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Appendix

Appendix A. Additional Discussion of Related Work

The study of differentially private fair learning algorithms was initiated by Jagielski et al.
(2019). Jagielski et al. (2019) considered equalized odds and proposed two DP algorithms:
1) an ϵ-DP post-processing approach derived from Hardt et al. (2016a); and 2) an pϵ, δq-
DP in-processing approach based on Agarwal et al. (2018). The major drawback of their
post-processing approach is the unrealistic requirement that the algorithm have access to
the sensitive attributes at test time, which Jagielski et al. (2019) admits “isn’t feasible (or
legal) in certain applications.” Additionally, post-processing approaches are known to suffer
from inferior fairness-accuracy tradeoffs compared with in-processing methods. While the
in-processing method of Jagielski et al. (2019) does not require access to sensitive attributes
at test time, it comes with a different set of disadvantages: 1) it is limited to binary clas-
sification; 2) its theoretical performance guarantees require the use of the computationally
inefficient (i.e. exponential-time) exponential mechanism (McSherry and Talwar, 2007);
3) its theoretical performance guarantees require computations on the full training set and
do not permit mini-batch implementations; 4) it requires the hypothesis class H to have
finite VC dimension. In this work, we propose the first algorithm that overcomes all of
these pitfalls: our algorithm is amenable to multi-way classification with multiple sensitive
attributes, computationally efficient, and comes with convergence guarantees that hold even
when mini-batches of m ă n samples are used in each iteration of training, and even when
VCpHq “ 8. Furthermore, our framework is flexible enough to accommodate many notions
of group fairness besides equalized odds (e.g. demographic parity, accuracy parity).

Following Jagielski et al. (2019), several works have proposed other DP fair learning
algorithms. None of these works have managed to simultaneously address all the shortcom-
ings of the method of Jagielski et al. (2019). The work of Xu et al. (2019) proposed DP and
fair binary logistic regression, but did not provide any theoretical convergence/performance
guarantees. The work of Mozannar et al. (2020) combined aspects of both Hardt et al.
(2016a) and Agarwal et al. (2018) in a two-step locally differentially private fairness al-
gorithm. Their approach is limited to binary classification. Moreover, their algorithm re-
quires n{2 samples in each iteration (of their in-processing step), making it impractical for
large-scale problems. More recently, Tran et al. (2021b) devised another DP in-processing
method based on lagrange duality, which covers non-binary classification problems. In a
subsequent work, Tran et al. (2021a) studied the effect of DP on accuracy parity in ERM,
and proposed using a regularizer to promote fairness. Finally, Tran et al. (2022) provided
a semi-supervised fair “Private Aggregation of Teacher Ensembles” framework. A short-
coming of each of these three most recent works is their lack of theoretical convergence
or accuracy guarantees. In another vein, some works have observed the disparate impact
of privacy constraints on demographic subgroups (Bagdasaryan et al., 2019; Tran et al.,
2021c).
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Appendix B. Equalized Odds Version of ERMI

If equalized odds (Hardt et al., 2016b) is the desired fairness notion, then one should use
the following variation of ERMI as a regularizer Lowy et al. (2022):

pDRppY ;S|Y q :“ E

$

&
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p̂Y pyq ´ 1. (4)

Here p̂
pY ,S|Y

denotes the empirical joint distribution of the predictions and sensitive at-

tributes ppY , Sq conditional on the true labels Y . In particular, if DRppY ;S|Y q “ 0, then pY
and S are conditionally independent given Y (i.e. equalized odds is satisfied).

Appendix C. Complete Version of Theorem 4

Let pypxi; θq P t0, 1ul and si P t0, 1uk be the one-hot encodings of pypxi, θq and si, respectively:
i.e., pyjpxi; θq “ 1tpypxi,θq“ju and si,r “ 1tsi“ru for j P rls, r P rks. Also, denote pPs “

diagpppSp1q, . . . , ppSpkqq, where ppSprq :“ 1
n

řn
i“1 1tsi“ru ě ρ ą 0 is the empirical probability

of attribute r (r P rks). Then we have the following re-formulation of (FERMI obj.) as a
min-max problem:

Theorem 6 (Lowy et al. (2022)) (FERMI obj.) is equivalent to

min
θ

max
WPRkˆl

#

pF pθ,W q :“ pLpθq ` λ
1

n

n
ÿ

i“1

pψipθ,W q

+

, (5)

where

pψipθ,W q :“ ´TrpWErpypxi, θqpypxi, θqT |xisW
T q

` 2TrpWErpypxi; θqsTi |xi, sis pP´1{2
s q ´ 1,

Erpypxi; θqpypxi; θqT |xis “ diagpF1pxi, θq, . . . ,Flpxi, θqq, and Erpypxi; θqsTi |xi, sis is a k ˆ l
matrix with Erpypxi; θqsTi |xi, sisr,j “ si,rFjpxi, θq.

Strong concavity of pψi is shown in Lowy et al. (2022).

Appendix D. DP-FERMI Algorithm: Privacy

We begin with a routine calculation of the derivatives of pψi, which follows by elementary
matrix calculus:

Lemma 7 Let pψipθ,W q “ ´TrpWErpypxi, θqpypxi, θqT |xisW
T q`2TrpWErpypxi; θqsTi |xi, sis pP

´1{2
s q´

1, where Erpypxi; θqpypxi; θqT |xis “ diagpF1pxi, θq, . . . ,Flpxi, θqq and Erpypxi; θqsTi |xi, sis is a
k ˆ l matrix with Erpypxi; θqsTi |xi, sisr,j “ si,rFjpxi, θq. Then,

∇θ
pψipθ,W q “ ´∇θ vecpErpypxi, θqpypxi, θqT |xisq

T vecpW TW q

` 2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

W T
´

pPS

¯´1{2
˙
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and

∇w
pψipθ,W q “ ´2WErpypxi, θqpypxi, θqT |xis ` 2 pP

´1{2
S Ersipypxi, θqT |xi, sis.

Using Lemma 7, we can prove that Algorithm 1 is DP:

Theorem 8 (Precise Statement of Privacy Claim in Theorem 5) Let ϵ ď 2 lnp1{δq,

δ P p0, 1q, and T ě

´

n
?
ϵ

2m

¯2
. Assume Fp¨, xq is Lθ-Lipschitz for all x, and |pWtqr,j | ď D

for all t P rT s, r P rks, j P rls. Then, for σ2w ě
16T lnp1{δq

ϵ2n2ρ
and σ2θ ě

16L2
θD

2 lnp1{δqT

ϵ2n2ρ
, Al-

gorithm 1 is pϵ, δq-DP with respect to the sensitive attributes for all data sets contain-

ing at least ρ-fraction of minority attributes. Further, if σ2w ě
32T lnp1{δq

ϵ2n2

´

1
ρ `D2

¯

and

σ2θ ě
64L2

θD
2 lnp1{δqT

ϵ2n2ρ
`

32D4L2
θl

2T lnp1{δq

ϵ2n2 , then Algorithm 1 is pϵ, δq-DP (with respect to all

features) for all data sets containing at least ρ-fraction of minority attributes.

Proof First consider the case in which only the sensitive attributes are private. By the
moments accountant Theorem 1 in Abadi et al. (2016), it suffices to bound the sensitivity

of the gradient updates by ∆2
θ ď

8D2L2
θ

m2ρ
and ∆2

w ď 8
m2ρ

. Here

∆2
θ “ sup

Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt
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∇θ
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pψpθ,W ; z1
iq

ı

›

›

›

›

›

2

and Z „ Z 1 means that Z and Z 1 are two data sets (both with ρ-fraction of minority
attributes) that differ in exactly one person’s sensitive attributes: i.e. si ‰ s1

i for some
unique i P rns, but zj “ z1

j for all j ‰ i and pxi, yiq “ px1
i, y

1
iq. Likewise,

∆2
w “ sup

Z„Z1,θ,W

›

›

›

›

›
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m

ÿ

iPBt

”

∇w
pψpθ,W ; ziq ´ ∇w

pψpθ,W ; z1
iq

ı

›

›

›

›

›

2

.

Now, by Lemma 7,

∇θ
pψipθ,W q “ ´∇θ vecpErpypxi, θqpypxi, θqT |xisq

T vecpW TW q

` 2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

W T
´

pPS

¯´1{2
˙

,
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and notice that only the second term depends on S. Therefore, we can bound the ℓ2-
sensitivity of the θ-gradient updates by:

∆2
θ “ sup

Z„Z1,W,θ

›

›

›

›

›

1

m

m
ÿ

i“1

2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

W T
´

pPS

¯´1{2
˙

´ 2∇θ vecpErs1
ipypxi, θqT |xi, s

1
isq vec

ˆ

W T
´

pPS1

¯´1{2
˙

›

›

›

›

›

2

ď
4

m2
sup

x,si,s1
i,W,θ

»

–

k
ÿ

r“1

l
ÿ

j“1

}∇θFjpθ, xq}2W 2
r,j

¨

˝

si,r
b

pPSprq

´
s1
i,r

b

pPS1prq

˛

‚

2fi

fl

ď
8

ρm2
sup
x,W,θ

˜

l
ÿ

j“1

}∇θFjpθ, xq}2W 2
r,j

¸

ď
8D2L2

θ

ρm2
,

using Lipschitz continuity of Fp¨, xq, the assumption that W has diameter bounded by D,
the assumption that the data sets have at least ρ-fraction of sensitive attribute r for all
r P rks. Similarly, for the W -gradients, we have

∇w
pψipθ,W q “ ´2WErpypxi, θqpypxi, θqT |xis ` 2 pP

´1{2
S Ersipypxi, θqT |xi, sis

by Lemma 7. Hence

∆2
W “ sup

θ,W,si,s1
i

4

m2

›

›

›

›

›

´WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ` pP
´1{2
S Ersipyipxi; θtq

T |xi, sis

`WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ´ pP
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1
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›

›
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›
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˛

‚

2

ď
8

m2ρ
,

since
řl

j“1Fjpθ, xiq
2 ď

řl
j“1Fjpθ, xiq “ 1. This establishes the desired privacy guarantee

with respect to sensitive attributes for Algorithm 1.

Now consider the case in which all features are private. We aim to bound the sensitivities
of the gradient updates to changes in a single sample zi “ psi, xi, yiq. Denote these new
sensitivities by

∆̃θ “ sup
Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇θ
pψpθ,W ; ziq ´ ∇θ

pψpθ,W ; z1
iq

ı

›

›

›

›

›

,
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where we now write Z „ Z 1 to mean that Z and Z 1 are two data sets (both with ρ-fraction
of minority attributes) that differ in exactly one person’s (sensitive and non-sensitive) data:
i.e. zi ‰ z1

i for some unique i P rns. Likewise,

∆̃W “ sup
Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇w
pψpθ,W ; ziq ´ ∇w

pψpθ,W ; z1
iq

ı

›

›

›

›

›

.

Then

∆̃θ “
1

m
sup

zi,z1
i,θ,W,S„S1

›

›

›

›

›

´ ∇θ vecpErpypxi, θqpypxi, θqT |xisq
T vecpW TW q ` 2∇θ vecpErsipypxi, θqT |xi, sisq

vec

ˆ

W T
´

pPS

¯´1{2
˙

` ∇θ vecpErpypx1
i, θqpypx1

i, θqT |x1
isq

T vecpW TW q

´ 2∇θ vecpErs1
ipypx1

i, θqT |x1
i, s

1
isq vec

ˆ

W T
´

pPS1

¯´1{2
˙

›

›

›

›

›

ď
2LθlD

m
` ∆θ.

Thus, ∆̃2
θ ď

4L2
θl

2D2

m2 `2∆2
θ. Therefore, by the moments accountant, the collection of all θt up-

dates in Algorithm 1 is pϵ, δq-DP if σ2θ ě
32D2L2

θT lnp1{δq

ρϵ2n2 `
8D2L2

θl
2T lnp1{δq

ϵ2n2 “
8L2

θD
2T lnp1{δq

ϵ2n2

´

4
ρ ` l2

¯

.

Next, we bound the sensitivity ∆̃W of the W -gradient updates. We have

∆̃2
W “ sup

θ,W,zi,z1
i

4

m2

›

›

›

›

›

´WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ` pP
´1{2
S Ersipyipxi; θtq

T |xi, sis

`WdiagpF1pθ, x1
iq, . . . ,Flpθ, x

1
iqq ´ pP

´1{2
S1 Ers1

ipy
T
i px1

i; θtq|x1
i, s

1
is

›

›

›

›

›

2

ď 2∆2
W `

8

m2
sup

θ,W,xi,x1
i

›

›

›

›

›

WdiagpF1pθ, xiq ´ F1pθ, x1
iq, . . . ,Flpθ, xiq ´ Flpθ, x

1
iqq

›

›

›

›

›

2

ď 2∆2
W `

16D2

m2
sup
θ,xi

l
ÿ

j“1

Fjpθ, xiq
2

ď 2∆2
W `

16D2

m2
.

Therefore, by the moments accountant, the collection of all Wt updates in Algorithm 1 is

pϵ, δq-DP if σ2w ě
32T lnp1{δq

ϵ2n2

´

1
ρ `D2

¯

. This completes the proof.

Appendix E. DP-FERMI Algorithm: Utility

To prove the convergence guarantee in Theorem 5, we will first derive a more general result.
Namely, in Appendix E.1, we will provide a precise upper bound on the stationarity gap of
noisy DP stochastic gradient descent ascent (DP-SGDA).
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E.1. Noisy DP-SGDA for Nonconvex-Strongly Concave Min-Max Problems

Consider a generic (smooth) nonconvex-strongly concave min-max ERM problem:

min
θPRdθ

max
wPW

#

F pθ, wq :“
1

n

n
ÿ

i“1

fpθ, w; ziq

+

, (6)

where fpθ, ¨; zq is µ-strongly concave3 for all θ, z but fp¨, w; zq is potentially non-convex.
We propose Noisy DP-SGDA4 (Algorithm 2) for privately solving (6), which is a noisy DP

Algorithm 2 Noisy Differentially Private Stochastic Gradient Descent-Ascent (DP-SGDA)

1: Input: data Z, θ0 P Rdθ , w0 P W, step-sizes pηθ, ηwq, privacy noise parameters σθ, σw,
batch size m, iteration number T ě 1.

2: for t “ 0, 1, . . . , T ´ 1 do
3: Draw a batch of data points tziu

m
i“1 uniformly at random from Z.

4: Update θt`1 Ð θt ´ ηθ
`

1
m

řm
i“1∇θfpθt, wt; ziq ` ut

˘

, where ut „ N p0, σ2θIdθq and
wt`1 Ð ΠW

“

wt ` ηw
`

1
m

řm
i“1∇wfpθt, wt; ziq ` vt

˘‰

, where vt „ N p0, σ2wIdwq.
5: end for
6: Draw θ̂T uniformly at random from tθtu

T
t“1.

7: Return: θ̂T

variation of two-timescale SGDA (Lin et al., 2020). Now, we provide the first theoretical
convergence guarantee for DP non-convex min-max optimization:

Theorem 9 (Privacy and Utility of Algorithm 2, Informal Version) Let ϵ ď 2 lnp1{δq, δ P

p0, 1q. Assume: fp¨, w; zq is Lθ-Lipschitz5 and fpθ, ¨; zq is Lw-Lipschitz for all θ, w, z; and
W Ă Rdw is a convex, compact set. Denote Φpθq “ maxwPW F pθ, wq. Choose σ2w “

8TL2
w lnp1{δq

ϵ2n2 , σ2θ “
8TL2

θ lnp1{δq

ϵ2n2 , and T ě

´

n
?
ϵ

2m

¯2
. Then, Algorithm 2 is pϵ, δq-DP. Fur-

ther, if fp¨, ¨; zq has Lipschitz gradients and fpθ, ¨; zq is strongly concave, then D T, ηθ, ηw
such that

E}∇Φpθ̂T q}2 “ O

˜

a

d lnp1{δq

ϵn

¸

,

where d “ maxpdθ, dwq. (The expectation is solely over the algorithm.)

In our DP fair learning application, fpθ,W ; ziq “ ℓpθ, xi, yiq `λ pψipθ,W q and the strong
concavity assumption on f in Theorem 9 is automatically satisfied, by Lowy et al. (2022).
The Lipschitz and smoothness assumptions on f are standard in optimization literature
and are satisfied for loss functions that are typically used in pracdtice. In our application
to DP-FERMI, these assumptions hold as long as the loss function ℓ and F are Lipschitz
continuous with Lipschitz gradients. Our next goal is to prove (the precise, scale-invariant
version of) Theorem 9. To that end, we require the following notation.
Notation and Assumptions: Let f : Rdθ ˆRdw ˆZ Ñ R, and F pθ, wq “ 1

n

řn
i“1 fpθ, w; ziq

for fixed training data Z “ pz1, ¨ ¨ ¨ , znq P Zn. Let W Ă Rdw be a convex, compact set.

3. We say a differentiable function g is µ-strongly concave if gpαq ` x∇gpαq, α1
´ αy ´

µ
2

}α ´ α1
}
2

ě gpα1
q

for all α, α1.
4. DP-SGDA was also used in Yang et al. (2022) for convex and PL min-max problems.
5. We say function g is L-Lipschitz if }gpαq ´ gpα1

q} ď L}α ´ α1
} for all α, α1.
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For any θ P Rdθ , denote w˚pθq P argmaxwPW F pθ, wq and pΦpθq “ maxwPW F pθ, wq. Let
∆Φ “ pΦpθ0q ´ infθ pΦZpθq. Recall that a function h is β-smooth if its derivative ∇h is
β-Lipschitz. We write a À b if there is an absolute constant C ą 0 such that a ď Cb.

Assumption 1

1. fp¨, w; zq is Lθ-Lipschitz and βθ-smooth for all w P W, z P Z.

2. fpθ, ¨; zq is Lw-Lipschitz, βw-smooth, and µ-strongly concave on W for all θ P Rdθ , z P

Z.

3. }∇wfpθ, w; zq ´ ∇wfpθ1, w; zq} ď βθw}θ ´ θ1} and }∇θfpθ, w; zq ´ ∇θfpθ, w1; zq} ď

βθw}w ´ w1} for all θ, θ1, w, w1, z.

4. W has ℓ2 diameter bounded by D ě 0.

5. ∇wF pθ, w˚pθqq “ 0 for all θ, where w˚pθq denotes the unconstrained global minimizer
of F pθ, ¨q.

The first four assumptions are standard in (DP and min-max) optimization. The fifth
assumption means that W contains the unconstrained global minimizer w˚pθq of F pθ, ¨q for
all θ. Hence (6) is equivalent to

min
θPRdθ

max
wPRdw

F pθ, wq.

This assumption is not actually necessary for our convergence result to hold, but we will need
it when we apply our results to the DP fairness problem. Moreover, it simplifies the proof
of our convergence result. We refer to problems of the form (6) that satisfy Assumption 1
as “(smooth) nonconvex-strongly concave min-max.” We denote κw :“ βw

µ and κθw :“ βθw
µ .

We can now provide the complete, precise version of Theorem 9:

Theorem 10 (Privacy and Utility of Algorithm 2, Formal Version) Let ϵ ď 2 lnp1{δq, δ P

p0, 1q. Grant Assumption 1. Choose σ2w “
8TL2

w lnp1{δq

ϵ2n2 , σ2θ “
8TL2

θ lnp1{δq

ϵ2n2 , and T ě

´

n
?
ϵ

2m

¯2
.

Then Algorithm 2 is pϵ, δq-DP. Further, if we choose ηθ “ 1
16κwpβθ`βθwκθwq

, ηw “ 1
βw

, and

T «

b

κwr∆Φpβθ ` βθwκθwq ` β2θwD
2sϵnmin

´

1
Lθ

?
dθ
, βw

βθwLw
?
κwdw

¯

, then

E}∇Φpθ̂T q}2 À

b

∆Φ

`

βθ ` βθwκθwqκw ` κwβ2θwD
2
˘

«

Lθ

a

dθ lnp1{δq

ϵn
`

ˆ

βθw
?
κw

βw

˙

Lw

a

dw lnp1{δq

ϵn

ff

`
1tmănu

m

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2w

˙

.

In particular, if m ě min

ˆ

ϵnLθ?
dθκwr∆Φpβθ`βθwκθwq`β2

θwD2s
,

ϵnLw
?
κw

βθwβw

?
dwκwr∆Φpβθ`βθwκθwq`β2

θwD2s

˙

,

then

E}∇Φpθ̂T q}2 À

b

κwr∆Φpβθ ` βθwκθwq ` β2θwD
2s

˜

a

lnp1{δq

ϵn

¸

ˆ

Lθ

a

dθ `

ˆ

βθw
?
κw

βw

˙

Lw

a

dw

˙

.
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The proof of Theorem 10 will require several technical lemmas. These technical lemmas,
in turn, require some preliminary lemmas, which we present below.

We begin with a refinement of Lemma 4.3 from Lin et al. (2020):

Lemma 11 Grant Assumption 1. Then Φ is 2pβθ ` βθwκθwq-smooth with ∇Φpθq “

∇θF pθ, w˚pθqq, and w˚p¨q is κw-Lipschitz.

Proof The proof follows almost exactly as in the proof of Lemma 4.3 of Lin et al. (2020),
using Danskin’s theorem, but we carefully track the different smoothness parameters with
respect to w and θ (and their units) to obtain the more precise result.

Lemma 12 (Lei et al. (2017)) Let talulPrns be an arbitrary collection of vectors such
that

řn
l“1 al “ 0. Further, let S be a uniformly random subset of rns of size m. Then,

E

›

›

›

›

›

1

m

ÿ

lPS
al

›

›

›

›

›

2

“
n´m

pn´ 1qm

1

n

n
ÿ

l“1

}al}
2 ď

1tmănu

m n

n
ÿ

l“1

}al}
2.

Lemma 13 (Co-coercivity of the gradient) For any β-smooth and convex function g,
we have

}∇gpaq ´ ∇gpbq}2 ď 2βpgpaq ´ gpbq ´ xgpbq, a´ byq,

for all a, b P domainpgq.

Having recalled the necessary preliminaries, we now provide the novel technical ingre-
dients that we’ll need for the proof of Theorem 10. The next lemma quantifies the progress
made in minimizing Φ from a single step of noisy stochastic gradient descent in θ (i.e. line
4 of Algorithm 2):

Lemma 14 For all t P rT s, the iterates of Algorithm 2 satisfy

EΦpθtq ď Φpθt´1q ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

E}∇Φpθt´1q}2

`

´ηθ
2

` 2η2θpβθ ` βθwκθwqE}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2
¯

` pβθβθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

,

conditional on θt´1, wt´1.

Proof Let us denote rg :“ 1
m

řm
i“1∇θfpθt´1, wt´1; ziq ` ut´1 :“ g ` ut´1, so θt “ θt´1 ´

ηθrg. First condition on the randomness due to sampling and Gaussian noise addition. By
smoothness of Φ (see Theorem 11), we have

Φpθtq ď Φpθt´1q ´ ηθxrg,∇Φpθt´1qy ` pβθ ` βθwκθwqη2θ}rg}2

“ Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθxrg ´ ∇Φpθt´1q,∇Φpθt´1qy ` pβθ ` βθwκθwqη2θ}rg}2.
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Taking expectation (conditional on θt´1, wt´1),

ErΦpθtqs ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ
“

dθσ
2
θ ` E}g ´ ∇θF pθt´1, wt´1q}2 ` }∇θF pθt´1, wt´1q}2

‰

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` }∇θF pθt´1, wt´1q}2

ȷ

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` 2}∇θF pθt´1, wt´1q ´ ∇Φpθt´1q}2 ` 2}∇Φpθt´1q}2

ȷ

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 `
ηθ
2

“

}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2 ` }∇Φpθt´1q}2
‰

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` 2}∇θF pθt´1, wt´1q ´ ∇Φpθt´1q}2 ` 2}∇Φpθt´1q}2

ȷ

ď Φpθt´1q ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

}∇Φpθt´1q}2

`

´ηθ
2

` 2pβθ ` βθwκθwqη2θ

¯

}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2

` pβθ ` βθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

.

In the first inequality, we used the fact that the Gaussian noise has mean zero and is
independent of pθt´1, wt´1, Zq, plus the fact that Eg “ ∇θF pθt´1, wt´1q. In the second
inequality, we used Theorem 12 and Lipschitz continuity of f . In the third and fourth
inequalities, we used Young’s inequality and Cauchy-Schwartz.

For the particular ηθ prescribed in Theorem 10, we obtain:

Lemma 15 Grant Assumption 1. If ηθ “ 1
16κwpβθ`βθwκθwq

, then the iterates of Algorithm 2

satisfy (@t ě 0)

EΦpθt`1q ď E
„

Φpθtq ´
3

8
ηθ}Φpθtq}2 `

5

8
ηθ

ˆ

β2θw}w˚pθtq ´ wt}
2 ` dθσ

2
θ `

4L2
θ

m
1tmănu

˙ȷ

.

Proof By Theorem 14, we have

EΦpθt`1q ď EΦpθtq ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

E}∇Φpθtq}2

`

´ηθ
2

` 2η2θpβθ ` βθwκθwqE}∇Φpθtq ´ ∇θF pθt, wtq}2
¯

` pβθβθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

ď EΦpθtq ´
3

8
ηθE}∇Φpθtq}2 `

5

8
ηθ

„

E}∇Φpθtq ´ ∇θF pθt, wtq}2 ` dθσ
2
θ `

4L2
θ

m
1tmănu

ȷ

ď EΦpθtq ´
3

8
ηθE}∇Φpθtq}2 `

5

8
ηθ

„

β2θwE}w˚pθtq ´ wt}
2 ` dθσ

2
θ `

4L2
θ

m
1tmănu

ȷ

.
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In the second inequality, we simply used the definition of ηθ. In the third inequality, we
used the fact that ∇Φpθtq “ ∇θF pθt, w

˚pθtqq (see Theorem 11) together with Assumption 1
(part 3).

Next, we describe the progress made in the wt updates:

Lemma 16 Grant Assumption 1. If ηw “ 1
βw

, then the iterates of Algorithm 2 satisfy
(@t ě 0)

E}w˚pθt`1q ´ wt`1}2 ď

ˆ

1 ´
1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw

˙

E}w˚pθtq ´ wt}
2 `

2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θ

`

E}∇Φpθtq}2 ` dθσ
2
θ

˘

.

Proof Fix any t and denote δt :“ E}w˚pθtq ´ wt}
2 :“ E}w˚ ´ wt}

2. We may assume
without loss of generality that fpθ, ¨; zq is µ-strongly convex and that wt`1 “ ΠW rwt ´
1
βw

`

1
m

řm
i“1∇wfpθt, wt; ziq ` vt

˘

s :“ ΠW rwt ´ 1
βw

p∇hpwtq ` vtqs :“ ΠW rwt ´ 1
βw

∇h̃pwtqs.
Now,

E}wt`1 ´ w˚}2 “ E
›

›

›

›

ΠW rwt ´
1

βw
∇h̃pwtqs ´ w˚

›

›

›

›

2

ď E
›

›

›

›

wt ´
1

βw
∇h̃pwtq ´ w˚

›

›

›

›

2

“ E}wt ´ w˚}2 `
1

β2w

“

E}∇hpwtq}2 ` dwσ
2
w

‰

´
2

βw
E

A

wt ´ w˚,∇rhpwtq

E

ď E}wt ´ w˚}2 `
1

β2w

“

E}∇hpwtq}2 ` dwσ
2
w

‰

´
2

βw
E

”

F pθt, wtq ´ F pθt, w
˚q `

µ

2
}wt ´ w˚}2

ı

ď δt

ˆ

1 ´
µ

βw

˙

´
2

βw
E rF pθt, wtq ´ F pθt, w

˚qs `
E}∇hpwtq}2

β2w
`
dwσ

2
w

β2w
.

Further,

E}∇hpwtq}2 “ E
“

}∇hpwtq ´ ∇wF pθt, wtq}2 ` }∇wF pθt, wtq}2
‰

ď
4L2

w

m
1tmănu ` E}∇wF pθt, wtq}2

ď
4L2

w

m
1tmănu ` 2βwrF pθt, wtq ´ F pθt, w

˚pθtqqs,

using independence and Theorem 12 plus Lipschitz continuity of f in the first inequality
and Theorem 13 (plus Assumption 1 part 5) in the second inequality. This implies

E}wt`1 ´ w˚}2 ď δt

ˆ

1 ´
1

κw

˙

`
1

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

. (7)
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Therefore,

δt`1 “ E}wt`1 ´ w˚pθtq ` w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙

E}wt`1 ´ w˚pθtq}2 ` 2κwE}w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 2κwE}w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 2κwκ
2
θwE}θt ´ θt`1}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

E}∇θF pθt, wtq ´ ∇Φpθtq}2 ` }∇Φpθtq}2 ` dθσ
2
t

‰

“

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

E}∇θF pθt, wtq ´ ∇θF pθt, w
˚pθtq}2 ` }∇Φpθtq}2 ` dθσ

2
t

‰

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

β2θwE}wt ´ w˚pθtq}2 ` }∇Φpθtq}2 ` dθσ
2
t

‰

,

by Young’s inequality, (7), and Theorem 11. Since
´

1 ` 1
2κw´1

¯ ´

1 ´ 1
κw

¯

ď 1 ´ 1
2κw

, we

obtain

δt`1 ď

ˆ

1 ´
1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw

˙

δt `
2

β2w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

}∇Φpθtq}2 ` dθσ
2
t

‰

,

as desired.

We are now prepared to prove Theorem 10.

Proof [Proof of Theorem 10] Privacy: This is an easy consequence of Theorem 1 in
Abadi et al. (2016) (with precise constants obtained from the proof therein, as in Bassily
et al. (2019)) applied to both the min (descent in θ) and max (ascent in w) updates.
Unlike Abadi et al. (2016), we don’t clip the gradients here before adding noise, but the
Lipschitz continuity assumptions (Assumption 1 parts 1 and 2) imply that the ℓ2-sensitivity
of the gradient updates in lines 4 and 5 of Algorithm 2 are nevertheless bounded by 2Lθ{m
and 2Lw{m, respectively. Thus, Theorem 1 in Abadi et al. (2016) still applies.
Convergence: Denote ζ :“ 1 ´ 1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw, δt “ E}w˚pθtq ´ wt}

2, and

Ct :“
2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θ

`

E}∇Φpθtq}2 ` dθσ
2
θ

˘

,

so that Theorem 16 reads as

δt ď ζδt´1 ` Ct´1 (8)
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for all t P rT s. Applying (8) recursively, we have

δt ď ζtδ0 `

t´1
ÿ

j“0

Ct´j´1ζ
j

ď ζtD2 ` 4κwκ
2
θwη

2
θ

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`

˜

t´1
ÿ

j“0

ζt´1´j

¸

„

2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

.

Combining this inequality with Theorem 15, we get

EΦpθtq ď E
„

Φpθt´1q ´
3

8
ηθ}∇Φpθt´1q}2

ȷ

`
5

8
ηθ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

`
5

8
ηθβ

2
θw

#

ζtD2 ` 4κwκ
2
θwη

2
θ

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`

˜

t´1
ÿ

j“0

ζt´1´j

¸

„

2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

+

.

Summing over all t P rT s and re-arranging terms yields

EΦpθT q ď Φpθ0q ´
3

8
ηθ

T
ÿ

t“1

E}∇Φpθt´1q}2 `
5

8
ηθT

ˆ

dθσ
2
t `

4L2
θ

m
1tmănu

˙

`
5

8
ηθβ

2
θw

˜

T
ÿ

t“1

ζt

¸

D2

` 4η3θβ
2
θwκwκ

2
θw

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`
5

8

˜

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´j

¸

ηθβ
2
θw

„

2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

.

Now, ζ ď 1 ´ 1
4κw

, which implies that

T
ÿ

t“1

ζt ď 4κw and

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´j ď 4κwT.

Hence

1

T

T
ÿ

t“1

E}∇Φpθtq}2 ď
3rΦpθ0q ´ EΦpθT qs

ηθT
`

5

3

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

`
7β2θwD

2κw
T

`
48η2θβ

2
θwκ

2
wκ

2
θw

T

˜

T
ÿ

t“1

E}∇Φpθtq}2

¸

` 8κwβ
2
θw

2

β2w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 32β2θwκ
2
wκ

2
θwη

2
θdθσ

2
θ .
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Since η2θβ
2
θwκ

2
wκ

2
θw ď 1

256 , we obtain

E}∇Φpθ̂T q}2 À
∆Φκw
T

pβθ ` βθwκθwq `
dθL

2
θT lnp1{δq

ϵ2n2
`

1

m
1tmănu

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2w

˙

`
κwβ

2
θwL

2
wdwT lnp1{δq

β2wϵ
2n2

`
β2θwD

2κw
T

.

Our choice of T then implies

E}∇Φpθ̂T q}2 À

b

∆Φ

`

βθ ` βθwκθwqκw ` κwβ2θwD
2
˘

«

Lθ

a

dθ lnp1{δq

ϵn
`

ˆ

βθw
?
κw

βw

˙

Lw

a

dw lnp1{δq

ϵn

ff

`
1tmănu

m

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2w

˙

.

Finally, our choice of sufficiently large m yields the last claim in Theorem 10.

E.2. Proof of Theorem 5

Theorem 5 is an easy consequence of Theorem 9, which we proved in the above subsection:

Theorem 17 (Re-statement of Theorem 5) Assume the loss function ℓp¨, x, yq and Fpx, ¨q
are Lipschitz continuous with Lipschitz gradient for all px, yq, and pPSprq ě ρ ą 0 @ r P

rks. In Algorithm 1, choose W to be a sufficiently large ball that contains W ˚pθq :“
argmaxW pF pθ,W q for every θ in some neighborhood of θ˚ P argminθ maxW pF pθ,W q. Then
there exist algorithmic parameters such that the pϵ, δq-DP Algorithm 1 returns θ̂T with

E}∇FERMIpθ̂T q}2 “ O

˜

a

maxpdθ, klq lnp1{δq

ϵn

¸

,

treating D “ diameterpWq, λ, ρ, l, and the Lipschitz and smoothness parameters of ℓ and
F as constants.

Proof By Theorem 9, it suffices to show that fpθ,W ; ziq :“ ℓpθ, xi, yiq ` λ pψipθ,W q

is Lipschitz continuous with Lipschitz gradient in both the θ and W variables for any
zi “ pxi, yi, siq, and that fpθ, ¨; ziq is strongly concave. We assumed ℓp¨, xi, yiq is Lipschitz
continuous with Lipschitz gradient. Further, the work of Lowy et al. (2022) showed that
fpθ, ¨; ziq is strongly concave. Thus, it suffices to show that pψipθ,W q is Lipschitz continuous
with Lipschitz gradient. This clearly holds by Lemma 7, since Fpx, ¨q is Lipschitz continuous
with Lipschitz gradient and W P W is bounded.

Appendix F. Numerical Experiments: Additional Details and Results

F.1. Measuring Demographic Parity and Equalized Odds Violation

We used the expressions given in (9) and (10) to measure the demographic parity violation
and the equalized odds violation respectively. We denote Y to be the set of all possible

27



Lowy Gupta Razaviyayn

output classes and S to be the classes of the sensitive attribute. P rEs denotes the empirical
probability of the occurrence of an event E.

max
y1PY,s1,s2PS

ˇ

ˇP rpy “ y1|s “ s1s ´ P rpy “ y1|s “ s2s
ˇ

ˇ (9)

max
y1PY,s1,s2PS

maxp
ˇ

ˇP rpy “ y1|s “ s1, y “ y1s ´ P rpy “ y1|s “ s2, y “ y1s
ˇ

ˇ ,

ˇ

ˇP rpy “ y1|s “ s1, y ‰ y1s ´ P rpy “ y1|s “ s2, y ‰ y1s
ˇ

ˇq

(10)

F.2. Tabular Datasets

F.2.1. Model Description and Experimental Details

Demographic Parity: We split each dataset in a 3:1 train:test ratio. We preprocess the
data similar to Hardt et al. (2016a) and use a simple logistic regression model with a sigmoid
output O “ σpWx`bq which we treat as conditional probabilities pppy “ i|xq. The predicted
variables and sensitive attributes are both binary in this case across all the datasets. We
analyze fairness-accuracy trade-offs with four different values of ϵ P t0.5, 1, 3, 9u for each
dataset. We compare against state-of-the-art algorithms proposed in Tran et al. (2021a)
and (the demographic parity objective of) Tran et al. (2021b). The tradeoff curves for DP-
FERMI were generated by sweeping across different values for λ P r0, 2.5s. The learning
rates for the descent and ascent, ηθ and ηw, remained constant during the optimization
process and were chosen from r0.005, 0.01s. Batch size was 1024. We tuned the ℓ2 diameter
of the projection set W and θ-gradient clipping threshold in r1, 5s in order to generate stable
results with high privacy (i.e. low ϵ). Each model was trained for 200 epochs. The results
displayed are averages over 15 trials (random seeds) for each value of ϵ.

Equalized Odds: We replicated the experimental setup described above, but we took ℓ2
diameter of W and the value of gradient clipping for θ to be in r1, 2s. Also, we only tested
three values of ϵ P t0.5, 1, 3u.

F.2.2. Description of Datasets

Adult Income Dataset: This dataset contains the census information about the individ-
uals. The classification task is to predict whether the person earns more than 50k every
year or not. We followed a preprocessing approach similar to Lowy et al. (2022). After
preprocessing, there were a total of 102 input features from this dataset. The sensitive
attribute for this work in this dataset was taken to be gender. This dataset consists of
around 48,000 entries spanning across two CSV files, which we combine and then we take
the train-test split of 3:1.

Retired Adult Income Dataset: The Retired Adult Income Dataset proposed by Ding
et al. (2021) is essentially a superset of the Adult Income Dataset which attempts to counter
some caveats of the Adult dataset. The input and the output attributes for this dataset is
the same as that of the Adult Dataset and the sensitive attribute considered in this work
is the same as that of the Adult. This dataset contains around 45,000 entries.

Parkinsons Dataset: In the Parkinsons dataset, we use the part of the dataset which
had the UPRDS scores along with some of the features of the recordings obtained from
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individuals affected and not affected with the Parkinsons disease. The classification task
was to predict from the features whether the UPDRS score was greater than the median
score or not. After preprocessing, there were a total of 19 input features from this dataset
and the sensitive attribute for this dataset was taken to be gender. This dataset contains
around 5800 entries in total. We took a train-test split of 3:1.

Credit Card Dataset: This dataset contains the financial data of users in a bank in
Taiwan consisting of their gender, education level, age, marital status, previous bills, and
payments. The assigned classification task is to predict whether the person defaults their
credit card bills or not, essentially making the task if the clients were credible or not. We
followed a preprocessing approach similar to Lowy et al. (2022). After preprocessing, there
were a total of 85 input features from this dataset. The sensitive attribute for this dataset
was taken to be gender. This dataset consists of around 30,000 entries from which we take
the train-test split of 3:1.

UTK-Face Dataset: This dataset is a large scale image dataset containing with an age
span from 0 to 116. The dataset consists of over 20,000 face images with details of age,
gender, and ethnicity and covers large variation in pose, facial expression, illumination,
occlusion, resolution. We consider the age classification task with 9 age groups similar to
the experimental setup in Tran et al. (2022). We consider the sensitive attribute to be the
ethnicity which consists of 5 different classes.

F.2.3. Demographic Parity

Adult Results: See Fig. 6 for complete results on Adult data set.

Retired Adult Results: See Fig. 7 for our results on Retired Adult Dataset. The results
are qualitatively similar to the reusults reported in the main body: our algorithm (DP-
FERMI) achieves the most favorable fairness-accuracy tradeoffs across all privacy levels.

Credit Card Results: See Fig. 8 for our results on Credit Card Dataset. DP-FERMI
offers superior fairness-accuracy-privacy profile compared to all applicable baselines.

Additional Results for Parkinsons Dataset: More results for Parkinsons are shown
in Fig. 9. DP-FERMI offers the best performance.

F.2.4. Equalized Odds

Equalized Odds Variation of DP-FERMI Algorithm: The (FERMI obj.) minimizes
the Exponential Renyi Mutual Information (ERMI) between the output and the sensitive
attributes which essentially leads to a reduced demographic parity violation. The equalized-
odds condition is more constrained and enforces the demographic parity condition for data
grouped according to labels. For the equalized-odds, the ERMI between the predicted and
the sensitive attributes is minimized conditional to each of the label present in the output
variable of the dataset. So, the FERMI regularizer is split into as many parts as the number
of labels in the output. This enforces each part of the FERMI regularizer to minimize the
ERMI while an output label is given/constant. Each part has its own unique W that is
maximized in order to create a stochastic estimator for the ERMI with respect to each of
the output labels.

29



Lowy Gupta Razaviyayn

(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9
Figure 6: Private, Fair (Demographic Parity) logistic regression on Adult Dataset.

Adult Results: Results for the equalized odds version of DP-FERMI on Adult dataset
are shown in Fig. 10. Our approach outperforms the previous state-of-the-art methods.

Retired Adult Results: (Initial) Results for the equalized odds version of DP-FERMI
on the retired-adult dataset are shown in Fig. 11. Our approach outperforms Tran et al.
(2021b) and we are currently tuning our non-private and/or non-fair versions of our models
along with Jagielski et al. (2019).

F.3. Image Dataset (UTK-Face)

We split the dataset in a 3:1 train:test ratio. Batch size was 64. 128 x 128 normalized
images were used as input for our model. We tuned the ℓ2 diameter of W and the value
of gradient clipping for θ to be in r1, 2s and learning rates for the descent and ascent, ηθ
and ηw, remained constant during the optimization process and were chosen as 0.001 and
0.005 respectively. We analyze the fairness-accuracy trade-offs with five different values of
ϵ P t10, 25, 50, 100, 200u. The results displayed were averaged over observations obtained
from 5 different randomly chosen seeds on each configuration of ϵ and a dataset. Each model
was trained for 150 epochs. The tradeoff curves for this set of experiments were obtained
by sweeping across different values for λ P r0, 500s. Complete results are given in Fig. 12.
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(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9

Figure 7: Private, fair logistic regression on the Retired Adult Dataset

Appendix G. Societal Impacts

In this paper, we considered the socially consequential problem of privately learning fair
models from sensitive data. Motivated by the lack of scalable private fair learning methods
in the literature, e developed the first differentially private (DP) fair learning algorithm that
is guaranteed to converge with small batches (stochastic optimization). We hope that our
method will be used to help companies, governments, and other organizations to respon-
sibly use sensitive, private data. Specifically, we hope that our DP-FERMI algorithm will
be useful in reducing discrimination in algorithmic decision-making while simultaneously
preventing leakage of sensitive user data. The stochastic nature of our algorithm might
be especially appealing to companies that are using very large models and datasets. On
the other hand, there are also some important limitations of our method that need to be
considered before deployment.

One caveat of our work is that we have assumed that the given data set contains fair
and accurate labels. For example, if gender is the sensitive attribute and “likelihood of
repaying a loan” is the target, then we assume that the training data accurately describes
everyone’s financial history without discrimination. If training data is biased against a
certain demographic group, then it is possible that our algorithm could amplify (rather
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(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9

Figure 8: Private, fair (demographic parity) logistic regression on the Credit Card Dataset

(a) ϵ “ 0.5 (b) ϵ “ 9

Figure 9: Private, Fair (Demogrpahic Parity) Logistic regression on Parkinsons Dataset

than mitigate) unfairness. See e.g. Kilbertus et al. (2020); Bechavod et al. (2019) for
further discussion.
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(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 10: Results obtained for applying DP-FERMI with equalized odds violation on lo-
gistic regression on the Adult Dataset

(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 11: Results obtained for applying DP-FERMI with equalized odds violation on lo-
gistic regression on the Retired Adult Dataset

Another important practical consideration is how to weigh/value the different desiderata
(privacy, fairness, and accuracy) when deploying our method. As shown in prior works
(e.g., Cummings et al. (2019)) and re-enforced in the present work, there are fundamental
tradeoffs between fairness, accuracy, and privacy: improvements in one generally come at a
cost to the other two. Determining the relative importance of each of these three desiderata
is a critical question that lacks a clear or general answer. Depending on the application,
one might be seriously concerned with either discrimination or privacy attacks, and should
calibrate ϵ and λ accordingly. Or, perhaps very high accuracy is necessary for a particular
task, with privacy and/or fairness as an afterthought. In such a case, one might want to
start with very large ϵ and small λ to ensure high accuracy, and then gradually shrink ϵ
and/or increase λ to improve privacy/fairness until training accuracy dips below a critical
threshold. A thorough and rigorous exploration of these issues could be an interesting
direction for future work.
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(a) ϵ “ 10 (b) ϵ “ 25

(c) ϵ “ 50 (d) ϵ “ 100

Figure 12: DP-FERMI on a Deep CNN for Image Classification on UTK-Face
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