
π̂ eε

eε+1 (1− π̂) 1
eε+1

π̂ 1
eε+1 (1− π̂) eε

eε+1

](
µ̂1

µ̂2

)
=

(
Y ε[2]/n
Y ε[3]/n

)
We then use the null hypothesis to replace µ̂1 = µ̂2 +∆ and then solve the over constrained
system of equations via least squares in which case we have

µ̂2 =
π̂ eε

eε+1

(
Y ε[2]/n− π̂ eε

eε+1∆
)
+ (1− π̂) 1

eε+1

(
Y ε[3]/n− π̂ 1

eε+1∆
)

(
π̂ eε

eε+1

)2
+
(
(1− π̂) 1

eε+1

)2
For σ1, σ2, we will use different estimates in the two diagonal entries in which they appear,

corresponding to the estimation sample. We replace the σ1 in the C[2, 2] diagonal entry with
the sample variance s21 of {Y ε

i [2]}ni=1. Analogously, for the C[3, 3] diagonal entry, we replace
σ2 with the sample variance s22 of {Y ε

i [3]}ni=1. We do point out that under the estimates
µ̂1 = µ̂2 +∆, there might not be a possible σ1, σ2 ≥ 0 that can achieve the sample variances
s21, s

2
2. We then compute the theoretical variance of our observations Y ε[2], Y ε[3]

Var(Y ε[2]) = µ2
1

(
1− πeε

eε+1

)
πeε

eε+1 + µ2
2

(
1− (1−π)

eε+1

)
(1−π)
eε+1 − 2π(1−π)eε

(eε+1)2
µ1µ2 +

πeε

eε+1σ
2
1 +

(1−π)
eε+1 σ

2
2

Var(Y ε[3]) = µ2
1

(
1− π

eε+1

)
π

eε+1 + µ2
2

(
1− (1−π)eε

eε+1

)
(1−π)eε

eε+1 − 2π(1−π)eε

(eε+1)2
µ1µ2 +

π
eε+1σ

2
1 +

(1−π)eε

eε+1 σ2
2
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Because σ2
j ≥ 0, we need to ensure our estimate sj for Var(Y ε[j]) for j ∈ {1, 1}. Thus we

check if the following inequalities are satisfied.

s21 ≥ µ̂2
1

(
1− π̂eε

eε+1

)
π̂eε

eε+1 + µ̂2
2

(
1− (1−π̂)

eε+1

)
(1−π̂)
eε+1 − 2 π̂(1−π̂)eε

(eε+1)2
µ̂1µ̂2

s22 ≥ µ̂2
1

(
1− π̂

eε+1

)
π̂

eε+1 + µ̂2
2

(
1− (1−π̂)eε

eε+1

)
(1−π̂)eε

eε+1 − 2 π̂(1−π̂)eε

(eε+1)2
µ̂1µ̂2

If they are not satisfied, we replace s2j with the corresponding right hand side, essentially
using σ1 = σ2 = 0 in our estimate.

Putting this all together, we have the following χ2 statistic, Dε, which will use Y ε instead
of Y in (11) which we compare to a χ2 with 1 degree of freedom to base our hypothesis test.

Dε = min
π∈(0,1),

µ1,µ2:µ1=µ2s+∆

{
(Y ε − θε (π, µ1, µ2))

⊺C(π̂, µ̂1, µ̂2, σ̂1, σ̂2)
−1 (Y ε − θε (π, µ1, µ2))

}
(13)

where

Y ε − θε (π, µ1, µ2) =

 Y ε[1]/n− eε

eε+1π + 1
eε+1 (1− π)

Y ε[2]/n− eε

eε+1πµ1 +
1

eε+1 (1− π)µ2

Y ε[3]/n− 1
eε+1πµ1 +

eε

eε+1 (1− π)µ2

 .

C.3. Results

We present results on the confidence intervals of the difference in means, as we did in
Section A.6 for binary outcomes. As previously stated, we will use a similar approach to the
binary outcome case and use the χ2 statistic for various ∆ = µ1 − µ2.

For the t-test based confidence intervals, we correct the difference in means in the same
way as in (6), and we compare the confidence intervals we get with the general χ2 approach.
We present our results in Figure 12, where we fix µ1 = 0, ε = 1, and n = 1000, while
we vary µ1 − µ2 in each plot and change π, σ1, σ2 in the different plots. Note that the
confidence intervals from the general χ2 statistics sometimes produces wider confidence
intervals, although they are very close to the confidence intervals from the t-test statistic
with a correction.

We also present results in how often the various approaches provide confidence intervals
that overlap the true difference in means in Figure 13. In each case we privatize the
data using randomized response on the group and compute confidence intervals using the
classical t-test with a correction from (6) and confidence intervals produced with the general
χ2 approach. We see that the general χ2 approach produces slightly more conservative
confidence intervals as the privacy parameter increases and we consistently achieve close to
the target 5% proportion of missing the true difference in means.

Appendix D. ANOVA

We move to giving full derivations for testing whether there is a difference in means across
g > 2 groups. It is straightforward to fit this hypothesis test to our generalized χ2 test
framework by considering the variable Wi, which will determine the group that sample i is
in. That is, Wi ∼ Multinomial(n, π) for i ∈ [n] and π ∈ [0, 1]g is a probability vector. We
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Figure 12: Comparing confidence intervals using either the t-test or with the approach we
outline for the χ2 statistic. We use µ1 = 0, ϵ = 1.0, and n = 10000 for the plots
and change σ1, σ2 as well as π.
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Figure 13: We plot the proportion of times different tests will produce confidence intervals
that miss the true difference µ1 − µ2. The general χ2 test that accounts for
the privacy mechanism consistently achieves the target type I error of 5%. We
compare our approach with using the classical t-test with correction in (6). All
plots use data size n = 10000 over 1000 trials.
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can then generalize Table 2 for multiple groups in Table 3, which we will use in our privacy
model.

Sample Moments
Group 1
w.p. π1

Group 2
w.p. π2 · · ·

Group g
w.p. πg

0-th
∑n

i=1Wi[1]
∑n

i=1Wi[2] · · ·
∑n

i=1Wi[g]

1-st
∑n

i=1Wi[1] ·Xi[1]
∑n

i=1Wi[2] ·Xi[2] · · ·
∑n

i=1Wi[g] ·Xi[g]

2-nd
∑n

i=1Wi[1] ·X2
i [1]

∑n
i=1Wi[2] ·X2

i [2] · · ·
∑n

i=1Wi[g] ·X2
i [g]

Table 3: Contingency Table for continuous outcomes {Xi[j]}ni=1
i.i.d.∼ N(µj , σ

2
j ) with j ∈ [g]

and group variable {Wi}ni=1
i.i.d.∼ Multinomial(1, π).

We can then use our general χ2 framework to design a χ2 statistic based on the data
in each cell of Table 3 in a similar way to testing the difference in means. Recall that for
the difference in two means, we only considered the 0th and 1st sample orders in Y , which
we will also consider. We use the random vector Y =

∑n
i Yi in our test and then compute

the expectation of Yi = (Y ε
i [1], Y

ε
i [2], · · · , Y ε

i [2g])
⊺ and its covariance matrix. We then find

estimates for the distribution parameters with common mean µj = µ for all j ∈ [g], group
probability π, and standard deviations σj for j ∈ [g], which will be used in the covariance
matrix in place of the population parameters.

Y =

n∑
i=1

Yi =

n∑
i=1

(
Wi[1] Wi[2] . . . Wi[g − 1] Wi[1] ·Xi[2] Wi[2] ·Xi[2] . . . Wi[g] ·Xi[g]

)T
.

After minimizing the resulting χ2 statistic over µ ∈ R and π ∈ [0, 1]g such that
∑g

i=1 πj =
1, we then compare the statistic to a χ2 distribution with g− 1 degrees of freedom. Figure 14
shows that the χ2 approach performs equivalently to the traditional one-way ANOVA test
with equal variance σ2 = σ2

j for j ∈ [g].
To then introduce privacy of the group of each sample, but not the outcome, we will

include the random matrix Zε
i ∈ {0, 1}g×g, where column j corresponds to the outcome for

M(j) for various local DP mechanisms M . Hence, we can write out the privatized vector
Y ε =

∑n
i=1 Y

ε
i in terms of Zε

i as we did for binary outcomes in (10), where 0 is the g × g
zero matrix.

Y ε
i =

[
Zε
i 0
0 Zε

i

] (
Wi[1] Wi[2] . . . Wi[g] Wi[1] ·Xi[1] Wi[2] ·Xi[2] . . . Wi[g] ·Xi[g]

)T
(14)

Note that we include the coordinate for Wi[g] because the privacy mechanism will modify
the probability of being in the last group. For the g-randomized response mechanism, we can
eliminate this entry as the first g coordinates of Y ε

i will still form a multinomial distribution.
However, for the bit flip mechanism, we will need to keep the full 2g dimensional vector, in
which case we compare the resulting statistic to a χ2 distribution with g degrees of freedom,
one more than the non-private test. Lastly, for the subset mechanism, the resulting covariance
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Figure 14: Comparing power curves for one-way ANOVA and the general χ2 approach with
n = 1000 samples.

matrix of Y ε
i will have the vector comprising of ones in the first g coordinates and zeros in

the second g coordinates be in its null space. We will cover each in turn in this section.
For each mechanism, we need to compute the expected vector θε(π, µ) under the null

hypothesis and the covariance matrix C(π, µ, σ2
1, · · · , σ2

g ; ε). Note that the mean vector
θε(π, µ) ∈ Rg×g will have the same form as the vectors in Section B, except the first g entries
will have success probability p = 1 and the second g entries will have µ instead of 1 − p
multiplied. We will be able to write the covariance matrix in the following block form with
matrices Σ,Σ′ ∈ Rg×g,

C(π, µ, σ2
1, · · · , σ2

g ; ε) =

[
Σ µΣ
µΣ Σ′

]
(15)

Note that Σ will simply be the top left g × g submatrix of the covariance matrix for each
mechanism in Section B, with probability of success p = 1. That is for j, ℓ ∈ [g],

Σ[j, ℓ] =

g∑
m=1

E[Wi[m] · Zε
i [j,m] · Zε

i [ℓ,m]]− E[Y ε
i ][j] · E[Y ε

i ][ℓ]

Further, we can compute Σ′ in terms of the expectation of Y ε
i and the specific mechanism

we use for j, ℓ ∈ [g]

Σ′[j, ℓ] =

g∑
m=1

(µ2 + σ2
m)E[Wi[m] · Zε

i [j,m] · Zε
i [ℓ,m]]− µ2E[Y ε

i ][j] · E[Y ε
i ][ℓ]

We also need to form estimates for the population parameters in the covariance matrix,
including µ, π, σ1, · · · , σg. We will use our sample and the particular privacy mechanism to
form these estimates. Note that if our estimates result in an expected group size to be less
than 5, then we will simply fail to reject the null hypothesis, as we have stated earlier. We
now cover each mechanism below.
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D.1. Randomized Response

We first cover the g-randomized response mechanism we have Y ε
i = (Y ε

i [1], · · · , Y ε
i [2g])

⊺,
which will have the following mean vector

θε(π, µ) = E[Y ε
i ] =



1
eε+g−1 ·


eε 1 · · · 1
1 eε · · · 1

. . .
1 1 · · · eε

π

µ
eε+g−1 ·


eε 1 · · · 1
1 eε · · · 1

. . .
1 1 · · · eε

π



Using our general form of the covariance matrix in (15) we can simplify the terms for Σ[j, ℓ]
due to Zε

i [j,m] ·Zi[ℓ,m] = 0 for any ℓ ̸= j and is 1 otherwise. We also need to form estimates
to use in the χ2 statistic, which gives us

µ̂ =

∑
j∈[g]

∑n
i= Y ε

i [g + j]

n
, π̂ =

(eε + g − 1)

∑n
i=1 Y

ε
i [j]

n − 1
eε+g−1

eε − 1

 : j ∈ [g]

 .

We also need to estimate the variance for each group, so we will use the sample standard
deviation for each group, i.e. {Y ε

i [g + 1 : 2g] : i ∈ [n]} and use this for the main diagonal
of Σ′. The terms of Σ′ on the off diagonal will only consist of terms −E[Y ε

i ][j] · E[Y ε
i ][ℓ] for

j ̸= ℓ.

We also point out that for randomized response, the first g entries will still follow a
multinomial distribution, where only the first g− 1 entries are needed. Hence, we remove the
g-th entry in Y ε

i while also removing the g-th row and column of the covariance matrix. The
result is then a covariance matrix of rank at most 2g − 1 and we optimize over g variables,
with π1, · · · , πg−1 and µ. We then form the χ2-statistic and compare it to a χ2 distribution
with g − 1 degrees of freedom.

D.2. Bit Flipping

We next turn to the bit flipping mechanism, where it is possible for a sample to be in multiple
groups simultaneously. We first compute the expected vector of Y ε

i , as we did for the binary
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outcome case in Section B.2

θε(π, µ) =



1
eε/2+1

·


eε/2 1 · · · 1

1 eε/2 · · · 1
. . .

1 1 · · · eε/2

π

µ
eε/2+1

·


eε/2 1 · · · 1

1 eε/2 · · · 1
. . .

1 1 · · · eε/2

π


We next compute the covariance matrix Σ′, which consists of terms with E[Zε

i [j,m]Zε
i [ℓ,m]]

for j, ℓ,m ∈ [g]. From the bit flip mechanism, we know each coordinate of Zε
i is independent

of each other, so we have for j ̸= ℓ

E[Zε
i [j,m]Zε

i [ℓ,m]] = E[Zε
i [j,m]] · E[Zε

i [ℓ,m]] =

{ 1
(eε/2+1)2

j, ℓ ̸= m

eε/2

(eε/2+1)2
j = m, or ℓ = m

and if j = ℓ

E[Zε
i [j,m]Zε

i [ℓ,m]] = E[Zε
i [j,m]] =

{
1

eε/2+1
j ̸= m

eε/2

eε/2+1
j = m

We now form estimates for the population parameters in the covariance matrix.

µ̂ = (eε/2 + 1) ·
∑n

i=1

∑g
j=1 Y

ε
i [g + j]

n(eε/2 + (g − 1))
, π̂ =

(eε/2 + 1) ·

∑n
i=1 Y

ε
i [j]

n − 1
eε/2+1

eε/2 − 1

 : j ∈ [g]


Next, we need to form an estimate for the variance. To help simplify things, we will assume
equal variance across groups in our estimate, i.e σj = σ for all j ∈ [g]. We point out that
unequal variances can be used, but it just complicates the estimate we use. Further, we will
write s2j to denote the sample variance computed within each group, so that s2j is an estimate
for the variance of Y ε

i [g + j]. This gives us the following estimate for σ,

σ̂2 = (eε/2+1)·

∑g
j=1 s

2
j − µ̂2

(
eε/2

eε/2+1
+ (g − 1) 1

eε/2+1
−
∑g

j=1(πj
eε/2

eε/2+1
+ (1− πj)

1
eε/2+1

)2
)

eε/2 + (g − 1)
.

We now use the covariance matrix with these estimates in the general χ2 statistic and
compare it with a χ2 distribution with g degrees of freedom. Note that there is an extra
degree of freedom compared to the previous test and the non-private version. This is because
the covariance matrix may be full rank and some combination of elements in Y ε

i cannot be
used to determine other elements, as was possible when we had the g-randomized response
mechanism. Hence, the covariance matrix is of rank at most 2g and we are minimizing over
g variables π1, · · · , πg, µ.
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Remark 7 Recall that in the binary outcome case, we were using a technique from Kifer
and Rogers (2017); Gaboardi and Rogers (2018) to project out the eigenvector associated
with noise, which reduced the degrees of freedom by 1. A similar approach cannot be adopted
here, as in the non-private case, the vector whose first g coordinates are 1 and the latter g
coordinates are zero is in the null space of the covariance matrix, but the same vector is no
longer an eigenvector of the covariance matrix after applying the bit flipping mechanism for
general µ.

D.3. Subset Mechanism

Lastly we cover the subset mechanism, which was shown to be the most powerful of the
other privacy mechanisms for various privacy levels in the binary outcomes case. To ease
notation, we will assume the variance is equal across all groups, i.e. σj = σ for all j ∈ [g].
We follow the same procedure as for the other mechanisms, where we first give the expected
value of Y ε

i , denoted as θε(π, p; k) where the random entries in Zε
i from (14) come from the

subset mechanism with parameter k.

θε(π, p; k) =



1

(g−1
k−1)eε+(

g−1
k )



(
g−1
k−1

)
eε

((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

((
g−2
k−2

)
eε +

(
g−2
k−1

))((
g−2
k−2

)
eε +

(
g−2
k−1

)) (
g−1
k−1

)
eε · · ·

((
g−2
k−2

)
eε +

(
g−2
k−1

))
. . .((

g−2
k−2

)
eε +

(
g−2
k−1

)) ((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

(
g−1
k−1

)
eε

π

µ

(g−1
k−1)eε+(

g−1
k )



(
g−1
k−1

)
eε

((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

((
g−2
k−2

)
eε +

(
g−2
k−1

))((
g−2
k−2

)
eε +

(
g−2
k−1

)) (
g−1
k−1

)
eε · · ·

((
g−2
k−2

)
eε +

(
g−2
k−1

))
. . .((

g−2
k−2

)
eε +

(
g−2
k−1

)) ((
g−2
k−2

)
eε +

(
g−2
k−1

))
· · ·

(
g−1
k−1

)
eε

π


We write the j, ℓ entry of the submatrix Σ′ = E[Y ε

i [g+j] ·Y ε
i [g+ℓ]]−E[Y ε

i ][g+j] ·E[Y ε
i ][ℓ],

where the first term can be computed with j = ℓ

E[Y ε
i [g + j]2] = (µ2 + σ2)

(
g−1
k−1

)
eεπj +

((
g−2
k−2

)
eε +

(
g−2
k−1

))
(1− πj)(

g−1
k−1

)
eε +

(
g−1
k

) , ∀j ∈ [g].

and for ℓ ̸= j,

E[Y ε
i [g + j]Y ε

i [g + ℓ]]

=
(µ2 + σ2)(

g−1
k−1

)
eε +

(
g−1
k

) (eε(g − 2

k − 2

)
(πj + πℓ) +

(
eε
(
g − 3

k − 3

)
+

(
g − 3

k − 2

))
(1− πj − πℓ)

)
We make the following observation about the covariance matrix of Y ε

i that will show
that it is not full rank, and hence we will lose a degree of freedom in the asymptotic χ2

distribution of the test statistic.
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Lemma 8 The covariance matrix C(π, µ, σ2
1, · · · , σ2

g ; ε, k) of Y ε
i in (14) for the subset mech-

anism has a nontrivial null space.

Proof We can write the covariance matrix as a block matrix, where we will not care about
the bottom right g × g block, since it will not be touched with the vector (1, · · · , 1, 0, · · · , 0).
Let Σ be the covariance matrix of Zε

iWi, which we have actually computed in Lemma 6 with
success probability p = 1. The top left g × g block matrix in C(·) will then be Σ, which
has the all ones vector in its null space. Furthermore, the bottom left block matrix (as well
as the top right, since the covariance matrix is symmetric) will be µΣ where µ ∈ R is the
common mean across all groups under the null hypothesis. This gives us what we need for
the lemma statement.

C(π, µ, σ2
1, · · · , σ2

g ; ε)



1
...
1
0
...
0


=

[
Σ1+ µΣ0
µΣ1+ 0

]
= 0

We now turn to computing estimates for the population parameters to plug into our
covariance matrix.

µ̂ =

∑g
j=1

∑n
i=1 Y

ε
i [g + j]

nk
,

π̂ =


((

g−1
k−1

)
eε +

(
g−1
k

))
·
(∑n

i=1 Y
ε
i [j]

n

)
−
(
eε
(
g−2
k−2

)
+
(
g−2
k−1

))
eε
((

g−1
k−1

)
−
(
g−2
k−2

))
−
(
g−2
k−1

) : j ∈ [g]

 .

Lastly, we need to estimate the variance for each group, which we will again assume for
ease of notation that σj = σ for all groups j ∈ [g]. We will use the sample variance s2j for
Y ε
i [g + j] within each group j ∈ [g]. We then use the following estimate

σ̂2 =

∑g
j=1 s

2
j − µ2

(
k − 1

((g−1
k−1)eε+(

g−1
k ))

2

∑g
j=1

((
g−1
k−1

)
eεπj + (1− πj)

((
g−2
k−2

)
eε +

(
g−2
k−1

)))2)
k

Hence, we will compare the resulting χ2 statistic with the χ2 distribution with g − 1
degrees of freedom. As noted earlier, if any test computes a group probability π̂j so that
n · π̂ ≤ 5, we simply reject the null hypothesis.

D.4. Results

We show that the tests we develop achieve higher empirical power rather than simply using
the classical one-way ANOVA tests after privatizing the groups. We present plots in Figure 15
that shows for data generated with the subset mechanism at various privacy levels, the
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Figure 15: Comparing various Local Group DP mechanisms with corresponding one-way
ANOVA test for testing whether there is a difference in means across different
sensitive groups with various ε and n = 10000.

general χ2 test that accounts for the subset mechanism outperforms using the classic ANOVA
test, which does not account for the privacy mechanism. We point out that when ε gets
larger, the two tests seem to perform similarly, similar to what we saw in Section B.4 with
testing multiple proportions. All plots consist of the proportion of times the null hypothesis
was rejected over 1000 trials.

D.5. Testing Difference in Two Groups

Once we have determined that there is indeed a difference across all group means, one
typically wants to compute confidence intervals for the mean between two specific groups. In
fact, one may want to directly compute a confidence interval between two groups, although
the data has been privatized over several groups. In our privacy setting, we do not want to
privatize the group membership each time we want to conduct a test, hence we will have
samples with privatized groups which will mix with the two specific groups we want to
compute a confidence interval for their difference. Ideally, we would privatize only the two
groups we are interested in, but this would increase the privacy loss, something we want to
avoid. Hence, we show how we can still obtain valid confidence intervals between two specific
groups although the data has been privatized over g > 2 groups.

Since we are only interested in the difference in means between two groups, say H0 :
µj = µℓ +∆ for j, ℓ ∈ [g], we can change the optimization of the general χ2 statistic to allow
for any mean µm where m ̸= j, ℓ based on the data samples. This will reduce our degrees
of freedom of the asymptotic χ2 by g − 1, thus if we privatize the groups with the Subset
Mechanism, then the χ2 statistic, after optimizing over all µm for m ̸= j, ℓ and µj = µℓ +∆,
should be compared to a χ2 with 1 degree of freedom.

We show in Figure 16 that testing whether two means are equal can lead to invalid results
if we were to use the classical t-test after the groups have been privatized. This is in contrast
to when we would privatize only two groups, where the classical t-test empirically achieve
the target level of Type 1 error, see Figure 5. The general χ2 approach can then be used to
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Figure 16: We give the proportion of times in 1000 trials that the classical t-test incorrectly
rejects H0 : µ1 = µ10 after we privatize the membership of g = 10 groups for
each sample. We use the same standard deviation σ = 2 across all groups and
have µj = 1.0 for all j ≠ 1, 10, µ10 = 1.5 and n = 10000. We change the group
probability π from uniform across all 10 groups and then change the first and
last group probabilities.
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Figure 17: We give the confidence intervals between the first and 10th group mean when
computed with the classical t-test and the general χ2 test after we privatize
the membership of g = 10 groups for each sample. We use the same standard
deviation σ = 2 across all groups and have µj = 1.0 for all j ≠ 1, 10, µ10 = 1.5
and n = 10000. The group probability π is uniform across all 10 groups except
π1 = 0.15 and π10 = 0.05.

achieve the target level of Type 1 error. We also give confidence intervals for the difference
in mean in Figure 17 where the classical t-test misses the true difference while the general
χ2 test overlaps the true difference. The difference between the two tests becomes more
pronounced when the group probabilities between the two groups of interest differ from each
other.

Appendix E. A/B Testing

For this application, we assume that samples are randomly assigned to either a treatment
or a control variant in an A/B test. We will denote the random variable Ti ∼ Bern(λ) to
determine whether sample i is in the treatment Ti = 1 or in the control Ti = 0 group. Note
that the parameter λ ∈ [0, 1] is known and does not need estimating. In the treatment set
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of samples, data in group j ∈ {1, 2} will follow Xi[j, t] ∼ N
(
µj,t, σ

2
j,t

)
, while in the control

set of samples, data in group j ∈ {1, 2} will follow Xi[j, c] ∼ N
(
µj,c, σ

2
j,c

)
. Again, we will let

Wi ∼ Bern(π) determine the group that sample i belongs to, i.e. Wi = 0 for group 1 and
Wi = 1 for group 2. Our goal here is to test whether the differences in means in the two groups
has changed between the treatment and control. That is, we test H0 : µ1,t−µ2,t = µ1,c−µ2,c.
In order to compute confidence intervals, we will include a ∆ term in the difference, so that
we test H0 : µ1,t − µ2,t = µ1,c − µ2,c, but ∆ = 0 is the typical hypothesis test.

We are not considering the membership of a sample to the control or treatment to be
sensitive, and hence not privatizing it. Instead, we privatize the group membership j ∈ {1, 2}
for each sample using randomized response. Recall that for randomized response, we will
use random variables Zε

i [j, j] ∼ Bern( eε

eε+1) for j ∈ {1, 2} with Zε
i [1, 2] = 1 − Zε

i [1, 1] and
Zε
i [2, 1] = 1− Zε

i [2, 2]. We will consider the random vector Y ε =
∑n

i=1 Y
ε
i in our general χ2

test framework, where

Y ε
i =


Ti · (Zε

i [1, 1] ·Wi + Zε
i [1, 2] · (1−Wi)) + (1− Ti) · (Zε

i [1, 1] ·Wi + Zε
i [1, 2] · (1−Wi))

Ti · (Zε
i [1, 1] ·Wi ·Xi[1, t] + Zε

i [1, 2] · (1−Wi) ·Xi[2, t])
Ti · (Zε

i [2, 1] ·Wi ·Xi[1, t] + Zε
i [2, 2] · (1−Wi) ·Xi[2, t])

(1− Ti) · (Zε
i [1, 1] ·Wi ·Xi[1, c] + Zε

i [1, 2] · (1−Wi)Xi[2, c])
(1− Ti) · (Zε

i [2, 1] ·Wi ·Xi[1, c] + Zε
i [2, 2] · (1−Wi)Xi[2, c])



Since Ti is independent of the other variables, a lot of the calculations we have already
done for t-tests in Section C.2 can be used. Next we compute its expectation in terms of the
population parameters, where we will write µ = (µ1,t, µ2,t, µ1,c, µ2,c),

θε(π,µ; ε, λ) = E[Y ε
i ] =



eε

eε+1π + 1
eε+1 (1− π)

λ
(

eε

eε+1πµ1,t +
1

eε+1 (1− π)µ2,t

)
λ
(

1
eε+1πµ1,t +

eε

eε+1 (1− π)µ2,t

)
(1− λ)

(
eε

eε+1πµ1,c +
1

eε+1 (1− π)µ2,c

)
(1− λ)

(
1

eε+1πµ1,c +
eε

eε+1 (1− π)µ2,c

)


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We next compute the covariance matrix C(π,µ,σ2; ε, λ) = E [Y ε
i (Y

ε
i )

⊺]− E [Y ε
i ]E [Y ε

i ]
⊺,

where σ2 = (σ2
1,t, σ

2
2,t, σ

2
1,c, σ

2
2,c). We have

E [Y ε
i (Y

ε
i )

⊺] [1, 1] = E [Y ε
i ] [1]

E [Y ε
i (Y

ε
i )

⊺] [1, 2] = λ
(
π eε

eε+1µ1,t + (1− π) 1
eε+1µ2,t

)
E [Y ε

i (Y
ε
i )

⊺] [1, 3] = E [Y ε
i (Y

ε
i )

⊺] [1, 5] = 0

E [Y ε
i (Y

ε
i )

⊺] [1, 4] = (1− λ)
(
π 1
eε+1µ1,c + (1− π) eε

eε+1µ2,c

)
E [Y ε

i (Y
ε
i )

⊺] [2, 2] = λ
(
π eε

eε+1(µ
2
1,t + σ2

1,t) + (1− π) 1
eε+1(µ

2
2,t + σ2

2,t)
)

E [Y ε
i (Y

ε
i )

⊺] [3, 3] = λ
(
π 1
eε+1(µ

2
1,t + σ2

1,t) + (1− π) eε

eε+1(µ
2
2,t + σ2

2,t)
)

E [Y ε
i (Y

ε
i )

⊺] [4, 4] = (1− λ)
(
π eε

eε+1(µ
2
1,c + σ2

1,c) + (1− π) 1
eε+1(µ

2
2,c + σ2

2,c)
)

E [Y ε
i (Y

ε
i )

⊺] [5, 5] = (1− λ)
(
π 1
eε+1(µ

2
1,c + σ2

1,c) + (1− π) eε

eε+1(µ
2
2,c + σ2

2,c)
)

E [Y ε
i (Y

ε
i )

⊺] [j, ℓ] = 0, j, ℓ ∈ {2, 3, 4, 5}, j ̸= ℓ.

Under the null hypothesis H0 : µ1,t−µ2,t = µ1,c−µ2,c+∆ we can solve for one of the means,
so we will set µ1,t = µ1,c − µ2,c + µ2,t +∆ to reduce the number of parameters (note that we
treat ∆ as known). We now want to use our sample Y ε to estimate the other means and the
group probability π̂. We start with the group probability, which we have estimated the same
way in other sections:

π̂ = (eε + 1)

(
Y ε[0]/n− 1

eε+1

eε − 1

)
.

We then solve for estimates of the means µ̂1,t, µ̂2,t, µ̂1,c, µ̂2,c by setting the empirical
averages (

∑n
i=1 Yi[j]/n : j ∈ {2, 3, 4, 5}) equal to the respective coordinates of θε(π̂,µ; ε, λ)

and solve for the means. Note that when we substitute in the null hypothesis µ1,t =
µ2,t + µ1,c − µ2,c + ∆, we get 4 equations and 3 unknowns. In this case, we choose the
first three equations to solve for µ2,t, µ1,c, µ2,c and then set µ̂1,t = µ̂2,t + µ̂1,c − µ̂2,c + ∆.
From these estimates, we can plug them into the covariance matrix. Note that we will not
directly form estimates for σ2, instead we will compute the sample variance for {Y ε

i [j]}ni=1

for j ∈ {2, 3, 4, 5} to use on the main diagonal of the covariance matrix and check to see that
they indeed give valid sample variances (i.e. have positive variance of the true data), as we
did for the test in Section C.2.

Our test statistic then becomes the following, where we will write Ĉ to denote the
covariance matrix with the above parameter estimates and given ε, λ,∆,

Dε(λ,∆) = min
π∈(0,1),

µ2,t,µ1,c,µ2,c∈R
µ1,t=µ1,c−µ2,c+µ2,t+∆

{
(Y ε − θε (π,µ; ε, λ))⊺ Ĉ−1 (Y ε − θε (π,µ; ε, λ))

}
.

We then compare the test statistic with a χ2 random variable with 1 degrees of freedom.
We give power results in Figure 18 for hypothesis tests comparing the general χ2 test with
the classical t-test on privatized groups, which seems to perform similarly. We also gave
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Figure 18: Power results for hypothesis testing for the difference in means across sensitive
groups between treatment and control H0 : µ1,t − µ2,t = µ1,c − µ2,c. We compare
the (unmodified) t-test and the general χ2 test on privatized groups with treatment
probability λ ∈ {0.5, 0.1} and ε = 1.

confidence intervals for the difference between means across treatment and control in Figure 3
using the general χ2 test statistic and the unmodified t-test statistic. In our experimental
setup we generate data with zero means across groups 1 and 2 in both treatment and control
and keep the variance across all to be 1. We then will vary the mean in the control group of
group 1, i.e. µ1,c to change the difference between groups in the treatment and control.
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