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Abstract
As companies work to provide the best possible experience for members, users, and customers,
it is crucial to understand how different people – particularly individuals from sensitive
groups - have different experiences. For example, do women visit our platform less frequently
than members of other genders? Or perhaps, are people with disabilities disproportionately
affected by a change to our user interface? However, to run these statistical tests or
form estimates to answer these questions, we need to know sensitive attributes. When
dealing with personal data, privacy techniques should be considered, especially when we are
dealing with sensitive groups, e.g. race/ethnicity or gender. We study a new privacy model
where users belong to certain sensitive groups, and we show how to conduct statistical
inference on whether there are significant differences in outcomes between the various
groups. We introduce a general chi-squared test that accounts for differential privacy in
group membership, and show how this covers a broad set of hypothesis tests, improving
statistical power over tests that ignore the noise due to privacy.
Keywords: Hypothesis testing, differential privacy, experimentation

1. Introduction

When measuring the impact that new products or enhancements have on users, we rely on
A/B testing to help us determine if the new feature significantly improves the user experience.
To determine whether certain user groups are negatively impacted, although overall metrics
might improve, we would like to measure the outcomes across these groups. However, to
run these statistical tests, we need to know sensitive group information, which should be
kept private. We start by covering the various existing privacy models one might consider,
and why they fall short in providing privacy of the group that each sample belongs to or
drastically impact utility for the task at hand.

One approach would be to keep a dataset of sensitive attributes of users in a secure
environment that cannot be directly accessed. However, if multiple experiments are conducted
on the secure dataset and only the aggregated results are revealed, it may still be possible
to reconstruct the sensitive attributes Dinur and Nissim (2003). Privacy mitigations such
as differential privacy Dwork et al. (2006) can be used to ensure each outcome for each
experiment has a sufficient amount of noise to protect the privacy of each individual. However,
with potentially hundreds of A/B tests ran every day, the overall privacy loss as defined in
differential privacy (DP) becomes massive relatively quickly. We could add so much noise
that each result is worthless, but we want to ensure both usefulness of A/B testing and
privacy of these features over a very long or even infinite time horizon.

Another approach is to create a synthetic dataset subject to (central) DP, with some
generative process (Near and Darais, 2021). Note that we would no longer need to worry
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about the privacy loss accumulating with each experiment, since each computation would
be post-processing on the synthetic data, and privacy loss cannot be increased due to post-
processing (Dwork et al., 2006). Unfortunately, for A/B testing, we want to be able to
perform a join on the data by some user ID so that we know which members were in the
control or treatment groups and what their outcomes were, however this is not possible, as
the synthetic data via generative process would no longer have individual IDs.

We then turn to local differential privacy as a solution to creating a synthetic dataset
while keeping member IDs - this ensures that (a) we have a privatized dataset that can be
used an unlimited number of times without compromising privacy of which group each user
belongs to, and (b) allows us to join with another dataset by a unique identifier for each
user. For our setting, we are not concerned with the privacy of the outcomes themselves,
as these outcomes are traditionally used internally to determine the impact of different
experiments. Recent work from Juarez and Korolova (2022) has also considered privatizing
the group membership with local DP, but also privatize the outcome, as the outcome might
be “correlated with group membership." This is precisely what we want to test. Considering
the privacy of only the features can also be thought of as a complement to some recent work
on label-differential privacy where the labels themselves are the private information while
the features are not treated as sensitive.

The privacy model we consider here can be viewed as a variant to a traditional local
DP set up, as local DP would consider privatizing the features, e.g. the group membership,
and the outcome together. In this privacy model, which we call the local group DP (LGDP)
model, we will only privatize the group membership. We will consider several scenarios with
different privacy mechanisms.

First, we consider binary outcomes, which can easily be extended to categorical outcomes;
we consider testing a difference in proportions between two groups, as well as χ2- independence
testing for a difference between proportions over multiple sensitive groups simultaneously.
We then consider outcomes that are real valued. We consider both confidence intervals and
hypothesis tests for the difference in means, as well as differences in means across multiple
sensitive groups simultaneously via one-way Analysis of Variation (ANOVA) tests. Lastly, we
will consider the application to A/B tests where users are split across two treatment variants
randomly and which variant each user belongs to is known to the analyst and does not need
privatization. In this case, we test whether there is a significant change from the control to
treatment group in the difference of outcomes between two sensitive groups. In particular,
this can be used to determine whether a feature creates a smaller difference between means
of sensitive groups. We now summarize our contributions below:

• We present a new privacy model over sensitive groups called local group DP that is less
restrictive than the local DP setting, and would privatize the group for each sample.

• We present a unified framework based on general χ2 tests that will allow us to easily
derive new asymptotically valid statistical tests for various privacy mechanisms and
hypothesis tests, including Z-tests, independence tests, t-tests, and ANOVA.

• We demonstrate that confidence intervals with traditional methods that do not factor in
the privacy mechanism lead to false conclusions, while our approach is able to compute
empirically valid confidence intervals that converges to the original test as ϵ → ∞.

• We show that when testing for a significant difference in means across g > 2 groups, we
achieve higher statistical power for the same level of privacy than traditional approaches.
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• We apply our general framework to A/B tests for testing whether the difference across
sensitive groups has changed between the control and treatment groups.

1.1. Related Work

Airbnb recently described an approach that could be used to determine disparate impacts
across sensitive groups in Project Lighthouse (Basu et al., 2022). Project Lighthouse
incorporates k-anonymity and ℓ-diversity to protect the privacy of a dataset, but would
require repeating the procedure for a new experiment that might use additional features (see
Section A.1 for more discussion).

We now cover several additional related works, although we point out that these do not
consider the privacy model we do here. There have been several works that have considered
statistical hypothesis tests under local DP, including simple tests like distribution testing or
goodness of fit and composite tests like independence testing (Gaboardi and Rogers, 2018;
Sheffet, 2018; Acharya et al., 2019a) as well as A/B testing (Ding et al., 2018; Waudby-Smith
et al., 2022). Further, in the local setting, there has been work in mean estimation and
confidence intervals (Gaboardi et al., 2019; Joseph et al., 2019; Waudby-Smith et al., 2022)
as well as minimax optimal schemes (Duchi et al., 2018; Bhowmick et al., 2019). We also
mention several works on hypothesis testing in the global model of DP, including distribution
testing or goodness of fit (Cai et al., 2017; Canonne et al., 2019, 2020; Awan and Slavkovic,
2020) and more composite tests, like independence testing (Vu and Slavkovic, 2009; Uhler
et al., 2013; Yu et al., 2014; Wang et al., 2015; Gaboardi et al., 2016; Kifer and Rogers, 2017;
Kakizaki et al., 2017), ANOVA Campbell et al. (2018); Swanberg et al. (2019), and linear
regression (Sheffet, 2017). Also in the global model there has been work on mean estimation
and confidence intervals (Karwa and Vadhan, 2017; Wang et al., 2019; Biswas et al., 2020;
Covington et al., 2021).

2. Privacy Preliminaries

We start with the definition of local DP (Warner, 1965; Evfimievski et al., 2003; Ka-
siviswanathan et al., 2011), which will treat the group and the outcome of each group to be
sensitive information, and contrast that with the privacy model we consider here.

Definition 1 An algorithm M : X → Y is ϵ-locally differentially private if for all possible
inputs x, x′ ∈ X and for all outcomes S ⊆ Y we have Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S].

We will instead focus on the case where a user’s outcome is already known to the data
analyst, but the group membership is not.

Definition 2 An algorithm M : {1, . . . , g}×O → Y is ϵ-local group DP (LGDP) if M ′(·, o) :
{1, . . . , g} → Y is ϵ-local DP for all outcomes o ∈ O, i.e. ϵ-local DP in its first argument.

This less restrictive definition of privacy ensures deniability for the group a user belongs
to. In particular, for attributes, like race and ethnicity, the information is incredibly sensitive
and does not change over time, while outcomes, such as salary or conversion on current ad
campaigns, can change over time. Another way to interpret LGDP is that it is local DP on
the group membership of each user, disregarding the outcomes that are joined with the user.
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We now present three fundamental local DP mechanisms for privatizing categorial inputs,
where one will actually be a special case of another. We assume that the sensitive data is a
group j ∈ [g]. There have been several great works on improving run time and communication
costs of these mechanisms (Acharya et al., 2019b; Feldman et al., 2022); we are primarily
interested in the tradeoffs between statistical power and privacy.

Definition 3 (g-Randomized Response1 from Warner (1965)) The g-randomized re-
sponse mechanism M : {1, . . . , g} → {1, . . . , g} returns its input with probability eϵ

eϵ+g−1 and
otherwise uniformly selects a different outcome with equal probability, i.e.

Pr[M(j) = j] =
eϵ

eϵ + g − 1
, and Pr[M(j) = ℓ] =

1

eϵ + g − 1
∀ℓ ̸= j.

Definition 4 (Bit Flipping2 from Erlingsson et al. (2014)) The bit flipping mecha-
nism M : {1, . . . , g} → {0, 1}g with input j creates a vector of length g with all zeros
except a one in position j, iterates through each coordinate, and flips the bit with probability

1
eϵ/2+1

or otherwise keeps it the same.

Definition 5 (Subset Mechanism from Ye and Barg (2017)) The subset mechanism
with parameter k < g is M : {1, . . . , g} → Yk where Yk = {y ∈ {0, 1}g :

∑d
i=1 yi = k}. For

M(j) = (M(j)[ℓ] : ℓ ∈ {1, . . . , g}), the probability the j-th coordinate M(j)[j] = 1 is keε

keε+g−k ,
and otherwise M(j)[j] = 0. If M(j)[j] = 1, then we uniformly select k−1 distinct coordinates
from the set {1, . . . , g} \ {j} to be 1. If M(j)[j] = 0, then we uniformly select k distinct
coordinates from the set {1, . . . , g} \ {j} to be 1.

The subset mechanism can be thought of as a way to unify the g-randomized response
and the bit flipping mechanism. In fact when k = 1, we recover the g-randomized response
mechanism. We will pick k = ⌈ g

eϵ+1⌉, as Proposition III.2 in Ye and Barg (2017) claims this
to be the optimal choice for k.

3. General Chi Squared Theory

Our analysis approach is the general chi-squared test, which extends a chi-squared test for
independence to much broader hypothesis tests (Ferguson, 1996) (Chapter 23). Previous
work from Kifer and Rogers (2017) and Gaboardi and Rogers (2018) used the general χ2

tests to design valid hypothesis tests for categorical data in goodness of fit and independence
testing subject to DP. Here, we summarize the approach adapted for LGDP. Consider random
vectors {Yi ∈ Rd : i ∈ {1, . . . , n}} where each Yi is selected i.i.d. from some distribution with
parameters θ⋆ ∈ Θ where Θ is a non-empty open subset of Rν , with ν < d. Let Ȳ denote
the sample average, and suppose we also have a function A mapping Rν to Rd.

We write the null hypothesis H0 as θ⋆ ∈ Θ such that with Ȳ := 1
n

∑n
i=1 Yi we have,

√
n
(
Ȳ −A(θ⋆)

) D→ N(0, C(θ⋆)) (1)

where C(θ) ∈ Rd×d is a covariance matrix and we write D→ to denote convergence in
distribution as sample size n increases. We measure the distance between Ȳ and A(θ) with a
test statistic given by the following, where M ∈ Rd × Rd is symmetric positive-definite.

D(n)(θ) = n
(
Ȳ −A(θ)

)⊺
M(θ)

(
Ȳ −A(θ)

)
. (2)
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Note that we make standard regularity assumptions about A(θ), M(θ), and Θ, detailed as
Assumption 4.1 in Kifer and Rogers (2017). When θ⋆ is not known, we need to estimate
a good parameter θ̂(n) to plug into (2). Kifer and Rogers (2017) show that we need only
use a rough estimate of θ⋆, denoted ϕ(Ȳ ), which converges in probability to θ⋆. So, we
set our parameter estimate to be θ̂(n) = argminθ∈Θ D̂(n)(θ), and the test statistic becomes
D̂(n)(θ̂(n)). Statistical theory from Kifer and Rogers (2017) establishes that under the null,

min
θ∈Θ⊆Rν

D̂(n)(θ)
D→ χ2

d′−ν .

In Algorithm 1, we outline our general approach to designing new hypothesis tests with
1− α significance, which, given our assumptions hold, have asymptotically a χ2 distribution.

Algorithm 1 General χ2 approach
• Based on the hypothesis test, compute a random vector Yi ∈ Rd that are sampled i.i.d.

from the unknown population distribution with parameter space Θ ⊂ Rν where ν < d.
• Compute the covariance matrix C(θ) of Yi under the null hypothesis for general θ ∈ Θ.
• Compute estimates θ̂n that converge in probability to θ⋆ and write Ĉ := C(θ̂n).
• Calculate the (general) inverse of C(θ̂n)

†, where C(θ∗) has rank at most d′ ≤ d.
• Compute the χ2 test statistic D̂, and if D̂ > χ2

d′−ν,1−α, then reject the null hypothesis.

D̂ = min
θ∈Θ

{
n
(
Ȳ − E[Yi; θ]

)⊺
C(θ̂n)

† (Ȳ − E[Yi; θ]
)}

(3)

4. Difference in Proportions with Binary Outcomes

Suppose we have a binary outcome, and we want to test for a difference between the success
probabilities across two sensitive groups. We will have data {(Gi, Xi)}ni=1, where we first
sample the group Xi belongs to as Gi ∼ Bern(π) + 1, for an unknown π ∈ [0, 1]; then we
have Xi|Gi ∼ Bern(pGi), where pg ∈ [0, 1] is the probability of success for group g ∈ {1, 2}.
We want to test the null hypothesis H0 : p1 = p2 +∆. For ε-LGDP, we can use randomized
response M : {1, 2} → {1, 2} where Pr[M(g) = g] = eε

1+eε .
We show how to build a general χ2 test for testing H0, adopting the general theory

outlined in Section 3, which was also used to derive tests in the local DP setting by Gaboardi
and Rogers (2018). There have been several works on privatizing χ2 tests, even in the more
restrictive local DP setting (Gaboardi and Rogers, 2018; Sheffet, 2018; Acharya et al., 2019a).

In Table 1 we present a contingency table of outcomes, where Group 1 has probability
of success p1 and Group 2 has probability of success p2. The LGDP setting means that
individuals can move across columns (groups), but not rows (outcomes).

To privatize group membership, we will use randomized response and privacy loss
parameter ε > 0. For i ∈ [n] and g ∈ {1, 2}, let Zε

i [g] ∼ Bern
(

eε

1+eε

)
, where data point i will

swap groups when Zi = 0. When we sample n combined outcomes over groups 1 and 2, we
will consider a single multinomial random variable with the outcome probabilities flattened
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Table 1: Contingency Table giving outcome probabilities.
Outcome Probs Group 1 Group 2

Success Y [1, 1] Y [1, 2]

Failure Y [2, 1] Y [2, 2]

to an array; we can write this as the following, where 0 denotes the 2× 2 matrix of zeros.

Y ε
i =


Zε
i [1] ·Wi ·Xi[1] + (1− Zε

i [2]) · (1−Wi) ·Xi[2]
(1− Zε

i [1]) ·Wi ·Xi[1] + Zε
i,1 · (1−Wi) ·Xi[2]

Zε
i [1] ·Wi · (1−Xi[1]) + (1− Zε

i,1) · (1−Wi) · (1−Xi[2])

(1− Zε
i [1]) ·Wi · (1−Xi[1]) + Zε

i [2] · (1−Wi) · (1−Xi[2])


=

[
Zε
i 0
0 Zε

i

]
Yi, where Zε

i =

[
Zε
i [1] 1− Zε

i [2]
1− Zε

i [1] Zε
i [2]

]
,

simplifying to a block matrix. Note that the first column of Zε
i is exactly randomized response

applied to group 1, while the second column is randomized response applied to group 2.
So, we can consider privatized data Y ε to be generated from Multinom(n,θε(π, p1, p2)),

θε(π, p1, p2) =


eε

eε+1 (πp1) +
1

eε+1 ((1− π)p2)
eε

eε+1 ((1− π)p2) +
1

eε+1 (πp1)
eε

eε+1 (π(1− p1)) +
1

eε+1 ((1− π)(1− p2))
eε

eε+1 ((1− π)(1− p2)) +
1

eε+1 (π(1− p1))


We then form estimates π̂ and p̂1, p̂2 for π and p1, p2 from under H0, p1 − p2 = ∆.

p̂2 =
Y ε[1, 1] + Y ε[2, 1]

n
− π̂∆, p̂1 = p̂2 +∆, π̂ =

(
eε + 1

eε − 1

)(
Y [1, 1]ε + Y [1, 2]ε

n
− 1

eε+1

)
The private χ2-statistic D̂ε then becomes the following,

D̂ε(∆) = n · min
p1−p2=∆
π∈(0,1)

{
(Y ε/n− θε(π, p1, p2))

⊺Diag (θε(π̂, p̂1, p̂2))
−1 (Y ε/n− θε(π, p1, p2))

}
.

One way to achieve valid confidence intervals for the difference p1 − p2 is to test for
multiple values of ∆ to see which intervals should be rejected under H0. That is, we search
over the space ∆ ∈ [−1, 1], with a tolerance level τ , and check whether D̂(Y ;∆) ≤ χ2

1,1−α.
As we move from ∆ = −1, we will cross a point ∆ = ∆L where D̂(Y ;∆L) > χ2

1,1−α, yet
D̂(Y ;∆L + τ) ≤ χ2

1,1−α. This is the left-end point of our confidence interval; we find ∆R

analogously. See the appendix for more results and discussion.

5. Testing Difference in Two Means: t-tests

Typically, one would use the classical t-test to test the difference between two means between
samples {Xi[j]}

nj

i=1
i.i.d.∼ N

(
µj , σ

2
j

)
for j ∈ {1, 2}. When introducing privacy, we want to know
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whether the t-test can still be used or whether a different test should be used. To use the
general χ2 statistic, we will need to handle real outcomes. First, we form a contingency table
for continuous outcomes without discretizing, by considering the moments of the samples
(Table 2). We use Wi ∼ Bern(π) to determine the group of sample i.

Table 2: Contingency Table for continuous outcomes.
Sample Orders Group 0 Group 1

0-th
∑n

i=1Wi
∑n

i=1(1−Wi)

1-st
∑n

i=1WiXi[1]
∑n

i=1(1−Wi)Xi[2]

We write Zε
i [j] ∼ Bern( eε

eε+1) for i ∈ [n] and j ∈ {1, 2}, and form the privatized Y ε
i ,

Y ε
i =

 Zε
i [1] ·Wi + (1− Zε

i [2]) · (1−Wi)
Zε
i [1] ·Wi ·Xi[1] + (1− Zε

i [2]) · (1−Wi) ·Xi[2]
(1− Zε

i [1]) ·Wi ·Xi[1] + Zε
i [2] · (1−Wi) ·Xi[2]

 .
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Figure 1: Power of t-test without modification on privatized data and the χ2 test (13) with
ϵ = 1.0 and n = 10000 samples. The left plot has parameters (π, µ1, σ1, σ2) =
(0.95, 1.5, 2, 0.2), while the right plot has (π, µ1, σ1, σ2) = (0.5, 0, 1, 1).

From here, we can derive the following test statistic, which we compare to a χ2
1.

Dε = min
π∈(0,1),

µ1,µ2:µ1=µ2+∆

{
(Y ε − θε (π, µ1, µ2))

⊺C(π̂, µ̂1, µ̂2, σ̂1, σ̂2)
−1 (Y ε − θε (π, µ1, µ2))

}
(4)

Figure 5 gives results for testing the difference in means, comparing our test with the
naive approach of using the t-test as if no privacy has been introduced, as well as the baseline
t-test on non-privatized groups. We chose a fairly extreme setting of parameters in the data
distribution to show that the χ2 approach can achieve similar power to the classical t-test
approach, while in more symmetric settings, i.e. σ1 ≈ σ2 and π ≈ 0.5, they perform similarly.
We apply the general rule of thumb3 that if at any point our estimate group size π̂ · n in
either group is less than 5, we simply return a zero statistic and hence fail to reject.

3. There are similar rules of thumb in traditional statistical tests, where tests are inconclusive if a group
size is too small.
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Figure 2: Comparing power curves for ANOVA with n = 10000 samples and various ϵ.

6. Testing Differences in Means across Several Groups

We now consider testing whether there is a difference in means across g > 2 groups. That is,
let Xi[j] be i.i.d. N

(
µj , σ

2
j

)
for i ∈ [n] with j ∈ [g]; we test H0 : µ1 = µ2 = · · ·µg. In this

case, we would perform a one-way ANOVA test, which makes the assumption that all σj are
equal, i.e. σj = σ for all j ∈ [g]. The one-way ANOVA test compares H0 to the alternative
hypothesis H1: not all means are equal. Observe that the one-way ANOVA does not allow
us to conclude specifically which mean or means may be different across the groups, and
would usually be followed up with either a set of t-tests or a method like Tukey’s method, or
a reasonable conclusion from clear deviations observed (Rice, 2006).

It is straightforward to fit this hypothesis test to our generalized χ2 test framework by
considering the variable Wi, which will determine the group that sample i is in. That is,
Wi ∼ Multinomial(n, π) for i ∈ [n] and π ∈ [0, 1]g is a probability vector. We omit the
details here (available in the appendix). We present results in Figure 2 with µ = µj for
all j ∈ {1, . . . , g} with g = 10 but we vary the mean in the last coordinate µ10 to see the
fraction of times we reject the null. We compare the tests for g-randomized response, bit
flipping, and the subset mechanism, as well as using the one-way ANOVA test as is on data
that has been privatized with g-randomized response. We see that the subset mechanism
outperforms the various tests at the different privacy levels.

7. Application to A/B Testing

To close, we apply our general approach to the A/B testing setting, specifically to test
whether the difference in means between two groups has remained the same or changed in
an A/B test. Going back to our motivation, this extension has huge potential as a practical
solution for differential privacy in analyzing A/B tests over sensitive groups. With this
method, companies can add privacy to data describing demographic information, and then
proceed to test hypotheses about different groups and outcomes under many different A/B
tests, without incurring privacy loss. As companies move to ask questions about different
groups’ experiences on their platforms, testing without statistical bias and with high power
is crucial for making the best decisions.

We give confidence intervals for the difference between means across treatment and control
in Figure 3 using the general χ2 test statistic and the unmodified t-test statistic. Observe
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Figure 3: Confidence intervals for the difference in means across groups between treatment
and control; H0 : µ1,t − µ2,t = µ1,c − µ2,c +∆. We compare t-tests and general χ2

tests on privatized groups with treatment probability λ = 0.05 and ε ∈ {1, 2}.

that the t-test does not cover the true difference in difference in the confidence intervals, as
compared to the general χ2 test, which does not suffer from the same downward bias.

8. Conclusion

We introduced the local group DP definition as a less restrictive privacy model than the local
DP model, while ensuring the group that each member belongs to remains private no matter
the number of tests that are conducted. We considered the binary outcome setting, before
extending the general χ2 framework to test differences in means, one-way ANOVA, and an
application to A/B testing. Our results show that these general χ2 tests can also be used
to compute valid confidence intervals for the true difference in proportions and means even
when group membership is privatized. Furthermore, the power of the tests over multiple
groups can significantly benefit by using the subset mechanism and the corresponding test,
rather than the traditional tests that do not account for privacy.

A limitation of this work is that if a new group is to be added to a set of existing groups,
increasing the total number of groups from g to g′, then it is not clear how to take samples
that are privatized over the smaller set of g groups. The question then becomes, how do
we design statistical tests that combines datasets where some samples are privatized over g
groups while others are privatized over g′ > g groups? Answering these questions will help
researchers to design tests that solve practical problems in hypothesis testing under DP.
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